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Abstract: The main contribution of this paper is to propose a new approach, based on any specified continuous nonlinear model,
for the combined optimal closed loop control of a process and online identification of a given model parameter. It deals with
the optimal design of experiments: the idea is to twofold: first, based on a sensitivity model based predictive control, find the
value of the input to apply during the experiment that allows optimizing a criteria based on the sensitivity of the process measure
with respect to the unknown model parameter. Secondly, and in the meantime, based on the input/output measures collected, a
process model and an observer, estimate online the model parameter. Moreover, constraints dealing with input, state and output
limitations are accounted for. The main advantage of this approach is that both optimal control task and identification task are
solved together online in order to get the online estimation of the unknown model parameter. This approach is applied here on a
simple case in chemical engineering.
Key Words: Nonlinear System, Nonlinear Observer, Parametric Sensitivity, Predictive Control, Optimal Design Of Experiments,
Identification.

1 INTRODUCTION

Identification is the task which aims to determine the nu-
merical value of the unknown process model parameters [1,
2], based on experimental data. Unfortunately, due to the
possible lack of relevant informations in the experimental
data (maybe due the difficulty to get them), some of the pa-
rameters may not always be easily identified. In order to
know if these data are rich enough to be used for identifica-
tion, the sensitivity of the process output yp (the measure)
with respect to the unknown process parameter θ tells us
how it is possible to identify the parameter from the data.
It is usually used to define the Fisher Information Matrix
(FIM), whose norm is often used for this kind of study. If
the sensitivity of the measured process output with respect
to the unknown process parameter is small or null, this may
be due to one (or more) of the following problems: 1/ the
parameter does not influence this output, or 2/ the output is
not well chosen, or 3/ the input signal applied on the process
does not sufficiently excite the measure. This work focuses
on the third problem: based on a nonlinear model, it deals
with the closed-loop control problem for the optimal design
of experience [3-5] coupled with the online identification of
one process parameter [6, 7]. The main question is: how
the input signal, to apply to get the experimental data from
the plant, may be optimally tuned online such that the model
parameter is estimated at the same time, based on the rich-
est output data (in terms of the norm of the sensitivity ∂yp

∂θ )
? Moreover, some constraints have to be specified during
the identification phase, in order to have a correct use of the
process. In this framework, for nonlinear systems, the au-
thors [8, 9] have presented a methodology to get an optimal
design of experiments (DOE), for the parameters estimation
in the field of bioreactors. Keesman and Stigter [10] have
found analytic solutions for the design of the optimal input

u for a parameter estimation based on a specific model. In
this case, the control law was obtained explicitly from sev-
eral differentiations of the optimality condition of Pontrya-
gin ∂H

∂u ≡ 0 (where H is the hamiltonian formulation asso-
ciated to the model and the cost function, depending on the
parametric sensitivity ∂yp

∂θ ). Stigter, Vries and Keesman [9]
have presented another adaptive approach where the input
design was solved online for a bioreactor. In this case, the
online estimation of the sought model parameters was intro-
duced in the control law design, which is based on the FIM.
The online estimation of the parameters was obtained by a
recursive estimation algorithm.
In this paper, a new control approach to be used during the
identification task is presented, which is based on the opti-
mization of the sensitivity of the process measure with re-
spect to the sought model parameter. In the meantime, the
input/output data are used for the online estimation of this
parameter, and some constraints are accounted for. This ap-
proach, that couples a closed loop controller and an observer,
solves at the same time the control task and the parame-
ter estimation task. A dynamic model of parametric sensi-
tivity (obtained explicitly from the process model) is also
employed online to get the needed sensitivity of the pro-
cess measure with respect to the sought model parameter.
The closed loop controller is a model predictive controller
(MPC), which is also based on the process model. Some
constraints may be handle in the optimization task. Since it
is formulated in a general framework with realistic assump-
tions, this method is relatively simple to use for any particu-
lar model.
This paper is organized as follow: section 2 aims to recall
some basic principles of MPC. Then, in section 3, the new
approach for MPC for the closed loop optimal design of ex-
periments for online identification is given. In section 4,
results are presented for a case study. In order to simplify
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the notation, scalar variables are handled here (for the input,
the output and the unknown model parameters), whereas the
known model parameters and the state variables may be de-
fined as vectors.
2 MODEL PREDICTIVE CONTROL: SOME

