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Abstract

This paper is concerned with the derivation of SEA equations from structural ray equations.
Rays are assumed to be uncorrelated leading to the additivity of energy. Inside all subsystems,
the energy density is the sum of a direct field from driving forces, a reflected field from
the boundary and a transmitted field from adjacent subsystems. Assuming a ”rain-on-the-
roof” excitation and a compact shape for subsystems, actual and fictitious sources on the
boundary are found to be constant. Furthermore, if the attenuation of rays during a mean
free path (normalized attenuation factor) is light, the field becomes diffuse i.e. homogeneous
and isotropic. The net exchanged power between two adjacent subsystems is then proportional
to the difference of energy densities and therefore, to the difference of modal energies. The
derived proportionality coefficient is consistent with the well-known formula for coupling loss
factor in terms of transmission factors. These results are illustrated by a numerical simulation
for a multi-plate system. Finally, the validity domains of SEA and the ray theory are discussed
and particularly the diffuse field assumption.

1 Introduction

Several approaches have been adopted to derive SEA equations. The historical approach is based
on the study of a pair of coupled resonators randomly excited for which the famous proportionality
between the energy flow and the difference of vibrational energies has been first published [1, 2].
The generalization to two sets of oscillators in interaction requires four further assumptions. Firstly,
oscillators within the same set do not exchange energy and thus, the power exchanged between
the two sets is the sum of exchanged powers of each pair of resonators, one in each set. Secondly,
the excitation forces are uncorrelated and, in the case of continuous structures, the force field is
assumed to be ”rain-on-the-roof” that is the random force is a white noise at any point and also that
the field is spatially δ-correlated. Thirdly, the coupling between the two sets is weak. Finally, the
vibrational energy is equally shared by oscillators of the same set. This equirepartition of energy
turns out to be the key concept of SEA and it means that each set of oscillators is in thermal
equilibrium. Under all these assumptions, the exchanged power is proportional to the difference of
modal energies of the sets of oscillators [3]. The modal approach of SEA may be compared with
the statistical approach of molecular physics and until today, it has been an attractive method
leading to new theoretical results [4, 5].

At the same time, the wave approach has been developed on the concept of travelling waves
rather than modes [6, 7]. All previously enunciated assumptions have their equivalent in the wave
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approach although the debate about their strict equivalence seems not to be closed. The two main
assumptions of the wave approach are that waves are uncorrelated and that the vibrational field is
diffuse. This last assumption is equivalent to the equirepartition of energy in the modal approach.
This equivalence is highlighted by the proportionality between modal energy and energy density
(or intensity) stemming from the proportionality of modal density and length, surface or volume
of a subsystem. The wave approach has proved its efficiency to solve some questions where the
modal approach was difficult to apply. This is the case for the relationships giving the coupling
loss factor in terms of the transmission efficiency at junctions [8, 9]. Extensive reviews of SEA
with more complete bibliographies are available in the standard books [10, 11, 12]. An historical
review and a criticism approach of SEA may be found in Ref. [13].

Adopting the spirit of SEA, some generalizations have been proposed for non diffuse fields.
In the wave intensity analysis [14], the assumption of isotropy is relaxed whereas in the vibra-
tional conductivity approach [15] homogeneity and isotropy are both relaxed. Another method
is proposed in Ref. [16] to relax homogeneity and isotropy. Based on the assumption that all
rays are uncorrelated, the method consists to write the power balance on incoming and outcoming
waves on the boundary. Introducing a fictitious source layer on the boundary, the power of these
sources is governed by an integral equation (radiative transfer equation) exactly as it is in the
view factor method in thermics [17] or in the radiosity method in acoustics [18]. The method
applies from diffuse to largely non-diffuse field in assembled plates. A last generalization of SEA is
proposed by Maxit and Guyader [19] when the equirepartition of modal energy does not hold. The
method named the statistical modal energy distribution analysis is based on the energy balance of
individual modes instead of sets of modes as in SEA.

The question of the consistency of these generalizations with SEA itself naturally arises. Any
candidate for generalizing SEA must embody SEA as a particular case. If the answer is somewhat
obvious for the wave intensity analysis [14], the vibrational conductivity [20] and the statistical
modal energy distribution analysis [19], it is not for radiative exchanges. There are several reasons
to examine the derivation of SEA from radiative exchanges beyond the mathematical require-
ment of consistency. Firstly, since radiative exchanges are formally equivalent to the ray-tracing
technique [21], it highlights the link between geometrical acoustics including structural rays and
SEA. Secondly, SEA may be viewed as the theory of thermal equilibrium of mechanical vibrations
whereas the theory of rays could rather be compared with the kinetic theory of gas so that it is
valid beyond equilibrium. To derive SEA from radiative transfer is thus a way to investigate the
transition from non-equilibrium state to equilibrium state. This question has some immediate con-
sequences of practical interest for SEA. The stakes are to be able to recognize the situations where
equilibrium is reached i.e. when diffuse field is established. This rises the important question of
the validity of SEA.

