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aUMR 8524, CNRS & Université de Lille 1, 59655 Villeneuve d’Ascq, France

bINRIA Futurs, 91405 Orsay, France
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Abstract

The mixmod (mixture modeling) program fits mixture models to a given data set

for the purposes of density estimation, clustering or discriminant analysis. A large

variety of algorithms to estimate the mixture parameters are proposed (EM, Clas-

sification EM, Stochastic EM), and it is possible to combine these to yield different

strategies for obtaining a sensible maximum for the likelihood (or complete-data like-

lihood) function. mixmod is currently intended to be used for multivariate Gaussian

mixtures, and fourteen different Gaussian models can be distinguished according to

different assumptions regarding the component variance matrix eigenvalue decom-

position. Moreover, different information criteria for choosing a parsimonious model

(the number of mixture components, for instance) are included, their suitability de-

pending on the particular perspective (cluster analysis or discriminant analysis).

Written in C++, mixmod is interfaced with Scilab and Matlab. The program,
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the statistical documentation and the user guide are available on the internet at the

following address:

http://www-math.univ-fcomte.fr/mixmod/index.php

Key words: Gaussian models, EM-like algorithms, model selection.

1 Introduction

Because of their flexibility, finite mixture distributions have become a very

popular approach when modeling a wide variety of random phenomena. In par-

ticular, finite mixture models provide powerful tools for density estimation,

clustering and discriminant analysis. Mixture models are increasingly being

used in a variety of disciplines including astronomy, biology, genetics, eco-

nomics, engineering and marketing, and consequently computer programs for

statistical modeling with finite mixture distributions are increasingly sought

after. mixmod is one such program, designed principally for model–based clus-

ter analysis and supervised classification. This article sets out to give a general

presentation of the statistical features of this mixture program.

mixmod is publicly available under the GPL license and is distributed for

different platforms (Linux, Unix, Windows). It is an object-oriented package

built around the C++ language. It is interfaced with widely–used mathemat-

∗ Corresponding author.

Email addresses: christophe.biernacki@math.univ-lille1.fr (Christophe

Biernacki), gilles.celeux@inria.fr (Gilles Celeux), gerard.govaert@utc.fr

(Gérard Govaert), florent.langrognet@math.univ-fcomte.fr (Florent

Langrognet).

2



ical software Matlab and Scilab. It was developed jointly by INRIA, the

Besançon math laboratory and the Heudiasyc laboratory at Compiègne.

In its current version mixmod includes only multivariate Gaussian mixture

models, but a generalization to other types of mixture distributions, including

the latent class model for the statistical analysis of discrete data, is planned

for future versions. The main features of the current version are the following:

• Three levels of use from beginner to expert.

• Fourteen geometrically meaningful Gaussian mixture models derived from

different variance matrix parameterizations.

• Estimation of mixture parameters with various EM and EM-like algorithms,

provided with different initialization strategies.

• Availability of numerous criteria to select a reliable model depending on the

particular density estimation, cluster or discriminant analysis perspective.

• Numerous graphical displays (in 1D, 2D and 3D) including densities, isoden-

sities, classifier or cluster descriptions, etc. in canonical or PCA (Principal

Component Analysis) space.

This article is not intended to replace either the user guide or the statistical

documentation that the reader can find on the web. It aims to provide a

synthetic overview of mixmod’s features by combining a short presentation of

its statistical characteristics with some selected examples.

The first data set is intended to illustrate mixmod’s features in a clustering

context. Figure 1 (a) displays log-population versus log-density (in inhabitants/km2)

for 312 towns in three French départements (Biernacki et al., 2000), namely

Seine-Saint-Denis and Hauts de Seine, which form part of the densely–populated

Paris conurbation, along with the rural département of Haute-Corse.
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The second data set is intended to illustrate mixmod’s features in a discrim-

inant analysis context. This data set concerns 204 seabirds belonging to the

borealis subspecies of the Procellaridae (petrel) family, for which five morpho-

logical variable measurements were obtained (Biernacki et al., 2002): culmen

(bill length), tarsus, wing and tail lengths, and culmen depth. Figure 1 (b)

displays males (55%) and females (45%) in the first PCA 3D space.

