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MIXMOD : a software for model-based
classification with continuous and categorical
data

C. Biernacki, G. Celeux, G. Govaert and F. Langrognet

Abstract The MIXMOD (MIX ture MODeling) program fits mixture models to a
given data set for the purposes of density estimation, clustering or discriminant
analysis. A large variety of algorithms to estimate the mixture parameters are
proposed (EM, Classification EM, Stochastic EM), and it is possible to combine
these to yield different strategies for obtaining a sensible maximum for the like-
lihood (or complete-data likelihood) function.MIXMOD is currently intended to
be used for multivariate Gaussian mixtures and also for latent class models, re-
spectively devoted to continuous and categorical data. In both situations, numer-
ous meaninful and parsimonious models are proposed. Moreover, different infor-
mation criteria for choosing a parsimonious model (the number of mixture com-
ponents, for instance) are included, their suitability depending on the particular
perspective (cluster analysis or discriminant analysis).Written in C++, MIXMOD

is interfaced with SCILAB and MATLAB . The program, the statistical documen-
tation and the user guide are available on the internet at thefollowing address:

http://www-math.univ-fcomte.fr/mixmod/index.php
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1 Overview of MIXMOD

Because of their high flexibility, finite mixture distributions are become a very pop-
ular approach to model a wide variety of random phenomena. Inparticular, it is
recognized as being a powerful tool for density estimation,clustering and discrimi-
nant analysis. Consequently, fields which are potentially concerned by the mixture
modelling approach are extremely varied, including astronomy, biology, genetics,
economics, etc. Thus, softwares implementing the most recent evolutions in model-
based cluster and discriminant analysis are welcome for various categories of people
as researchers, engineers and teachers. mixmod is a software having for goal to meet
these particular needs.

MIXMOD is publicly available under the GPL license and is distributed for differ-
ent platforms (Linux, Unix, Windows). It is an object-oriented package built around
C++ language but it is interfaced with the widely used mathe-matical softwares
Matlab and Scilab. It was developed jointly by INRIA & CNRS, by several labora-
tories of mathematics (university of Besançon and of Lille1), and by the Heudiasyc
laboratory of Compìegne.

In its present version,MIXMOD proposes multivariate Gaussian mixture models
for continuous data and also multivariate latent class models for categorical data.
The main features of the present version of the software are the following:

• three levels of use from the beginner to the expert;
• fourteen geometrically meaningful Gaussian mixture models from different vari-

ance matrices parameterizations;
• five multinomial meaningful models;
• estimation of mixture parameters with EM and EM-like algorithms, pro- vided

with different initialization strategies and possibilityof combining such algo-
rithms;

• possibility of partial labeling of individuals (semi-supervised situation);
• criteria to select a model which depends on the cluster or thediscriminant analy-

sis purpose;
• numerous displays including densities, iso-densities, discriminant rules, ob- ser-

vations, labels, etc. in canonical or PCA (Principal Component Analysis) axes
and for several dimensions (1D, 2D and 3D).

2 MIXMOD for continuous data

Cluster analysis is concerned with discovering a group structure in an by d matrix
x = {x1, ...,xn}, wherexi is an individual ofℜd. Consequently, the structure to be
discovered by clustering is typically a partition ofx into K groups defined by the
labelsz = {z1, ...,zn}, with zi = (zi1, . . . ,ziK ), zik = 1 or 0, according to the fact that
xi belongs to thekth class or not. In the Gaussian mixture model, eachxi is assumed
to arise independently from a mixture with density
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f (xi |θ) =
K

∑
k=1

pkh(xi |µk,Σk) (1)

wherepk is the mixing proportion (0< pk < 1 for all k= 1, ...,K andp1+ ...+ pK =
1) of thekth component andh(·|µk,Σk) denotes thed-dimensional Gaussian density
with meanµk and variance matrixΣk. The vector of mixture parameters is also
denoted byθ = (p1, . . . , pK−1,µ1, . . . ,µK ,Σ1, . . . ,ΣK).

In MIXMOD , a partition of the data can directly be derived from the maximum
likelihood estimateŝθ of the mixture parameters obtained, for instance, by the EM
[10] or the SEM [6] algorithm, by assigning eachxi to the component providing
the largest conditional probability thatxi arises from it using a MAP (Maximum A
Posteriori) principle:

ẑik =

{

1 if k = argmaxℓ=1...,K tℓ(xi |θ̂)
0 if not

where tk(xi |θ̂) =
p̂kh(xi |µ̂k, Σ̂k)

∑ℓ p̂ℓh(xi |µ̂ℓ, Σ̂ℓ)
. (2)

Alternatively, an estimatêθ can be retained as being the maximumcompletedlike-
lihood estimate obtained, for instance, by the CEM algorithm [8]. Many strategies
for using and combining these algorithms are available inMIXMOD for helping to
improve the optimisation process [4].

