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Abstract: In most of the literature, the design of a high gain observer is based on normal forms. In the case where a nonlinear
system, which is characterized by a normal form, is observable independently on the input, it is shown here that the gain of
this observer does not require any differential equation. In this paper, we also investigate the problem of the high gain observer
of a class of nonlinear systems which are not observable independently on the input. It is shown that if the input satisfies some
observability condition, then an exponential observer, whose gain derived from a Lyapunov differential equation, can be designed.
Key Words: Nonlinear System, Nonlinear Observer, Normal Form

1 INTRODUCTION

The problem of state estimation is an important issue for
the control, the diagnosis and the process monitoring. Many
methods have been developed for designing an observer for
nonlinear systems. Among these methods, a rather natural
approach consists in characterizing nonlinear systems which
can be steered, by a change of coordinates, into state affine
systems up to output injection. Indeed, an extended Luen-
berger (or Kalman) observer can be designed for these class
of systems (see for instance [1, 2]). For stationary linear
systems, the observability does not depend on the inputs. An
extension of this result for a more general class of nonlinear
systems consists in giving normal forms which characterize
nonlinear systems that are observable independently on the
inputs. This problem has been initiated by [3] in the single
output case. This normal form has been used in [4] in order
to design a high gain observer in the control affine case. An
extension of this observer synthesis for non control affine is
stated in the single output case in [5] and in [6] in the multi-
output case. For several other subclasses of multiple input
multiple output (MIMO) uniformly observable systems, ob-
servers have been designed (see eg. [7-10]).

Based on the previous works mentioned above, recently,
in [11], the authors gave a sufficient condition permitting to
characterize nonlinear systems which can be immersed into
high dimension normal form. The proposed class of systems
may admit inputs which render them unobservable. In order
to design an observer for these systems, the authors assume
that the inputs must render the system sufficiently observable
in some sense. The gain of the proposed observer is then
derived from a Lyapunov differential equation.

In this paper, we will consider the same class of normal
form stated in [11].First, we will show that if an input sat-
isfies the hypothesis which is stated in [11], then a classi-
cal high gain observer can be designed: i.e., the gain of the
observer does not require any Lyapunov differential equa-
tion.Next, we will propose an observer design based on a
class of inputs which satisfy a weaker hypothesis than those
considered in [11].

This paper is organized as follows: in the next section, we
give the problem statement and we discuss the observer syn-
thesis based on the observability hypothesis stated in [11].
In section 3, we propose a new observer synthesis based on
hypothesis weaker than the hypothesis stated in [11].

2 PROBLEM STATEMENT AND SOME PRE-
LIMINARY RESULTS

In this section, in the field of high gain observers [12],
we recall some normal forms that have been used for their
design. Two cases are presented: the first one concerns nor-
mal forms which characterized nonlinear systems which are
observable independently on the input. In this case, the ob-
server gain does not require any differential equation. The
second case concerns normal forms of nonlinear systems
which admit inputs that render them unobservable. For these
systems, the observer synthesis depends on the input excita-
tion.More precisely, in [11], the authors gave an observabil-
ity condition that an input must satisfy in order to design a
high gain observer whose gain derived from a differential
equation. In subsection 2.2, we show that if such condi-
tion holds, then a classical high observer can be designed,
namely, the gain of the observer can be synthesized without
the use of differential equation.

2.1 Problem statement
Consider the single output nonlinear system:{

ẋ = f(x, u),
y = h(x),

(1)

the state x(t) ∈ Rn, the input u(t) ∈ Rm and the output
y(t) ∈ R.

System (1) is said to be uniformly observable if every in-
put u(.) distinguishes every two different initial states x(0),
x′(0) on any interval [0, T (x(0), x′(0))] in which x(.) and
x′(.) are well defined.

In the control affine case, the authors in [3] (see also [4]
for a simple proof), showed that if (1) is uniformly observ-
able, then it can be transformed locally almost everywhere
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by a change of coordinates into the following normal form:{
ż = Az + g(u, z),
y = Cz,

(2)

where:

A =


0 1 . . . 0

0 0
. . .

...
...