RECALLS

Even if the original idea of MPC was given by Bellman in
the 1950’s, this idea started to be used in the industry only
in 1978 with the software IDCOM of Richalet. In 1980,
the DMC approach of Cutler and Ramaker appeared. In
these 2 approaches, a black-box model was used. Since that
time, MPC tools were improved (QDMC, SMOC, IDCOM-
M, HEICON, DMC+, RMPCT, etc.). The reader may find
in [11] more historical facts about MPC, as well as more
precisions about the technical and theoretical evolutions of
MPC. According to the authors of this survey, MPC was con-
cerned, in 2003, with more than 4000 applications in total in
the world, without adding local solutions. The main idea of
MPC is to insert in the feedback loop an element of process
behavior prediction. The computer then determines, using
the constrained optimization of a criterion J over the predic-
tion horizon Np, at the current sampled time k, the control
sequence to apply over the prediction horizon. At the next
sampling time, only the first component of this sequence is
applied as the process input. The process measure yp is up-
dated and the procedure is repeated. Since this control prob-
lem is solved numerically, the continuous signals are con-
sidered at some discrete times: at the present (resp. future)
time of the discretized time k (resp. j), where t = k ∗ Ts
(resp. t = j ∗ Ts) and where Ts is the sampling period.
The MPC aims to solve a general constrained optimization
problem defined as:

min
ũ
J(ũ) =

k+Np∑
j=k+1

F (yp(j), xp(k), u(j − 1))

ũ = {pu(1), ..., pu(npu)}
u(j) = fu(pu(i), j, k) i ∈ [1, npu]

u ∈ U ⊂ R
coni (yp(k), xp(k), u(j − 1)) 6 0

∀ k > 0, ∀ j ∈ [k + 1, k +Np], ∀ i ∈ [1, ncon]

(1)

where F represents the control objective (regulation, trajec-
tory tracking, time minimization, etc.), pu(i) are the ele-
ments of the npu control vector parametrization of the input
u over the prediction horizon Np. The input u is constrained
explicitly (magnitude, velocity) by U . There are ncon con-
straints coni on the measured output yp and on the process
states xp, which gives implicitly new constraints on the in-
put. Afterwards, the process model is introduced in this for-
mulation to predict the process behavior in the future, which
helps to solve numerically the problem. An observer may
also be necessary if some of the process states are not mea-
sured.
3 APPROACH FOR COMBINED CLOSED

LOOP OPTIMAL DESIGN OF EXPERI-
MENTS AND ONLINE IDENTIFICATION

The sensitivity of the process measure yp with respect to
the model parameter θ determines if this parameter may be

identified, based on the input/output data. In this work, we
are interested in the case where the input signal u must be
optimally tuned to get the richest experimental data fed into
the online estimation tool. In this part, a new closed loop
optimal control strategy for online identification of an un-
known process parameter is presented. A constrained con-
troller and an observer are used, in order to maximize on-
line the sensitivity of the process measure yp with respect
to the model parameter θ , while handling some specified
constraints. This approach is based on a (general) continu-
ous (dynamic) nonlinear model of the process, described by
ordinary differential equations (ODEs) or by partial differ-
ential equations (PDEs). The sensitivity model is explicitly
derived from the original process model, and is used in the
control law. The optimal input and the parameter estimation
are both obtained online, and the parameter estimation is fed
back into the control law, as an estimated input disturbance.
The various elements of this new control structure are now
presented: the initial control problem, a process model, a
process observer, the sensitivity model and the final formu-
lation of the constrained optimal problem for identification
based on the model.