(a) (b)

Fig. 1. Selected examples: (a) the French départements data set for clustering, and

(b) the borealis data set for discriminant analysis.

2 Some technical features of mixmod

The development of the program began in 2001, and the latest release of mix-

mod (mixmod 1.6) is composed of 40 C++ classes and 20000 lines of code,

and is interfaced with Scilab and Matlab.

The (http://www-math.univ-fcomte.fr/mixmod/index.php) website has re-

cently been improved and includes the following sections: Download, Docu-

mentation, FAQ, Bugs, News, ...
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2.1 mixmod operating modes

The mixmod program can be used in three different ways.

• mixmod as a GUI: the mixmodGraph function, available in Scilab and

Matlab, brings up the mixmod Graphical User Interface. This function is

the easiest way to get to know mixmod, but several mixmod features are

not available in this mode.

• mixmod as a Scilab or Matlab function: the mixmod function can be

called like any standard function in both the Scilab and the Matlab

environments. It includes a number of optional inputs, and allows certain

parameters to be specified more precisely than the mixmodGraph function

allows. Moreover, graphical displays can be obtained with the mixmodView

function.

• mixmod as a command line: this method of running mixmod, using input

and output files, is not available in Scilab and Matlab. It is intended for

users who are familiar with a shell environment (Linux, Unix, or Windows).

In this document examples are presented using the mixmod function in a

Scilab environment (the second method in the list above).

2.2 Data representation in mixmod

mixmod may handle up to three complementary data structures, depending

on the available data:

• Individuals: each individual is represented by a row and each variable by a

column.
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• Partition: each row is the indicator vector of the different class memberships

for an individual. Its j coordinate is 1 if the individual belongs to class j,

otherwise 0. A row of 0s indicates an individual with an unknown class

assignment.

• Weights: each row gives the weight of an individual.

2.3 Performance of successive versions of mixmod

Reducing CPU time remains a major objective in the design and implemen-

tation of mixmod. mixmod 1.6 is approximately 3 times faster than mixmod

1.1, and this trend is set to continue in future releases and versions.

3 Fourteen Gaussian mixture models

3.1 Eigenvalue parameterization of variance matrices

In mixmod the observations x ∈ R
d are assumed to arise from a mixture

distribution with density

f(x; θ) =
K
∑

k=1

pkϕ(x; µk, Σk) (1)

where pk ≥ 0 for k = 1, . . . , K and
∑K

k=1 pk = 1 are the mixing proportions,

ϕ(x; µ, Σ) is the density of a multivariate Gaussian distribution with mean µ

and variance matrix Σ, and θ = (p1, . . . , pK ,µ1, . . . ,µK , Σ1, . . . , ΣK) denotes

the vector parameter to be estimated.

In this model, the density of the kth mixture component is the Gaussian
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density ϕ(x; µk, Σk)

ϕ(x; µk, Σk) = (2π)−d/2|Σk|
−1/2 exp

{

−
1

2
(x − µk)

′Σ−1
k (x − µk)

}

. (2)

This Gaussian density model leads to an ellipsoidal class with center µk and

whose geometric characteristics can be deduced from the eigenvalue decom-

position of the variance matrix Σk.