...
. . . 1

0 0 . . . 0

 , C = [1, 0, . . . , 0],

g(u, z) =


g1(u, z1)

...
gn−1(u, z1, . . . , zn−1)

gn(u, z)

 , z = (z1, ..., zn)T .

This normal form is then used in [4], in order to design an
observer of the form:

˙̂z = Aẑ + g(u, ẑ) + ∆θK(Cẑ − y), (3)

where ∆θ is the diagonal n × n matrix ∆θ = θ . . . 0
...

. . .
...

0 . . . θn

 and K is a constant n-column vec-

tor such that (A + KC) is a Hurwitz matrix. This observer
exponentially converges whenever g is a Global Lipschitz
function and for θ sufficiently large.

This canonical form together with its associated observer
synthesis has been extended to non affine control systems
by [5] and [6] respectively in the single input and the multi-
output cases. In the non affine control systems, the normal
form takes the following form:

ż1 = F1(u, z1, z2),
...
żi = Fi(u, z1, . . . , zi+1),
...
żq = Fq(u, z),
y = Cz,

(4)

where z =

 z1
...
zq

, zi ∈ Rni , u ∈ U a connected and

bounded set of Rm. n1 > n2 > . . . > nq ; n1 + n2 + . . .+
nq = n, and where:

Rank
(
∂Fi
∂zi+1

(u, z)

)
= ni+1; ∀z ∈ Rn;∀u ∈ U;∀i, (5)

In the single output case, we have q = n and all the ni’s are

equal to 1, and the condition (5) means that
∂Fi
∂zi+1

(u, z) 6=

0, for every (u, z).
In the single output case, the observer synthesis for the class
of systems (4) is based on the following lemma:

Lemma 1 Consider a n × n matrix A(t) =
0 a1(t) . . . 0

0 0
. . .

...
...

...
. . . an−1(t)

0 0 . . . 0

, and assume that

0 < a 6 ai(t) 6 a′ for some constants a, a′. Then
there exist a constant vector K; a symmetric positive
definite matrix P and a constant α > 0 such that:

(A(t) +KC)TP + P (A(t) +KC) 6 −αI (6)

The following result has been stated in [5] for the single out-
put systems. Its extension to multi-output systems is shown
in [6].

Theorem 1 Let u(.) be an input such that 0 < a 6

| ∂Fi
∂zi+1

(u(t), z)| 6 a′, for every t > 0 and for every z,

where a, a′ are constants. Assume again that the sign of
∂Fi
∂zi+1

(u(t), z) does not change. Then there exists θ0 > 0,

such that for every θ > θ0, the following system forms an
exponential observer for system (4):

˙̂z = F (u, ẑ) + ∆θK(Cẑ − y), (7)

where ∆θ is the diagonal matrix given above, K is the con-
stant gain stated in lemma 1 and where Fi(u, z1, . . . , zi+1)
is the ith component of F .

We have seen that an observer for control affine system (2)
is of the form (3), and that the gainK of this observer derived
from the pair (C,A) (the matrix A+KC is Hurwitz). This
idea has been extended in [11] to systems of the form:{

ż = A(u)z + g(u, z),
y = Cz,

(8)

where:

A(u) =


0 a1(u) . . . 0

0 0
. . .

...
...

...
. . . an−1(u)

0 0 . . . 0

 ,

gi(u, z) = gi(u, z1, . . . , zi) and C = [1, 0 . . . , 0].

(9)

In order to design an observer for (8) based on the follow-
ing state affine system:{

ż = A(u)z,
y = Cz,

(10)

the authors assume that the inputs u(.) that render the system
(10) observable in a strong sense are given by the following
definition:

Definition 1 [11]
A bounded input u(.) is said be locally regular, if there exist
t0 > 0, θ0 > 0 and α > 0, such that for every θ > θ0; for
every t > max{ 1

θ0
, t0} we have:

G(u, t− 1

θ
, t) =

∫ t
t− 1

θ

φTu (s, t)CTCφu(s, t)ds > αθ∆−2θ ,

(11)
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whereG(u, t− 1
θ , t) is the Grammian of observability defined

on [t − 1
θ , t], φu(t, s) is the transition matrix of system (10)

(
d(φu(t, s))

dt
= A(u(t))φu(t, s)), with φu(s, s) = I is the

identity matrix, and ∆θ is the diagonal n×n matrix defined
above.