3.1 Initial formulation of the MPC problem

The initial question is: how to tune online the process in-
put u(t) such that the process measure yp(t) is the richest (in
term of sensitivity) for its use in the online estimation tool ?
This may be formulated as a MPC problem, where the sen-
sitivity of the process measure yp with respect to the model
parameter θ must me maximized. In the meantime, during
the use of the process for the identification task, some con-
straints must be satisfied, in order to maintain the process
behavior inside a prescribed region:

• first, due to the physical constraints, the input found
by the optimization task must be physically acceptable.
Indeed, any actuator is limited in magnitude. Velocity
limitations may also be present:

{
umin 6 u(t) 6 umax , ∀ t > 0

∆umin 6 du(t)
dt 6 ∆umax , ∀ t > 0

(2)

• the output and state variables must be kept inside a pre-
scribed zone. It deals with safety, stability, or produc-
tion specifications. These nc constraints, which depend
on the process output and the process state, may be for-
mulated as:

ci(yp(t), xp(t), α, θ, u(t)) 6 0, ∀ t > 0...
...∀ i ∈ Inc = {1, ..., nc}

(3)

Remark 1 α and θ are both model parameters, but α
is the vector of model parameter with known values,
whereas θ is the sought model parameter with unknown
value.

Therefore, the initial constrained optimization problem for
identification (COPII) may be formulated as:
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(COPII)



max
ũ

J(ũ) =

k+Np∑
j=k+1

(∂yp
dθ

(j)
)2

ũ = {pu(1), ..., pu(npu)}
u(j) = fu(pu(i), j, k) i ∈ [1, npu]

∀k > 0, ∀ j ∈ [k, k +Np − 1] :
umin 6 u(j) 6 umax
∆umin 6 u(j)−u(j−1)

Ts
6 ∆umax

∀k > 0, ∀ j ∈ [k + 1, k +Np], ...
...∀ i ∈ Inc+nco = {1, ..., nc + nco} :
ci (yp(j), xp(j), α, θ, u(j − 1)) 6 0

(4)

The main problem in this formulation (4) is that, at each
present time k, it can not be solved. Indeed, it is based on
signals into the future j: the sensitivity of the process mea-
sure yp with respect to the model parameter θ, the process
measure yp, the parameter θ and the process state xp. These
future values are not known at the present time k, whereas
the process input u and the process measure yp are the only
data available at the present time k. In order to get an op-
timization problem that is numerically solvable, the idea is
to approximate these signals based on the available data and
estimations updated at each time k, and on the use of the
process model at different steps in an internal model control
structure. The elements required for this approximation are
presented in the following parts.

3.2 Process model
In this approach, a model of the process is used. It is as-

sumed that it may be represented by a set of nonlinear dif-
ferential equations:

(M)

 ẋ(t) = f(x(t), α, θ, u(t)), t > ti
y(t) = h(x(t), α, θ, u(t)), t > ti
x(ti) = xti , t = ti

(5)

where x ∈ Rn, u ∈ U ⊂ R and y ∈ R are respectively the
state vector, the input and the output. f and g are nonlinear
functions.

Assumption 1 In the system (5), f et h are C1.

3.3 Process observer
One of the use of the observers [6, 7] is dealing with the

online parameter estimation problem: indeed, the parameter
to estimate may be considered as a new state variable and is
combined to the model state to get an augmented state for
which an observer has to be designed.

Assumption 2 The state xo of the observator (O), con-
stitued of the estimated process state x̂p augmented with the
estimated parameter θ̂, xo = [x̂p θ̂], is observable. More-
over, any input u render the system uniformly observable.

Many factors must be accounted for during the design of
such a nonlinear observer: the model class, the observability
of the states, the value of the process input and the sensitiv-
ity of the measure with respect to the state. Consequently,
the synthesis of such an observer is strongly connected to

the structure of the model (M) and to the control applied at
the process input. Based on the assumption 2 and on the the-
ory of nonlinear system observers, an observer is designed,
based on (M), in order to estimate online the process state
variables x̂p(k) and the unknown model parameter θ̂. This
parameter is therefore estimated at each sampling period by
this observer, and its value is introduced in the predictive
controller in order to improve the closed loop performances.

3.4 Sensitivity model
Let us now define the sensitivity model (Mθ) which de-

scribes the dynamic of the state vector xθ = ∂x
∂θ ∈ Rn and

the output yθ = ∂y
∂θ ∈ R: they are respectively the sensitivity

of the state of the model (M) with respect to the parameter
θ and the sensitivity of the output of the model (M) with
respect to the parameter θ.