Following Banfield and Raftery (1993) and Celeux and Govaert (1995), each

mixture component variance matrix can be written

Σk = λkDkAkD
′

k (3)

where λk = |Σk|
1/d, Dk is the matrix of eigenvectors of Σk and Ak is a diago-

nal matrix, such that |Ak| = 1, with the normalized eigenvalues of Σk on the

diagonal in a decreasing order. The parameter λk determines the volume of

the kth cluster, Dk its orientation and Ak its shape. By allowing some of these

quantities to vary between clusters, parsimonious and easily interpreted mod-

els useful in describing various clustering or classification situations can be

obtained. Varying the assumptions concerning the parameters λk, Dk and Ak

leads to eight general models of interest. For instance, different volumes and

equal shapes and orientations are assumed by requiring that Ak = A (A un-

known) and Dk = D (D unknown) for each mixture component. This model is

denoted [λkDAD′]. With this convention, [λDkAD′

k] indicates a model whose

components have equal volumes and shapes and different orientations. An-

other family of interest uses the assumption that the variance matrices Σk

are diagonal. For the parameterization (3), this means that the orientation

matrices Dk are permutation matrices. In this paper these diagonal variance

matrices are conventionally denoted Σk = λkBk, where Bk is a diagonal ma-
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trix with |Bk| = 1. This particular parameterization gives rise to four models:

[λB], [λkB], [λBk] and [λkBk]. The final family of models assumes spherical

shapes, namely Ak = I, I denoting the identity matrix. Here, two parsimo-

nious models can be considered: [λI] and [λkI]. A total of fourteen Gaussian

models are obtained in this way.

Note that, in the following, models [λDAD′] and [λDkAkD
′

k] may also be

written in the more compact forms [λC] and [λCk] respectively. Similarly,

models [λkC] and [λkCk] are equivalent to models [λkDAD′] and [λkDkAkD
′

k]

respectively.

3.2 Constraints on proportions

Aside from these geometrical features, another important parameter of the

kth mixture component is its mixing weight or proportion pk. Two typical

assumptions are considered with regard to the proportions: we assume either

equal or free proportions over the mixture components. Combining these al-

ternative proportion assumptions with the fourteen previous models leads to

twenty-eight different models denoted [pλI], [pkλI], [pλkDAD′], etc., using the

convention previously defined. All those models, summarized in Table 1, are

available in mixmod in both the unsupervised and supervised contexts.

3.3 Links with some standard criteria

These different mixture models do not only have a simple geometric interpre-

tation. They also reveal in a new light some standard clustering criteria that

have been proposed without any reference to a statistical model. For instance,
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the K-means criterion of Ward (1963) can easily be derived from the simplest

[pλI] model. The [pλDAD′] model corresponds to the criterion suggested by

Friedman and Rubin (1967), and the models [pλkDAD′], [pλkDAkD
′] and

[pλkDkAkD
′

k] correspond to other documented clustering criteria (see for in-

stance Scott and Symons, 1971; Diday and Govaert, 1974; Maronna and Ja-

covkis, 1974; Schroeder, 1976). In discriminant analysis, models [pλC] and

[pλkCk] lead respectively to the standard linear and quadratic classifiers (see

for instance McLachlan, 1992).

4 Model-based clustering

4.1 The clustering problem

Data considered in mixmod for clustering are n vectors x = {x1, . . . ,xn}

in R
d. The aim is to estimate an unknown partition z of x into K clusters,

z = {z1, . . . , zn} denoting n indicator vectors or labels zi = (zi1, . . . , ziK),

i = 1, . . . , n with zik = 1 if xi belongs to the kth cluster and 0 other-

wise. The underlying idea of model-based clustering is to link each clus-

ter to each of the mixture components. Usually all the labels zi are un-

known. Nevertheless, partial labeling of data is possible, and mixmod is

able to handle situations where the data set x is divided into two subsets

x = {x`,xu} where x` = {x1, . . . ,xm} (1 ≤ m ≤ n) are data with known la-

bels z` = {z1, . . . , zm}, whereas xu = {xm+1, . . . ,xn} are data with unknown

labels zu = {zm+1, . . . , zn}. Moreover, mixmod allows a weight to be speci-

fied for each statistical unit. This option is useful, for instance, for handling

grouped or frequency data.
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Model Family Prop. Volume Shape Orient.

