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Motivations
Needs for identification and usual 2 step identification approach

Some needs for identification [Ljung, 1999] :
to get a simulator or do advanced control : need a process
model

to manipulate the model : need to have numerical value of
all its parameters

to identify the model parameters : need "rich" input / output
(u(t) / yp(t)) data

Identification based on real experiments =
1/ tune (on/off line) the process input to run the experiments

+ 2/ with the collected input-output data, extract the value of
the unknown constant value of the model parameters θ

these 2 tasks are usually done separately
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Motivations
Objectives of this work

Let us define the parametric sensitivity of the process
outputs yp w.r.t the model parameters with unknown
constant value θ : ∂yp

∂θ
(t)

If the norm (to be chosen) of this sensitivity ∂yp
∂θ

(t) is "small"
or "null", then, for identification :

1. whether, this parameter θ does not influence the output
yp(t)= bad model structure
2. whether, the measure yp(t) is not well chosen for the
identification of θ=bad output
3. whether, the input signal u(t) does not sufficiently excite
the parametric sensitivity =bad input

Hypothesis

We tackle here the case : good model structure + good output + need
to design the closed loop optimal input for combined online
identification.
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Motivations
Outline of the adopted approach

2 main ideas for design of control for identification.
1/ adjust, in an optimal manner [Pronzato, 2008], on line
and in closed loop, the value of the input u(t)

+ 2/ jointly estimate the constant value of the unknown
model parameter θ

Use : the input-output data + a dynamic model

Deduce : an observer, a sensitivity model

Use an internal model control (IMC) structure

Use a model predictive controller (MPC) to optimize the
input + handle operating constraints (input, state, output)
during the identification task

To simplify the presentation : SISOSP case.
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Method
Model Predictive Control (MPC) recalls

Advantages :
many theoretical papers published

+4000 applications in the world [Qin et Badgwell, 2003]

Idea :
use the model to predict the future process behavior

optimize any specified criteria

take account for constrains on measures/estimations

closed loop control approach
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Method
Formulation of the initial MPC problem for identification

Time discretization : t = k × Ts (k=current time index)

At each k , over the prediction horizon Np : maximize the
norm of the sensitivity ∂yp

∂θ
to get "rich" data for identification

During its use for identification, maintain the process inside
a prescribed operating zone =

constrains on the input (physical limitations of the actuator) :
{

umin ≤ u(t) ≤ umax , ∀ t ≥ ti
∆umin ≤ du(t)

dt ≤ ∆umax , ∀ t ≥ ti
(1)

constrains on the states and/or output (operating zone,
safety, maintain product quality, ...) :

ci(xp(t), yp(t), u(t)) ≤ 0, ∀ t ≥ ti , ∀ i ∈ Inc = {1, ..., nc}
(2)
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Method
Formulation of the initial MPC problem for identification

The constrained optimization problem for identification is
initially :

(COPII)


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




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
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

max
ũ

J(ũ) =

k+Np
∑

j=k+1

(∂yp

∂θ
(j)
)2

ũ = {pu(1), ..., pu(npu)}

u(j) = fu(pu(i), j , k) i ∈ [1, npu]

∀k > 0, ∀ j ∈ [k , k + Np − 1]
umin ≤ u(j) ≤ umax

∆umin ≤ u(j)−u(j−1)
Ts

≤ ∆umax

∀ k > 0, ∀ j ∈ [k + 1, k + Np],∀ i ∈ Inc :
ci (xp(j), yp(j), u(j − 1)) ≤ 0

(3)

This optimization problem can not be solved on-line.
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Method
Issue in this initial MPC formulation for identification ... and solution

Issue : formulation based on signals into the future j : xp,
yp, ∂yp

∂θ

Values not available at k into the future j .

u and yp are the only signals available at k .