The purpose of the present paper is therefore to derive the basic relationships of SEA by the
wave approach of Ref. [16]. In particular, this paper focuses on the net exchanged power between
two subsystems with a common boundary. Starting from radiative exchanges of uncorrelated rays,
it is found that the diffuse field assumption leads to the expected equation. The obtained propor-
tionality coefficient is consistent with the well-known coupling loss factor for adjacent subsystems
of the traditional wave approach of SEA.

The outline of this paper is as follows. In Section 2, the basic integral equations of uncorrelated
rays are given for any fields, diffuse or not diffuse. In Section 3, the equations for energy, intensity
and exchanged power are investigated for the case of constant domain sources and boundary
sources. The diffuse field is obtained in Section 4 when the direct field is negligible and the well-
known equations of SEA are finally derived. A numerical simulation is proposed in Section 5 and
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finally, a discussion on the validity of both methods is done in Section 6.

2 Equations of uncorrelated ray fields

In the framework of SEA, vibrating systems are divided into several subsystems. In general, a sub-
system is defined as a set of modes of the same structural component for which the equirepartition
of energy applies and which are lightly coupled with other subsystems. As present paper focuses on
the case of assembled plates, the subsystems, noted Ωi, i = 1...n are the flexural, the longitudinal
and the transverse modes of each plate. However, the demonstration can be straightforwardly
generalized to the case of beam networks, or adjacent rooms provided that the solid angle of space
and the law of decrease of energy and some other minor modifications have been achieved. The
important assumption of the demonstration is that subsystems can only exchange energy with
other subsystems through their boundaries. Thus, radiation of sound, structural response or the
coupling of plates with their reinforcing beams are excluded of the present demonstration.

The main assumption of the wave approach of SEA is that fields are diffuse in all subsystems.
The conditions which lead to diffuse field are studied by the mathematical theory of billiards. It
is found that some shapes, the so-called ”mixing” billiards, naturally give a diffuse field by mixing
the rays after several reflections on boundaries [22]. Uncorrelation of rays and Lambert’s law for
reflection are then two statistical consequences of mixing of rays even if individual rays have a
deterministic phase and specularly reflect on the boundaries. Uncorrelation of rays also implies
the additivity of energy of individual rays.

We then start from a ray theory whose primary variables are energy and intensity and which
admits the cosine Lambert’s law for the energy reflected on boundaries. This is exactly the as-
sumptions of the so-called ”factor view method” or ”standard method” in thermics. An adaptation
of this method to the case of assembled plates coupled by their edges is achieved in Ref. [16]. In
the rest of this section, all basic relationships and the theoretical material necessary for this paper
is introduced without full demonstrations.

Let us consider a stationary point source of unit power in a two-dimensional system. The
energy density at a distance R is e−mR/2πcR where m is the attenuation factor responsible of
dissipation during propagation and c is the group speed. In presence of several sources whose
power density is noted ρi, the energy density Wi at any point r in the subsystem Ωi, is not only
the sum of direct fields ρi exp−mR /2πcR but also reflected and transmitted fields introduced by
some fictitious sources σi located over the boundary Γi,

Wi(r) =

∫

Ωi

ρi(s)
exp−mR

2πcR
dΩs +

∫

Γi

σi(p) cos θ
exp−mR

2πcR
dΓp, (1)

where θ is the emission angle at point p measured with the normal of the boundary and R = |s − r|
or |p− r| is the source-receiver distance. As it was previously claimed, the boundary sources σi
radiate energy in accordance with the cosine Lambert’s law.

When evaluating the energy density at any point p on the boundary Γi, an additional term
appears,

Wi(p) =

∫

Ωi

ρi(s)
exp−mR

2πcR
dΩs +

∫

Γi

σi(q) cos θ
exp−mR

2πcR
dΓq +

σi(p)

2c
. (2)

The presence of the last term will be clarified in the next section.
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Figure 1: Radiative intensity

A further concept useful for our purpose is the so-called ”radiative intensity” or ”specific inten-
sity”. This is the power per unit angle and unit length normal to the ray. Consider a point r ∈ Ωi

and an infinitesimal angle dϕ (Fig. 1). The power per unit length passing through that point is
the sum of contributions of all sources ρi located inside the cone of vertex r and angle dϕ and the
sources σi on the part of boundary inside this cone.