[pλDAD′] General Equal Equal Equal Equal

[pλkDAD′] Free Equal Equal

[pλDAkD
′] Equal Free Equal

[pλkDAkD
′] Free Free Equal

[pλDkAD′

k] Equal Equal Free

[pλkDkAD′

k] Free Equal Free

[pλDkAkD
′

k] Equal Free Free

[pλkDkAkD
′

k] Free Free Free

[pλB] Diagonal Equal Equal Equal Axes

[pλkB] Free Equal Axes

[pλBk] Equal Free Axes

[pλkBk] Free Free Axes

[pλI] Spherical Equal Equal Equal NA

[pλkI] Free Equal NA

[pkλDAD′] General Free Equal Equal Equal

[pkλkDAD′] Free Equal Equal

[pkλDAkD
′] Equal Free Equal

[pkλkDAkD
′] Free Free Equal

[pkλDkAD′

k] Equal Equal Free

[pkλkDkAD′

k] Free Equal Free

[pkλDkAkD
′

k] Equal Free Free

[pkλkDkAkD
′

k] Free Free Free

[pkλB] Diagonal Free Equal Equal Axes

[pkλkB] Free Equal Axes

[pkλBk] Equal Free Axes

[pkλkBk] Free Free Axes

[pkλI] Spherical Free Equal Equal NA

[pkλkI] Free Equal NA

Table 1

Characteristics and identifiers of the twenty-eight Gaussian mixture models available

in mixmod.
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In the Gaussian model-based clustering framework handled by mixmod, com-

plete data (xi, zi) (i = 1, . . . , n) are assumed to arise from the joint probability

distribution
∏K

k=1 (pkϕ(xi; µk, Σk))
zik . In this statistical context, mixmod in-

cludes two commonly used maximum likelihood (m.l.) approaches: first the

mixture approach, which involves maximizing over θ the density of the ob-

served data set, and secondly the classification approach which involves max-

imizing over θ and zu the density of the complete data set.

4.2 Estimation by the mixture approach

The mixture approach means maximizing over θ = (p1, . . . , pK ,µ1, . . . ,µK , Σ1, . . . , ΣK)

the observed loglikelihood

L(θ;x, z`) =
m
∑

i=1

K
∑

k=1

zik ln (pkϕ(xi; µk, Σk)) +
n
∑

i=m+1

ln

(

K
∑

k=1

pkϕ(xi; µk, Σk)

)

.

(4)

A partition ẑu is derived from the m.l. estimator θ̂ using a Maximum A Pos-

teriori (MAP) procedure which consists of assigning each xi in xu to the

component k providing the largest conditional probability

tk(xi; θ̂) =
p̂kϕ(xi; µ̂k, Σ̂k)

∑K
k′=1 p̂k′ϕ(xi; µ̂k′ , Σ̂k′)

(5)

that xi arises from it. Maximizing L(θ;x, z`) can be performed in mixmod

via the EM algorithm of Dempster et al. (1977) or by a stochastic version of

EM called SEM (see for instance Celeux and Diebolt, 1985; McLachlan and

Krishnan, 1997). Three different ways of combining these algorithms are de-

scribed in Section 7. Obviously, the estimator θ̂, and consequently ẑu, depend

on both the chosen Gaussian mixture model and the number of clusters in

question.
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Example 1 (French départements) Figure 2 (a) displays the partition and

isodensity component estimated with the EM algorithm for the Gaussian mix-

ture model [pkλkDAkD
′] with three components.

(a) (b)

Fig. 2. Estimated partition and isodensity components for the French départements

data set: (a) with the EM procedure and (b) with the CEM procedure.