Theorem 2 [11]
If u(.) is locally regular, then an observer for (8) takes the
following form:

˙̂z = A(u)ẑ + g(u, ẑ)−∆θS
−1CT (Cẑ − y),

Ṡ = −θ(γS +AT (u)S + SA(u)− CTC),
S(0) is a n× n symmetric positive definite matrix,

(12)
where θ > 0 is a constant parameter which may be cho-
sen sufficiently large and γ > 0 is a constant parameter
which guaranties the stability of the differential equation
Ṡ0 = −γS0 + AT (u)S0 + S0A(u) − CTC, in the sense
that α0I 6 S0(t) 6 β0I , for every t > 0, α0 > 0, β0 > 0
are positive constants.

This theorem therefore states that a Lyapunov differential
equation needs to be solved in order to get the observer gain
for the observer (12) of the system (8). In the next part of this
section, we will prove that a simpler constant gain observer
may be designed for the system (8).

2.2 Preliminary results

We give here a proposition which shows that for contin-
uous locally regular inputs, a constant gain observer of the
form (7) can be designed for system (8). This means that the
system of differential equations Ṡ = −θ(γS + AT (u)S +
SA(u) − CTC) is not necessary in order to design an ob-
server for systems (8). To do so, it suffices to show that if
u(.) is a continuous locally regular input, then it satisfies the
conditions of theorem 1.

Proposition 1 If u(.) is a continuous locally regular input,
then there exists τ0 > 0; there exist constants a, a′, 0 <
a < a′ such that for every t > τ0, a 6 |ai(u(t))| 6 a′,
for 1 6 i 6 n − 1. Moreover, the sign of ai(u(t)) does not
change.

Proof
SinceA(u) is a nilpotent matrix and C = [1, 0, . . . , 0], we

deduce that:

Cφu(s, t) = [1, . . .
. . .

∫s
t
a1(u(t1))dt1, . . .

. . .
∫s
t

∫t1
t
. . .

∫tn−2

t
a1(u(t1)) . . .

. . . an−1(u(tn−1))dt1 . . . dtn−1].

(13)

If we set:
α1(t, s) = 1,
α2(t, s) =

∫s
t
a1(u(t1))dt1,

αn(t, s) =
∫s
t

∫t1
t
. . .

∫tn−2

t
a1(u(t1)) . . .

...an−1(u(tn−1))dt1 . . . dtn−1,

(14)

then we get:∫t
t− 1

θ
φTu (s, t)CTCφu(s, t)ds = ψ(t, θ) . . .

. . . =


ψ11(t, θ) ψ12(t, θ) . . . ψ1n(t, θ)
ψ12(t, θ) ψ22(t, θ) . . . ψ2n(t, θ)

...
...

. . .
...

ψ1n(t, θ) ψ2n(t, θ) . . . ψnn(t, θ)

 ,

(15)
where ψij(t, θ) =

∫t
t− 1

θ
αi(t, s)αj(t, s)ds.

The condition (11) implies:{
∃θ0 > 0; ∃t0 > 0;∃β > 0;∀θ > θ0, we have:
∀t > max{t0, θ};∀i, 1 6 i 6 n, ψii(t, θ) >

β
θ2i−1 .

(16)
Let us analyse condition (16) for i = 2, . . . , n:

• For i = 2:
ψ22(t, θ) =

∫t
t− 1

θ
(
∫s
t
a1(u(t1))dt1)2ds...

... 6 max{a21(u(τ)), t− 1
θ 6 τ 6 t}

∫t
t− 1

θ
(t− s)2ds

6 max{a21(u(τ)), t− 1
θ 6 τ 6 t} 1

3θ3
.

(17)

• For i > 2, setting:
γi = max{a21(u(τ1)) . . . a2i−1(u(τi−1)), t − 1

θ 6 τj 6
t, 1 6 j 6 i− 1},
we obtain:

ψii(t, θ) =
∫t
t− 1

θ
(
∫s
t
. . .