(Mθ)


ẋθ(t) = ∂

∂t
∂f
∂x

∂x
∂θ (t) = ...

...fθ(xθ(t), x(t), α, θ̂(t), u(t)), t > ti
yθ(t) = ∂h

∂x
∂x
∂θ (t) = ...

...hθ(xθ(t), x(t), α, θ̂(t), u(t)), t > ti
xθ(t) = xtiθ , t = ti

(6)

3.5 Final Formulation
The previously described models (M), (Mθ) and the ob-

server (O) are used to predict, in a future time j over the pre-
diction horizon, the value of real signals, based on the actual
errors available (at k) between the process and the model.
This error is classically assumed constant over the horizon,
and is updated at each time k. Therefore, the signals used
in the (COPII) may be approximated at each time k into
future time j:

∀k > 0, ∀ j ∈ [k + 1, k +Np] :
xp(j) = xm(j) + (x̂p(k)− xm(k))
yp(j) = ym(j) + (yp(k)− ym(k))
∂yp
∂θ (j) = ∂ym

∂θ (j) + (
∂yp
∂θ (k)− ∂ym

∂θ (k)),
∀k > 0 :

θ = θ̂(k),

(7)

where all the following signals are used in the control law:

• xm(j) is the model state obtained at the time future j,
computed at time k, by the resolution of the model (M)
over the prediction horizon Np with the current input
sequence ũ, with the initial state xm(k) and with the
estimated parameter θ̂(k).

• x̂p(k) is the process state estimated at time k − 1 by
the observer (O), with the best previous input u(k−1),
with the initial conditions [x̂p(k − 1) θ̂(k − 1)]T . At
time k = 0, x̂p(k) must be initialized.

• xm(k) is the model state obtained at time k − 1 by the
resolution of the model (M) from k − 1 to k, with the
best previous input u(k− 1), with the initial conditions
x̂p(k − 1) and with the estimated parameter θ̂(k − 1).
At time k = 0, xm(k) must be initialized.

• ym(j) is the model output given by xm(j) in (M).

• yp(k) is the measure available at time k.
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• ym(k) is the model output given by xm(k) in (M).

• ∂ym
∂θ (j) is the modeled sensitivity of the model output
ym with respect to the parameter θ at time j, computed
at time k, with the resolution of the sensitivity model
(Mθ) over the prediction horizon Np, with the current
input sequence ũ, with the estimated parameter θ̂(k −
1), coupled with the resolution of the model (M) from
the initial conditions ∂xm

∂θ (k).

• ∂yp
∂θ (k) is the modeled sensitivity of the process output
yp with respect to the parameter θ, computed at time
k − 1, by the resolution of the sensitivity model (Mθ)
from k−1 to k, with the best input u(k−1), with the es-
timated parameter θ̂(k− 1), with the estimated process
state x̂p(k − 1) from the initial conditions ∂xp

∂θ (k − 1).
At time k = 0, ∂xp

∂θ (k) must be initialized.

• ∂ym
∂θ (k) is the modeled sensitivity of the model output
ym with respect to the parameter θ, computed at time
k − 1, by the resolution of the sensitivity model (Mθ)
from k − 1 to k, with the best input u(k − 1), with
the estimated parameter θ̂(k− 1), coupled with the res-
olution of the model (M) from the initial conditions
∂xm

∂θ (k − 1). At time k = 0, ∂xm

∂θ (k) must be initial-
ized.

• θ̂(k) is the estimated parameter at time k, computed at
time k− 1 by the observer, with the best previous input
u(k−1) and the initial conditions [x̂p(k−1) θ̂(k−1)]T .
At time k = 0, θ̂(k) must be initialized.

Based on these approximations, the initial constrained
optimization problem for identification (COPII) is refor-
mulated as (COPINL), based on the considered nonlinear
model of the process (M).

maxũ J(ũ)

J(ũ) =
∑k+Np

j=k+1

(
∂ym
∂θ (j) + (

∂yp
∂θ (k)− ∂ym

∂θ (k))
)2

ũ = {pu(1), ..., pu(npu)}
u(j) = fu(pu(i), j, k) i ∈ [1, npu]

under the input constraints, (∀k > 0) :
umin 6 u(j) 6 umax
∆umin 6 u(j)−u(j−1)

Ts
6 ∆umax

∀ j ∈ [k, k +Np − 1]

under the state/output constraints, (∀k > 0) :
ci(ym(j) + (yp(k)− ym(k)), ...
...xm(j) + (x̂p(k)− xm(k)), ...