4.3 Estimation using the classification approach

The second approach available in mixmod is the classification approach where

the indicator vectors zu, identifying the mixture component origin, are treated

as unknown parameters. This approach aims to maximize the complete log-

likelihood

CL(θ, zu;x, z`) =
n
∑

i=1

K
∑

k=1

zik ln (pkϕ(xi; µk, Σk)) (6)

over both the parameter θ and the labels zu. The CL criterion can be max-

imized by making use of a classification version of the EM algorithm, the

so-called CEM algorithm (Celeux and Govaert, 1992) which includes a classi-

fication step (C-step) between the E and M steps. Section 7 looks at different

strategies to derive the m.l. estimate of θ which make use of this algorithm.
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Example 2 (French départements) Figure 2 (b) displays the partition and

isodensity component estimated with the CEM algorithm for the Gaussian mix-

ture model [pkλkDAkD
′] with three components. The result should be compared

with the solution obtained with the EM algorithm shown in Figure 2 (a).

5 Model-based discriminant analysis

Data processed by mixmod for discriminant analysis consists of a training

data set of n vectors (x, z) = {(x1, z1), . . . , (xn, zn)}, where xi belongs to R
d,

and zi is the indicator vector of the class containing the statistical unit i. The

aim is to design from this training set a classifier to estimate the class zn+1 of

any new observation with vector xn+1 in R
d and an unknown label. It should

be noted that weighting the data is also available in the discriminant analysis

context.

The statistical assumptions are those used in the clustering situation, and the

mixture parameter θ is estimated by maximizing the complete loglikelihood

(6). Since z is completely known, the m.l. estimate θ̂ of the model parameter

θ reduces to a single maximization step. Any new point xn+1 can be assigned

to one of the K classes using the MAP procedure with θ̂.

In summary, discriminant analysis is performed in mixmod by the two follow-

ing steps:

• M-step: Computation of the m.l. estimate θ̂ of θ by maximizing the com-

plete loglikelihood (6).

• MAP-step: Assignment of a new point x to one of the K classes by the
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following rule:

k(x) = arg max
k

tk(x; θ̂).

Example 3 (seabirds) Figure 3 displays the classifier boundary, isodensity

component and individuals in the first PCA 2D space for the most general

Gaussian mixture model [pkλkDkAkD
′

k].

Fig. 3. Class limit, isodensity component and individuals for seabirds with model

[pkλkDkAkD
′

k] in the first PCA 2D space.

6 An overview of mixmod algorithms

6.1 EM algorithm

The EM algorithm aims to maximize the mixture likelihood in an unsupervised

context. Starting from an initial arbitrary parameter θ0, the qth iteration of

the EM algorithm consists of repeating the following E and M steps.

• E-step: Compute the conditional probabilities tq
ik = tk(xi; θ

q−1) that xi

belongs to the kth cluster (i = m+1, . . . , n) by using the current value θq−1

of the parameter.
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• M-step: The m.l. estimate θq of θ is updated using the conditional proba-

bilities tqik as conditional mixing weights. This step is highly dependent on

the Gaussian model used. Detailed formulae for the fourteen Gaussian mix-

ture models available in mixmod are given in Celeux and Govaert (1995).

6.2 SEM algorithm

In the Stochastic EM (SEM) algorithm an S-step is incorporated between the

E- and the M- steps of EM. This is a restoration step for the unknown labels

which are simulated according to their current conditional distribution. In the

M-step the estimate of parameter θ is updated by maximizing the completed

loglikelihood corresponding to the restored labels.

SEM does not converge pointwise. It generates a Markov chain whose sta-

tionary distribution is more or less concentrated around the m.l. parameter

estimator. A natural parameter estimate from a SEM sequence (θq)q=1,...,Q is

the mean
∑Q

q=r+1 θq/(Q−r) of the iteration values (the first r burn-in iterates

are discarded in the calculation of this mean). An alternative estimate uses

the parameter value leading to the highest likelihood in an SEM sequence.

6.3 CEM algorithm

The Classification EM (CEM) algorithm incorporates a classification step be-

tween the E- and the M- steps of EM. This classification step involves assigning

each point to one of the K components from a MAP procedure for the current

parameter value. Unlike the stochastic step in SEM, this classification step

is deterministic, since unknown labels are restored with the MAP procedure.
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As in SEM, the M-step consists of updating the parameter estimate θ by

maximizing the completed loglikelihood corresponding to the restored labels.