dP =

∫
ρi
e−mR

2πR
dΩ+ σi cos θ

e−ml

2πl
dΓ, (3)

where the first integral is performed over the cone, dΓ is the piece of boundary inside the cone
and l(r,ϕ) is the distance from r to the boundary in direction ϕ (Fig. 1). Since dΩ = RdϕdR and
dΓ = ldϕ/ cos θ, it yields,

dP =

∫
ρi
e−mR

2πR
RdϕdR + σi cos θ

e−ml

2πl

ldϕ

cos θ
. (4)

Therefore, the radiative intensity Ii = dP/dϕ is,

Ii(r,ϕ) =

∫ l(r,ϕ)

0
ρi(s)

e−mR

2π
dR+

σi(p)

2π
e−ml(r,ϕ), (5)

where p is the first point on the boundary encountered from r in direction −ϕ.

At the interface of length L between two subsystems j and i, a part of the incident power
is transmitted while the other part is reflected. Introducing the transmission efficiency τji(ϕ)
depending on the incidence angle ϕ and which is defined as the ratio of the transmitted power over
the incident power, the power transmitted from subsystem j to subsystem i is,

Pj→i = L

∫ π/2

−π/2
τji(ϕ)Ij(p,ϕ) cosϕdϕ, (6)

where the integration is performed over all possible incidence angles. In this expression, Ii cosϕ is
the incident power per unit length from direction ϕ, τji(ϕ)Ii cosϕ is the part of this power which
is transmitted and Pj→i is the total transmitted power from all directions.

The last question which has not yet been tackled is how to determine the fictitious source
strength σi. Consider a point p ∈ Γi on the boundary. The incident power stemming from Ωi
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is
∫
Ii cosϕdϕ. So, if the boundary has an absorption coefficient α and therefore, a reflection

coefficient 1− α, the energy balance reads,

σi(p)

π
= (1− α)

∫ π/2

−π/2
Ii(p,ϕ) cosϕdϕ, (7)

where the left-hand side is the power per unit length of boundary radiated by the fictitious source
σi. Substitution of Eq. (5) into Eq. (7) and a change of variable leads to,

1

π
σi(p) = (1− α)

(∫

Ωi

ρi(s)
e−mR

2πR
cosϕdΩs +

∫

Γi

σi(q) cos θ
e−mR

2πR
cosϕdΓq

)
. (8)

This Fredholm equation of second kind gives the unknown σi at point p in terms of all structural
sources ρi and other boundary sources σi(q). It is similar to the radiative transfer equation in
thermics which gives the radiative intensity in terms of power incident from all other directions.

Now, if the point p is located on the common edge of several subsystems, the radiated power
per unit length σi/π stems from all other adjacent subsystems and therefore the power balance
reads,

σi(p)

π
=

∑

j

dPj→i

dL
. (9)

Successive substitution of Eqs. (6) and (5) into Eq. (9) leads to,

1

π
σi(p) =

∑

j

∫

Ωj

τji(ϕ)ρj(s)
e−mR

2πR
cosϕdΩs +

∫

Γj

τji(ϕ)σj(q) cos θ
e−mR

2πR
cosϕdΓq. (10)

Once again, σi(p) is given in terms of all other unknowns σj(q).

3 Energy, intensity and power with constant sources

A rain-on-the-roof excitation means that the subsystem is entirely covered by some random driving
forces. These forces are spatially δ-correlated and have a power spectrum density constant in
frequency (white noise) and in space (uniformity). In the framework of the theory of the previous
section, rain-on-the-roof excitation means that ρi is constant over the subsystem Ωi.

Rain-on-the-roof excitation is generally not sufficient to ensure a diffuse field. Mixing of rays
requires a large number of reflections only possible when their energy does not decrease too fast.
Light damping loss factors and coupling loss factors is therefore a necessary condition. But in
addition, a certain geometrical condition on the shape of subsystems is necessary. We first assume
that this condition is satisfied and leads a constant value of the fictitious sources σi. After the
expressions for energy and intensity have been derived, it will be possible to find this condition
and therefore to define the validity domain of these expressions.

Assuming that ρi and σi are constant and neglecting the attenuation factor m (light damping),
the energy density is from Eq. (1),

Wi(r) = ρi

∫

Ωi

dΩ

2πcR
+ σi

∫

Γi

cos θ

2πcR
dΓ, (11)
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at any point r inside Ωi, and from Eq. (2),

Wi(p) = ρi

∫

Ωi

dΩ

2πcR
+ σi

∫

Γi

cos θ

2πcR
dΓ+

σi
2c

, (12)

at any point p on the boundary Γi. In Eqs. (11) and (12) appear two integrals,

A(r) =

∫

Ω

dΩ

2πR
, (13)

B(r) =

∫

Ω

cos θ

2πR
dΓ, (14)

which are functions of the receiver point r.