Following Celeux and Govaert [9], the software integrates also a parameteriza-
tion of the variance matrices of the mixture components consisting of expressing the
variance matrixΣk in terms of its eigenvalue decompositionΣk = λkDkAkD′

k where
λk = |Σk|

1/d,Dk is the matrix of eigenvectors ofΣk andAk is a diagonal matrix, such
that|Ak| = 1, with the normalized eigenvalues ofΣk on the diagonal in a decreasing
order. The parameterλk determines thevolumeof thekth cluster,Dk its orientation
andAk its shape. By allowing some but not all of these quantities to vary between
clusters, we obtain parsimonious and easily interpreted models which are appropri-
ate to describe various clustering situations, including standard methods askmeans
for instance.

It is of high interest to automatically select one of these Gaussian models and/or
the numberK of mixture components. However, choosing a sensible mixture model
is highly dependent of the modelling purpose. Three criteria are available in an
unsupervised setting: BIC [13], ICL [3] and NEC [2]. In a density estimation per-
spective, BIC must be preferred. But in a cluster analysis perspective, ICL and NEC
can provide more parsimonious answers. Nevertheless, NEC is essentially devoted
to choose the number of mixture componentsK, rather that the model parameteri-
zation.

When the labelsz are known, discriminant analysis is concerned. In this situa-
tion, the aim is to estimate the groupzn+1 of any new individualxn+1 of ℜd with
unknown label. InMIXMOD , then couples(xi ,zi),..., (xn,zn) are supposed to ben
i.i.d. realizations of the following joint distribution:
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f (xi ,zi |θ) =
K

∏
k=1

pzik
k [h(xi |µk,Σk)]

zik . (3)

An estimateθ̂ of θ is obtained by the maximum likelihood method (from complete
data(x,z) and, then, the MAP principle is involved to class any new individualxn+1.
In the software, two criteria are proposed in this supervised setting for selecting one
of the previous Gaussain models: BIC and cross-validation.

3 MIXMOD for categorical data

We consider now that data aren objects described byd categorical variables, with
respective number of categoriesm1, . . . ,md. The data can be represented byn binary
vectorsxi = (x jh

i ; j = 1, . . . ,d;h= 1, . . . ,mj) (i = 1, . . . ,n) wherex jh
i = 1 if the object

i belongs to the categoryh of the variablej and 0 otherwise. Denotingm= ∑d
j=1mj

the total number of categories, the data are defined by the matrix x = (x1, . . . ,xn)
with n rows andmcolumns. Binary data can be seen as a particular case of categor-
ical data withd dichotomous variables, i.e.mj = 2 for any j = 1, . . . ,d.

The latent class model assumes that thed ordinal variables are independent given
the latent variable. Formulated in mixture terms [11], eachxi arises independently
from a mixture of multivariate multinomial distributions defined by

f (xi |θ) =
K

∑
k=1

pkh(xi |αk) where h(xi |αk) =
d

∏
j=1

mj

∏
h=1

(α jh
k )x jh

i (4)

with αk = (α jh
k ; j = 1, . . . ,d;h = 1, . . . ,mj). We recognize the product ofd condi-

tionally independent multinomial distributions of parametersα j
k . In this situation,

the mixture parameter is denoted byθ = (p1, . . . , pK−1,α1, . . . ,αK). This model
may present problems of identifiability [12] but most situations of interest are iden-
tified. sc mixmod proposes four parsimonious models declined from the previous
one by following extension of the parameterization of Bernoulli distributions used
by [7] for clustering and also by [1] for kernel discriminantanalysis.

All models, algorithms an criteria presented previously inthe Gaussian situation
are also implanted inMIXMOD for the latent class model. Both the clustering and
the supervised classification purposes can be involved by the user in this context.

4 An extension coming soon for high dimensional data

In order to deal with high dimensional data, Mixture of Factor Analyzers have been
considered by several authors including [5]. InMIXMOD , a family of eight Gaussian
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mixture models introduced by [5] are being implemented for discriminant analysis
in high dimensional spaces.
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