...α, θ̂(k), u(j)) 6 0,

...∀ j ∈ [k + 1, k +Np], ∀ i ∈ Inc+nco

based on the online resolution of the models
(M), (Mθ), on the process measure and on the observor.

(8)
This constrained optimization problem allows determin-

ing online both the optimal input to apply during the ex-
periment and the value of the unknown parameter: it is an
optimal design of experiments for online parameter identifi-

cation. It may now be solved by any algorithm available for
this kind of problem formulation1.

4 CASE STUDY: SAPONIFICATION

We are now interested in the evaluation of this new opti-
mal control approach for the online identification of a model
parameter in a simple case. Saponification is the basic re-
action of a base with a fat to produce soap. In this example,
the continuous stirred tank reactor contains ethyl acetate (fat)
and sodium hydroxide (base) and is assumed to be isother-
mal. To simplify the study, it is assumed that both concentra-
tions initially inside the reactor and at the reactor input are
equals, and that their feed flow rate are identical and con-
stant. A model constituted of one nonlinear ordinary differ-
ential equation is written as:{

Ċa(t) = −kvC2
a(t) + D(t)

V (Cain − Ca(t)), t > 0
Ca(0) = Ca0, t = 0

(9)
where the concentration of ethyl acetate Ca(t) inside the re-
actor (in [mol.l−1]) is both the state x and the measured out-
put y of the process yp. D(t) is the input flow rate of sodium
hydroxide (in [mol.min−1]) to manipulate (i.e., this is the
control variable u). In term of parameters, the value of the
constant volume of the reactor V (in [l]) and the value of
the concentration of ethyl acetate Cain (in [mol.l−1]) at the
reactor inlet are known. They are respectively α1 and α2,
as defined in the remark 1. The reaction rate θ1 = kv (in
[l.mol−1.min−1]), assumed to be constant but unknown, has
to be determined by this approach. The model (9) may then
be reformulated in a more general form following (Mx) in
(5), where the state x = x1 :

(M)

 ẋ1(t) = −θ1x21(t) + u(t)
α1

(α2 − x1(t)), t > 0

y(t) = x1(t), t > 0
x1(t) = x01(t), t = 0

(10)
Based on this model, an observer (O) (see the assumption 2)
may be designed [12] to estimate [xp1 θ1]T (with t > 0):

(O)


ẋo(t) = Ao(yp(t))xo(t) + ...

...Bo(u(t))− S−1
o CT (Cxo(t)− yp(t)), t > 0

Ṡo(t) = −θoSo(t) +ATo (yp(t))So(t)− ...
...So(t)Ao(yp(t)) + CTC, t > 0

(11)
where θo is the observer tuning parameter and (with t > 0):

Ao(yp(t)) =

(
0 −y2p(t)
0 0

)
Bo(u(t)) =

(
u(t)
α1

(α2 − yp(t))
0

)
C = [1 0]

(12)

The model (Mθ) is written as:

(Mθ)


ẋθ 1(t) = −(2x1(t)x0 2(t) + u(t)

α1
)xθ 1(t)...

...− x21(t), t > 0
yθ(t) = yθ 1(t) = xθ 1(t), t > 0
xθ 1(t) = 0, t = 0

(13)
1This algorithm is implemented on the ODOE4OPE software:

http://ODOE4OPE.univ-lyon1.fr Please contact the author for its use.
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The constrained optimization problem for online opti-
mization is here to find the optimal profile of input flow-rate
D(t) that maximizes the sensitivity ∂Ca

∂kv
(t) of the concentra-

tion ethyl acetate Ca(t) with respect to the rate of reaction
kv . The problem (COPII) given in (4) is written as (as-
suming that the control action is parametrized with a control
horizon of 1): maxD̃ J(D̃) =