∫ti−2

t
a1(u(t1))...

. . . ai−1u((ti−1))dt1 . . . dti−1)2ds...

6 γi
∫t
t− 1

θ
(
∫s
t
. . .

∫ti−2

t
dt1 . . . dti−1)2ds...

6
γi

(2i− 1)((i− 1)!)2θ2i−1
.

(18)

Combining (16), (17) and (18), we deduce that there ex-
ists a constant γ̃ > 0, such that for every t > max{t0, θ},
a2i (u(t)) > γ̃. Finally, using the continuity of a(.) and u(.),
it follows that the sign of ai(u(t)) does not change for every
t > max{t0, θ}.
On one hand, one has to notice that (8) is a particular form of
(4): indeed, Fi(u, z) = ai(u)zi+1+gi(u, z1, . . . , zi). There-

fore
∂Fi
∂zi+1

(u(t), z) = ai(u). On the other hand, we just

proved with the proposition 1 that the sign of ai(u(t)) does
not change. Therefore, the conditions of the theorem 1 are
satisfied: a constant gain observer of the form (7) may also
be applied on system (8), hence without the need to solve
any Lyapunov differential equation.

3 MAIN CONTRIBUTION: OBSERVER SYN-
THESIS BASED ON STRONGLY PERSIS-
TENT INPUTS

In this section, for a particular set of inputs, we give an
observer for system (8) based on a weaker condition than
this proposed in theorem 2. To do so, consider the system of
differential equations defined on the manifold of symmetric
positive definite matrices S+:{

Ṡ = −θS −AT (u)S − SA(u) + CTC,
S(0) ∈ S+, (19)
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where A(u) is the n × n matrix given in (8). A simple cal-
culation gives:

S(t) = e−θtΦTu (0, t)S(0)Φu(0, t) + ...

...
∫t
0
e−θ(t−s)ΦTu (s, t)CTCΦu(s, t)ds,

(20)

where Φu(0, t) = Φ−1u (t, 0), Φu(t, 0) is the transition ma-
trix of the system ẋ = A(u)x, with Φu(0, 0) = I .If
u(.) is bounded, then ‖Φu(s, t)‖ 6 em(t−s) where m =
‖A(u(.))‖∞.

Remark 1 1) For θ > 2m, e−θtΦTu (0, t)S(0)Φu(0, t) ex-
ponentially converges to 0. In particular, for t suffi-
ciently large, the behavior of S(t) becomes similar to
the behavior of:

Ψ(t, θ) =
∫t
0
e−θ(t−s)ΦTu (s, t)CTCΦu(s, t)ds =

Ψ11(t, θ) Ψ12(t, θ) . . . Ψ1n(t, θ)
Ψ12(t, θ) Ψ22(t, θ) . . . Ψ2n(t, θ)

...
...

. . .
...

Ψ1n(t, θ) Ψ2n(t, θ) . . . Ψnn(t, θ)

 .

(21)
Namely, ∃ω > 0;∀t > 0,∀θ > 2m:

S(t)− ωe−(θ−2m)tI 6 Ψ(t, θ) 6 S(t) + ωe−(θ−2m)tI.
(22)

2) Ψij(t, θ) = ΨT
ji(t, θ) is ni × nj matrix defined by:

• Ψ11(t, θ) =
∫t
0
e−θ(t−s)ds;

• Ψ12(t, θ) =
∫t
0
e−θ(t−s)

∫t
s
A12(u(t1))dt1ds;

• For i > 3, Ψ1i(t, θ) =∫t
0
e−θ(t−s)

∫t
s

∫t1
s
. . .

∫ti−2

s
A12(u(t1)) . . .

...A1i(u(t1))dt1 . . . dti−1ds;

• For i = 2, Ψ22(t, θ) =∫t
0
e−θ(t−s) . . .

. . . (
∫t
s
AT12(u(t1))dt1)(

∫t
s
A12(u(t1))dt1)ds;

• For i > 3, Ψ2i(t, θ) =∫t
0
e−θ(t−s)(

∫t
s
AT12(u(t1))dt1)...