CEM is a K-means-like algorithm and, unlike EM, it converges in a finite

number of iterations. CEM does not maximize the observed loglikelihood L

(4), but maximizes in θ and zu the complete loglikelihood CL (6). As a con-

sequence, CEM is not meant to converge to the m.l. estimate of θ, and yields

inconsistent estimates of the parameters especially when the mixture compo-

nents are overlapping or are in disparate proportions (McLachlan and Peel,

2000, Section 2.21).

6.4 M-step and MAP functions

These two functions are useful mainly in discriminant analysis. The M-step

is devoted to the m.l. estimation of the mixture parameter θ when the labels

z are known. This maximization step is simply the M-step used in the SEM

and the CEM algorithms. The MAP procedure has already been described in

Section 4.2.

7 Strategies for using EM and related algorithms

7.1 Initialization strategies

There are five different ways to start an algorithm in mixmod. Other than

for the first of these, which is deterministic, it is recommended that the set

{starting strategy/running algorithm} be repeated several times in order to
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select the solution providing the best value of the criterion to be maximized.

The criterion is the observed loglikelihood when the running algorithm is EM

or SEM, and the completed loglikelihood when the running algorithm is CEM.

• An algorithm can be started from user specifications as a particular partition

zu0 or a particular mixture parameter value θ0. This possibility is available

for EM, SEM and CEM.

• An algorithm can be started from a random mixture parameter value θ0.

In mixmod this random initial position is obtained by drawing component

means from the data set at random, fixing proportions to equality and

choosing a diagonal common variance matrix where the diagonal is equal

to the empirical variance of each variable. Since this is probably the most

frequently employed way of initiating EM, CEM or SEM, it can be regarded

as a reference strategy.

• The EM algorithm can be started from the position providing the highest

completed likelihood after many runs of CEM started with random positions

and stopped with stability of the CL criterion (6). The number of restarts

of CEM is a priori unknown and depends on the assignment of iterations

chosen by the user (see Biernacki et al., 2003).

• The EM algorithm can be started from the position providing the highest

likelihood after many short runs of EM started with random positions. By

a short run of EM we mean that the algorithm is stopped as soon as (Lq −

Lq−1)/(Lq − L0) ≤ 10−2, Lq denoting the observed loglikelihood at the

qth iteration. Here 10−2 represents a default threshold value which can be

chosen on pragmatic grounds. The number of restarts of short runs of EM

is a priori unknown and depends on the assignment of iterations chosen by

the user (see Biernacki et al., 2003).
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• The EM algorithm can be started from the position providing the highest

likelihood in a sequence of SEM started with random positions and with an

assignment of iterations chosen by the user (see Biernacki et al., 2003).

7.2 Stopping rules

In mixmod, there are three ways to stop an algorithm.

• The EM, SEM and CEM algorithms can be stopped after a predefined

number of iterations.

• An algorithm can be stopped using a threshold for the relative change of the

criterion in question (the loglikelihood L (4) or the completed loglikelihood

CL (6)). When using EM this possibility is not recommended, since EM

can encounter slow convergence situations. It is recommended that CEM,

which converges in a finite number of iterations, be stopped at stationarity.

• An algorithm can be stopped as soon as one of the two previous criteria is

satisfied.

7.3 Chained algorithms

In mixmod it is easy to combine the EM, SEM and CEM algorithms at will.

This possibility can yield original and efficient initialization strategies, as pre-

sented in Biernacki et al. (2003).
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8 Model selection

It is of obvious interest to be able to select automatically a Gaussian mixture

model M and the number K of mixture components. However, choosing a

sensible mixture model will depend very much on the particular modeling aim.

We therefore make a distinction between the density estimation, the cluster

and the discriminant analysis perspectives.