So, such problem may not yet be solved at k

Solution : at each k , approximate these signals into the
future j with :

the measures yp and u + the on-line estimations

integration of the model and sensitivity model over the
future Np

internal model control structure
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New method for coupled on-line optimal design of
experiment and identification
Step 1 : Introduce the model

(M)







ẋ(t) = f (x(t), α, θ, u(t)), t > ti
y(t) = h(x(t), α, θ, u(t)), t > ti
x(t) = x ti , t = ti

(4)

state x ∈ IRn, input u ⊂ IR and the output y ∈ IR

α : vector of the model parameters with known value

θ : the model parameter with unknown value

(f , h) = dynamic model (nonlinear or linear)

Hypothesis

In the system (4), f and h are C1.
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New method for coupled on-line optimal design of
experiment and identification
Step 2 : Introduce the observer

Use the large theory on observers for nonlinear systems
[Besançon, 2007]

Build an observer (O), based on the model (M) and on the
process measures yp and u.
(O) estimates on line (at each k ) :

the unknown elements of the process state : x̂p(k)

and the unknown model parameter : θ̂(k).

Hypothesis

The state of the observer (O) is observable.

10/22 tinyurl.com/dufourpascal A combined closed loop..., Flila et al., CCC’2010 paper 194



New method for coupled on-line optimal design of
experiment and identification
Step 3 : Introduce the sensitivity model

Based on the model (M) and on the observer (O), the
sensitivity model (Mθ) is :

(Mθ)








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

ẋθ(t) = ∂

∂t
∂f
∂x

∂x
∂θ

(t) = ...

...fθ(xθ(t), x(t), α, θ̂(t), u(t)), t > ti
yθ(t) = ∂h

∂x
∂x
∂θ

(t) = ...

...hθ(xθ(t), x(t), α, θ̂(t), u(t)), t > ti
xθ(t) = x ti

θ
, t = ti

(5)

state xθ = ∂x
∂θ

∈ IRn : sensitivity of the state of the model
(M) w.r.t. the parameter θ,

output yθ = ∂y
∂θ

∈ IR : sensitivity of the output of the model
(M) w.r.t. the parameter θ.
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New method for coupled on-line optimal design of
experiment and identification
Step 4 : Approximate the signals into the future

Using :
the measures yp and u at k

the estimations of (O) at k

the prediction of the 2 models (M) and (Mθ) over Np at j

Approximate the signals necessary in the (COPII) :

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




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
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∀k ≥ 0, ∀ j ∈ [k + 1, k + Np] :
xp(j) = xm(j) + (x̂p(k) − xm(k))
yp(j) = ym(j) + (yp(k) − ym(k))
∂yp
∂θ

(j) = ∂ym
∂θ

(j) + (
∂yp
∂θ

(k) − ∂ym
∂θ

(k)),
∀k ≥ 0 :

θ = θ̂(k),

(6)
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New method for coupled on-line optimal design of
experiment and identification
Step 5 (end) : get the final MPC problem

Constrained optimization problem for identification based on
the model :

(COPIM)
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maxũ J(ũ) =
∑k+Np

j=k+1

(

∂ym
∂θ

(j) + (
∂yp
∂θ

(k) − ∂ym
∂θ

(k))
)2

ũ = {pu(1), ..., pu(npu)}

u(j) = fu(pu(i), j , k) i ∈ [1, npu]
∀k > 0, ∀ j ∈ [k , k + Np − 1]
umin ≤ u(j) ≤ umax

∆umin ≤ u(j)−u(j−1)
Ts

≤ ∆umax

∀ k > 0, ∀ j ∈ [k + 1, k + Np],∀ i ∈ Inc :
ci(xm(j) + (x̂p(k) − xm(k)), ...
...ym(j) + (yp(k) − ym(k)), u(j − 1)) ≤ 0
+ on line resolution of (M), (Mθ) and (O).

(7)
This model based optimization problem may be solved on-line.
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Case study
Objectives and model (step 1)

Objectives : underline the procedure and advantages of the
proposed approach (without optimizing observer/controller
parameter settings) on a simple case.