...(
∫t
s

∫t1
s
. . .

∫ti−2

s
A12(u(t1)) . . . Ai−1,i(u(t1))...

...dt1 . . . dti−1)ds;

• For i, j > 3, Ψij(t, θ) =∫t
0
e−θ(t−s)(

∫t
s
AT12(u(t1)) . . . ATi−1,i(u(t1))...

...dt1 . . . dti−1)(
∫t
s

∫t1
s
. . .

∫ti−2

s
A12(u(t1)) . . .

...Aj−1,j(u(t1))dt1 . . . dtj−1)ds.

In the sequel we will denote by Γ(t, θ) the diagonal ma-
trix:

Γ(t, θ) =

 Ψ11(t, θ) . . . 0
...

. . .
...

0 . . . Ψnn(t, θ)

 . (23)

By construction, this diagonal matrix is positive definite.

Definition 2 A bounded input u(.) is said to be strongly per-
sistent if:
∃θ0 > 0; ∃t0 > 0; ∀θ > θ0; ∀t > t0:

i) Γ(t, θ) is invertible and satisfies:

Γ(t, θ) 6 α(θ)Ψ(t, θ), with limθ→∞
α(θ)

θ
= 0.

ii) ∃γ > 0, ‖Γ−1jj (t, θ)‖‖Γii(t, θ)‖ 6 γ, for 1 6 j 6 i.

The set of such strongly persistent inputs will be denoted by
CSP .

Remark 2 Denoting by CLR the set of locally regularly in-
puts defined in definition 1, then CLR ⊂ CSP

As the following example shows, generally we have
CLR  CSP .

Example 1  ẋ(t) =

(
0 u(t)
0 0

)
x(t),

y(t) = (1 0)x(t),
(24)

u(t) = cos(t) belongs to CSP , but it is not in CLR.

Now, we can state our main result of this section:

Theorem 3 Assume that the nonlinear term g(u, z) in (8)
is a global Lipschitz function with respect to z, locally to
u. Then for every u ∈ CSP , the following system forms an
exponential observer for system (8):{

˙̂z = A(u)ẑ + g(u, ẑ)− S−1CT (Cẑ − y),

Ṡ = −θS −AT (u)S − SA(u) + CTC,
(25)

Proof
Setting e(t) = ẑ(t)− z(t) and using (8)-(25), we obtain:{

ė = (A(u)− S−1CTC)e+ δ(g),

Ṡ = −θS −AT (u)S − SA(u) + CTC,
(26)

where δ(g) = g(u, ẑ) − g(u, z). Applying the Cholesky
decomposition to S(t), we obtain S(t) = Λ(t)ΛT (t) where
Λ(t) is a lower triangular matrix with a positive diagonal.
Now consider the time variant linear change of coordinates
ε(t) = ΛT (t)e(t), we deduce:

ε̇ = (ΛTA(u)Λ−T−Λ−1CTCΛ−T )ε+ΛT δ(g)+Λ̇TΛ−T ε,
(27)

where Λ−T denotes the inverse of ΛT .
Using the relation S(t) = Λ(t)ΛT (t) and the fact that S(t)
is a solution of the second equation of (25), we obtain:

Λ̇ΛT +ΛΛ̇T = −θΛΛT −AT (u)ΛΛT −ΛΛTA(u)+CTC.
(28)

Let us multiply both sides of (28): to the left by Λ−1, and to
the right by Λ−T . Then, we get:

Λ−1Λ̇ + Λ̇TΛ−T = ...
...− θI − Λ−1AT (u)Λ− ΛTA(u)Λ−T + Λ−1CTCΛ−T .

(29)
Now setting V (t) = εT (t)ε(t):

V̇ = ε̇T ε+ εT ε̇...
... = εT [Λ−1AT (u)Λ− Λ−1CTCΛ−T ]ε...
...+ εT [ΛTA(u)Λ−T − Λ−1CTCΛ−T ]ε...
...+ 2εTΛT δ(g) + (δ(g))TΛΛT δ(g)...

...+ εT [Λ−1Λ̇ + Λ̇TΛ−T ]ε.