8.1 Density estimation and cluster analysis perspective

In mixmod three criteria are available in an unsupervised setting: BIC, ICL

and NEC. If no information on K is available, it is recommended to vary it

between K = 1 and the smallest integer larger than n0.3 (see Bozdogan, 1993).

When estimating density BIC (Bayesian Information Criterion) must be pre-

ferred. Denoting by νM,K the number of free parameters in the Gaussian mix-

ture model M with K clusters, BIC is expressed by the following penalization

of the maximum loglikelihood LM,K :

BICM,K = −2LM,K + νM,K ln(n). (7)

The couple (M,K) yielding the lowest value for BIC is chosen. Although

standard sufficient regularity conditions for deriving BIC (Schwarz, 1978) are

not fulfilled for mixtures, it has been proved, for a large family of mixtures,

that the BIC criterion is consistent (Kéribin, 2000), and BIC has been shown

to be efficient on practical grounds (see for instance Fraley and Raftery, 1998).

In the context of cluster analysis ICL and NEC can provide more parsimonious

and robust answers. To take into account the ability of the mixture model to

19



reveal a clustering structure in the data, as an alternative to the BIC criterion

one may use the ICL (Integrated Complete-data Likelihood) criterion (see

Biernacki et al., 2000) expressed by

ICLM,K = BICM,K − 2
n
∑

i=m+1

K
∑

k=1

ẑik ln(tik), (8)

where tik = tk(xi; θ̂M,K) (with θ̂M,K the m.l. parameter estimate for model M

and number of components K) and where ẑ = MAP(θ̂M,K). This criterion,

to be minimized, is simply the BIC criterion penalized by an entropy term

which measures the overlap of the clusters. The NEC (Normalized Entropy

Criterion) criterion proposed by Celeux and Soromenho (1996) uses a similar

entropy term EK = −
∑n

i=m+1

∑K
k=1 tik ln(tik), but this criterion is intended

to be used principally in determining the number of mixture components K,

rather than the model parameterization M (Biernacki and Govaert, 1999).

The criterion, to be minimized, is expressed by

NECK =
EK

LK − L1

. (9)

Note that NEC1 is not defined. Biernacki et al. (1999) proposed the following

efficient rule for dealing with this problem: Let K? be the value minimizing

NECK (2 ≤ K ≤ Ksup), Ksup being an upper bound for the number of

mixture components. K? clusters are chosen if NECK? ≤ 1, otherwise no

clustering structures in the data are declared.

Example 4 (French départements) Five numbers of components (K =

1 − 5) and three Gaussian mixture models [pkλkDAD′], [pkλkDAkD
′] and

[pkλkDkAkDk] are considered. The EM algorithm is run for each combina-

tion model–K. Figures 4 (a) and (b) respectively display the BIC values for

each of these combinations and the partition corresponding to the best combi-
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nation selected by BIC. Figures 4 (c) and (d) give analogous displays for the

ICL criterion.

(a) (b)

(c) (d)

Fig. 4. Selection of a combination model–number of components for the French

départements data set: (a) BIC values; (b) the associated optimal partition; (c) ICL

values; (d) the associated optimal partition.

8.2 Discriminant analysis perspective

In this situation the model M has to be selected but the number of mixture

components is fixed. In mixmod two criteria are proposed in a supervised

21



setting: BIC and the cross-validated error rate (CV). The CV criterion is

specific to the supervised classification setting. It is defined by

CVM =
1

m

m
∑

i=1

δ(ẑ
(i)
i , zi) (10)

where δ denotes the 0-1 cost and ẑ
(i)
i the group to which xi is assigned when

designing the classifier from the entire data set (x, z) without (xi, zi). Fast

estimation of the n discriminant rules is implemented in the Gaussian situation

when m = n, i.e. when all labels are known (Biernacki and Govaert, 1999).