∑k+Np

j=k+1

(
∂Ca

∂kv
(j)
)2

D̃ = D(k)
(14)

where the control is always constrained in magnitude and
velocity:{

0 mol.min−1 6 D(k) 6 0.3 mol.min−1

−0.03 mol.min−2 6 D(k)−D(k−1)
Ts

6 +0.03 mol.min−2

(15)
Moreover, the concentration of ethyl acetate inside the reac-
tor may be limited in some cases:

Ca(.) 6 Cmaxa = 0.015 mol.l−1 (16)

Indeed, in order to see the influence of this output constraint
(i.e., dealing with the possibility given to use the process)
over the identification task, two cases are simulated:

• Case 1: the optimization of the sensitivity (14) is con-
strained by (15), and the process output behavior is free;

• Case 2: the optimization of the sensitivity (14) is also
constrained by (15), but the process output is also con-
strained, by (16).

In order to solve this constrained optimization problem, the
fmincon routine of Matlab2 toolbox optimization is used: it
is a sequential quadratic programming. The prediction hori-
zon Np is tuned to 10 and the sampling period Ts = 1 min.
The volume of the reactor V is 100 l, the feed concentra-
tion Cain is 1 mol.l−1. The target value for kv , used for
the process simulation, is 4.73 l.mol−1.min−1. The initial
conditions used for the process is Ca(0) = 10−4 mol.l−1,
and for the model and the observer, 30 % of initial er-
rors are set: Ĉa(0) = 0.7 × 10−4 mol.l−1, k̂v(0) =
3.31 l.mol−1.min−1. The simulation results show that, in
term of maximization of the sensitivity of the output with
respect to the sought parameter (Fig. 1), the need to satisfy
the output constraint (16) in case 2 enforces the optimizer to
reduce the value of the sensitivity obtained in case 1 (Fig. 2).
This maximization is underlined on (Fig. 3), where the con-
trol action is always either saturated in magnitude or in ve-
locity (case 1). But, in case 2, after having followed the same
behavior obtained in case 1 (during the 5 first minutes), the
magnitude of the control action decreases to reach a constant
value (ca. 0.108 mol.min−1, i.e. 36% of the full range). In-
deed, the output constraint must be satisfied (Fig. 2) and is
saturated after 30 minutes. At the same time, in both cases,
the control applied to the simulated process and to the ob-
server allows identifying the unknown constant parameter,
in spite of the initial error of estimation of 30% (Fig. 4).
The convergence with the target value is quiet similar in both

2www.mathworks.com

cases, whereas case 2 allows to maintain the use of the pro-
cess inside an enveloppe specified by the prescribed output
constraint.
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Fig. 1 Sensitivity of the concentration of ethyl acetate with re-
spect to the reaction rate, in closed loop, with or without
output constraint
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5 CONCLUSION

The main contribution of this paper was to provide a new
approach for the optimal closed loop control for parameter
identification, in the field of optimal design of experiments.
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Fig. 4 Estimation of the reaction rate, in closed loop, with or
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The problem was to find the control to apply during the ex-
periment that allowed optimizing a criteria which is a func-
tion of the sensitivity of the measured output with respect
to the model parameter to estimate. This approach coupled
a predictive controller and an observer that ensured, at the
same time, both the control of the process according to the
prescribed region of use and the online identification of the
unknown model parameter. For the optimal control, an inter-
nal model based predictive control has been used. The online
estimated parameter was fed into the control law to improve
the closed loop performances. The two problems (optimal
control and identification) were coupled, and solved at the
same time, in a whole control problem. From the original
process model, the dynamic sensitivity model was analyti-
cally defined. To keep the process behavior is a prescribed
region, various constraints might be specified on the input,
output and estimated states.
This approach may be applied on many cases, since it was
presented in a general framework and that the main assump-
tion dealt with the possibility to design an observer based
on the model structure. There are many perspectives for
this work, for example: the study and application of this ap-
proach for non uniformly observable systems, the multi vari-
able approach, the study of the influence of output noise, the
theoretical study of the stability of the closed loop approach
and the theoretical study of the optimality of the solution for
such controller.
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