(30)
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Combining (29) and (30), it follows: V̇ = −θ‖ε‖2 + 2εTΛT δ(g) + (δ(g))TΛΛT δ(g)− ...
...εTΛ−1CTCΛ−T ε...
... 6 −θ‖ε‖2 + 2‖ε‖‖ΛT δ(g)‖+ (δ(g))TΛΛT δ(g),

(31)
where ‖‖ denotes the euclidian norm.
Using 1) of remark 1, there exists τ0 > 0; there exists a > 0,
such that for every t > τ0, we have S(t) = Λ(t)ΛT (t) 6
aΨ(t, θ). Combining this inequality together with (31), we
deduce that for every t > t0:

V̇ 6 −θ‖ε‖2 + 2
√
a‖ε‖

√
(δ(g))TΨ(t, θ)δ(g) + ...

...a(δ(g))TΨ(t, θ)δ(g).
(32)

Ψ(t, θ) being a diagonal matrix, we obtain
(δ(g))TΨ(t, θ)δ(g) =

∑q
i=1(δ(g))Ti Ψii(t, θ)δ(g)i.

Now using the mean value theorem, we obtain:
δ(g)i =

∑i
j=1Aij(.)ej where ej = ẑj − zj and

Aij(.) is a ni × nj matrix which is a bounded function of
(u, z, ẑ), and hence:

(δ(g))Ti Ψii(t, θ)δ(g)i
=
∑i
l,k=1 e

T
kA

T
ik(.)Ψii(t, θ)Ail(.)el

6 ã‖Ψii(t, θ)‖
∑i
l=1 e

T
l el, where ã > 0 is a constant,

(33)
Now set, Ψii(t, θ) = Ψ̃iiΨ̃

T
ii where Ψ̃ii is a lower triangular

matrix given by the Cholesky decomposition. Set ε̃i = Ψ̃iiei
and ε̃ = (ε̃T1 , . . . , ε̃

T
q )T , from (33) and inequality ii) of defi-

nition 2, it follows:

(δ(g))Ti Ψii(t, θ)δ(g)i
6 ã‖Ψii(t, θ)‖

∑i
l=1 ‖Ψ

−1
ll (t, θ)‖ε̃Tl ε̃l

6 b
∑i
l=1 ε̃

T
l ε̃l, where b > 0 is a constant,

(34)

Combining (32) and (34), we can find two constants α1 > 0,
α2 > 0 which not depend on θ, such that for every t > τ0
we have:

V̇ 6 −θ‖ε‖2 + α1‖ε‖
√
ε̃T ε̃+ α2ε̃

T ε̃, (35)

By definition of ε̃, ε̃T ε̃ = eTΓ(t, θ)e, where Γ(t, θ) is the
diagonal matrix given by (23). From i) of definition 2, we
have:

∃θ0 > 0;∃t0 > 0;∀θ > θ0;∀t > t0,

Γ(t, θ) 6 α(θ)Ψ(t, θ), with limθ→∞
α(θ)

θ
= 0,

(36)

Now, using the fact that εT ε = eTS(t)e that Ψ(t, θ) have
the same behavior as S(t) (see inequalities (22) of remark
1), then there exist constants α̃1 > 0, α̃2 > 0 which not
depend on θ such that:

V̇ 6 −θ‖ε‖2 + α̃1

√
α(θ)‖ε‖2 + α̃2α(θ)‖ε‖2 (37)

Finally, since limθ→∞
α(θ)

θ
= 0 (see i) of definition 2), we

can conclude that V (t) exponentially converges to 0. Hence,
it is the same for the estimation error ‖e(t)‖ between the
state of the system (8) and the state of the observer (25).

4 CONCLUSIONS

In this paper, we have recalled some normal forms which
permit to design a high gain observer. In the case when the
system is observable independently on the inputs, this nor-
mal forms have been used to design a high gain observer
whose gain does not require any differential equation. In
this paper, we have also investigated the case when the sys-
tem admits inputs which render it unobservable. We have
shown that if the input satisfies some observability condition
(strong persistent input), then the observer synthesis requires
a Lyapunov differential equation which permits to calculate
the gain of the observer.
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