In mixmod, following an approach described in Bensmail and Celeux (1996),

it is possible to select one of the fourteen Gaussian mixture models by mini-

mization of the cross-validated error rate. It should, however, be stressed that

this cross-validated error rate is an optimistic estimate of the actual error

rate. This is a situation where the method includes the selection of one model

among several, and the actual error rate should therefore be assessed from an

independent sample. Roughly speaking, three samples are needed: a training

sample to estimate the parameters of the fourteen models, a validation sample

to choose one of the fourteen models and a test sample to assess the actual

error rate of the whole method. It means that when using cross validation to

assess the error rate it is necessary to perform a double cross validation to get

an unbiased estimate. In practice this kind of cross validation is painfully slow,

and it is not currently implemented in mixmod. To assess a classifier involving

the choice of a model in mixmod, it is necessary to discard at random a test

sample from the whole data set. This test sample will be used to assess the

actual error rate of the whole procedure.

Example 5 (seabirds) Four Gaussian mixture models [pλDAD′], [pλkDkAkD
′

k],

[pkλDAD′] and [pkλkDkAkD
′

k] are considered. Figures 5 (a) and (b) respec-
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tively display the CV values for each model and the classifier corresponding to

the best model selected by CV.

(a) (b)

Fig. 5. Selection of a Gaussian mixture model for seabirds: (a) CV values and (b)

associated optimal discriminant rule.

9 Companion functions

The Matlab and Scilab environments provide high-level functions, typically

generating graphical displays.

9.1 Graphical displays of criterion values

One of the optional outputs of the mixmod function is a four–dimensional array

providing values for all the requested criteria for all requested strategies, all

requested numbers of mixture components and all requested Gaussian mix-

ture models. From this array, simple criteria variations can be displayed in

mixmod. Illustrations of this feature can be seen in Figures 4 (a), (c) and

5 (a).
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9.2 The mixmodView function for graphics

mixmod provides the mixmodView function for visualizing outputs. This func-

tion enables graphics generated from mixmod function outputs (density, iso-

density, etc.) to be displayed in 1-D, 2-D and 3-D space. The following graphics

are available:

• Isodensity component and density mixture in the first PCA space.

• Class limit, isodensity component and individuals in the first PCA 2D space.

• Mixture density in the first PCA 2D space.

• Individuals and labels in the first PCA 3D space.

Many of these features have already been illustrated in previous examples.

The following example shows the density display.

Example 6 (French départements) Figures 6 (a) and (b) respectively dis-

play mixture density in the first PCA space and in the initial 2D space.

(a) (b)

Fig. 6. Density mixture: (a) first PCA space and (b) initial 2D space.
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9.3 The printMixmod function for summaries

The printMixmod function can be used to summarize mixmod function outputs.

It displays a readable summary of output (input conditions, criterion value,

loglikelihood, completed loglikelihood, parameter estimates, etc.)

9.4 The inputMixmod function for input facilities

The inputMixmod yields Scilab or Matlab structures which can be used by

the mixmod function. It enables the criterion, Gaussian mixture models and

strategy (initialization, algorithm, stopping rule) to be specified easily.

10 Further developments of mixmod

mixmod has become a relatively reliable and fast program for handling Gaus-

sian mixtures. Users’ remarks posted on the website have helped bugs to be

identified and corrected, and the efficiency of the code has been improved

with successive versions. Currently the emphasis is on reducing significantly

the CPU time required by mixmod. All remarks and suggestions by users

are appreciated, not only regarding the mixmod function, but also regarding

secondary features such as mixmodView. The website is the ideal vehicle for

collecting and exchanging this kind of information.

In the coming months version 2.0 of mixmod will become available. Version

2.0 adds clustering and discriminant analysis for multivariate binary or qual-

itative data, given that the use of such data is common in such important
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fields as ecology, psychology, text mining, and image analysis. In this context

Bernoulli or multinomial distribution mixtures are employed, and some origi-

nal parsimonious models are proposed. Looking further ahead, future versions

will include a means of handling mixed data with both continuous and discrete

variables in the same analysis.
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