Nonlinear model (state-parameter, input-parameter) of
saponification :

(M)











ẋ1(t) = −θ1x2
1 (t) + u(t)

α1
(α2 − x1(t)), t > 0

y(t) = x1(t), t > 0
x1(t) = x0

1 , t = 0
(8)

x1(t) : concentration of ethyl acetate inside the reactor
u(t) : input flow rate of sodium hydroxide .
Known constant parameters : constant volume of the
reaction α1, input concentration α2

Unknown constant parameter : reaction rate θ1
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Case study
Observer (step 2)

Based on [Gauthier et al., 1992], the augmented state
xo = [xo 1 xo 2]

T allows to estimate [x̂p 1 θ̂1]
T :

(O)

{

ẋo(t) = Ao(yp(t))xo(t) + Bo(u(t)) − S−1
o CT (Cxo(t) − yp(t))

Ṡo(t) = −γoSo(t) + AT
o (yp(t))So(t) − So(t)Ao(yp(t)) + CT C

(9)
where γo is the observer tuning parameter and where :



































Ao(yp(t)) =

(

0 −y2
p (t)

0 0

)

Bo(u(t)) =

(

u(t)
α1

(α2 − yp(t))
0

)

C = [1 0]
So : SPD matrix

(10)
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Case study
Sensitivity model (step 3)

The sensitivity model (Mθ) is written, where the state is
xθ = xθ1 :

(Mθ)











ẋθ 1(t) = −(2x1(t)x0 2(t) + u(t)
α1

)xθ 1(t) − x2
1 (t), t > 0

yθ(t) = yθ 1(t) = xθ 1(t), t > 0
xθ 1(t) = 0, t = 0

(11)
It is explicitly coupled to (M) and (O).
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Case study
Simulation conditions

Maximize the sensitivity of the concentration of ethyl
acetate yp w.r.t. the reaction rate θ1 to be estimated on-line.

2 cases are simulated :

Case 1 :

magnitude and velocity constrains on the control,

a free behavior is allowed for the output

Case 2 (green/red) :

magnitude and velocity constrains on the control,

the output must now be maintained below a prescribed
maximum threshold (operating constrains).

These 2 cases allow to evaluate the approach in a
constrained situation.
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Case study
Numerical results (1)
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Case 1 : control is always saturated in magnitude or
velocity.

Case 2 (green/red) : during the 5 first minutes = case 1.
After 5 minutes, the control changes due to the need to
satisfy the output constraint.
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Case study
Numerical results (2)
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Case 1 & Case 2 : estimation of the unknown process
parameter is efficient, is spite of an initial error of 30%

Case 1 & Case 2 : trajectory of estimation are similar (in
these numerical conditions)

Case 2 & not Case 1 : allows to maintain the reactor inside
the specified region.
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Conclusions and perspectives

We have a new generic on-line approach :

it helps to automate the optimal design of experiment
coupled to the parametric identification

= jointly 1/ determine on-line the optimal control to apply +
2/ identify on-line the value of the unknown parameter

Hypothesis have a physical sense :
1/ for the initial formulation of the problem

2/ model (functions are C1)

3/ design of the observer (strongest assumption)

Optimization problem that may be solved by any software
(cf. ODOE4OPE.univ-lyon1.fr)

Perspectives : particular classes of models, multi-variable
cases, unstable systems, non uniformly observable
systems, robustness analysis, experimental applications, ...
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Contacts and discussion

Myself (resume, links to open archives/journal papers ...) :
tinyurl.com/dufourpascal

My research team (activity, links to publications, ...) :
tinyurl.com/SNLEP

My research team 1 page resume in chinese :
tinyurl.com/SNLEP-CV-CH-v1

My research team 1 page resume in english :
tinyurl.com/SNLEP-CV-EN-v1

Time for discussion ! ! !
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Case study
Numerical results (3)
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