By expanding dΩ = RdRdϕ in polar coordinates, the first integral becomes,

A(r) =

∫ 2π

0

∫ l(r,ϕ)

0

RdRdϕ

2πR
=

1

2π

∫ 2π

0
l(r,ϕ)dϕ, (15)

where l(r,ϕ) is the distance from r to Γ in direction ϕ. l(r,ϕ) + l(r,−ϕ) is the boundary to
boundary distance and therefore A(r) is half the mean boundary to boundary distance viewed
from r. This average distance is expected to be close to the the mean free path l̄. The definition
of the mean free path is,

l̄ =
1

P

∫

Γ
dΓp

∫ π/2

−π/2
l(p,ϕ)

cosϕ

2
dϕ = π

S

P
, (16)

where S is the area of the domain Ω and P is the perimeter of the boundary Γ. This last equality
is the classical expression for mean free path in bi-dimensional systems. It is obtained from the
first equality after few algebra. A difference appears between the integral involved in Eq. (15) and
those of Eq. (16). The function cosϕ/2 is the probability density for a ray to have an incidence ϕ.
Thus, let us introduce the function ζ defined as the ratio ζ =

∫
ldϕ/πl̄, that is,

A(r) =
l̄

2
ζ(r). (17)

ζ is a dimensionless function confined in the neighbourhood of unity. When r → p ∈ Γ, l(p,ϕ) is
the boundary to boundary distance for inward direction ϕ whereas l(p,−ϕ) = 0. A(r) is therefore
a continuous function when r goes to p ∈ Γ.

For the second integral, consider the change of variable dΓ = Rdϕ/ cos θ where, as usual, dΓ is
the measure of boundary length and R,ϕ are the polar coordinates of the current point of boundary
in the framework centred in r ∈ Ω (Fig. 2a). Any interior point r ∈ Ω is surrounded by Γ and
therefore ϕ runs from −π to π (Fig. 2b),

B(r) =

∫ π

−π

dϕ

2π
= 1. (18)

But, for a boundary point p ∈ Γ, ϕ is limited to the range −π/2, π/2 (Fig. 2c),

B(p) =

∫ π/2

−π/2

dϕ

2π
=

1

2
. (19)
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Figure 2: Polar coordinates centred in r. (a), Relationship between the boundary length dΓ and
dϕ. (b), for r ∈ Ω, ϕ runs from −π to π. (c), for p ∈ Γ, ϕ runs from −π/2 to π/2.

B(r) is then a discontinuous function when r goes to p ∈ Γ.

With these results, Eqs. (11) and (12) become,

Wi(r) = ρi
l̄

2c
ζ +

σi
c
, (20)

Wi(p) = ρi
l̄

2c
ζ +

σi
2c

+
σi
2c

. (21)

Wi is a continuous function, as should be all physical quantities. The explanation of the presence
of the additional term in Eq. (2) is now apparent. This term compensates the discontinuity of the
integral

∫
σ cos θe−mR/2πRdΓ when r ∈ Ω goes to p ∈ Γ, and then ensures the continuity of Wi.

For constant sources ρi and σi, the radiative intensity is from Eq. (5),

Ii(r,ϕ) = ρi

∫ l(r,ϕ)

0

dR

2π
+
σi
2π

=
ρil(r,ϕ)

2π
+
σi
2π

. (22)

The mean radiative intensity is,

Īi(r) =
1

2π

∫ 2π

0
Ii(r,ϕ)dϕ =

1

2π

(
ρi

1

2π

∫ 2π

0
l(r,ϕ)dϕ+ σi

)
, (23)

and therefore,

Īi(r) =
1

2π

(
ρi

l̄

2
ζ + σi

)
. (24)

It results from Eq. (20),

Īi =
cWi

2π
. (25)

This is the equation usually written in the wave approach of SEA by assuming homogeneity and
isotropy of field. It is found here that this equality applies in an average sense for constant ρi and
σi.

As the point r approaches the boundary Γ, it is necessary to distinguish the outward directions
|ϕ| > π/2 for which l(p,ϕ) is the boundary to boundary distance and inward directions |ϕ| < π/2
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for which l(p,ϕ) = 0. In the limit r → p ∈ Γ,

Ī+i (p) =
1

π

∫

|ϕ|>π/2
Ii(p,ϕ)dϕ =

1

2π

(
ρil̄ζ + σi

)
, (26)

Ī−i (p) =
1

π

∫

|ϕ|<π/2
Ii(p,ϕ)dϕ =

1

2π
σi. (27)

Indeed, the mean of these two quantities is the mean radiative intensity of Eq. (24). But Eqs. (26)
and (27) show that near the boundary the radiative intensity is no longer equally shared among
inward and outward components.

Finally, the transmitted power given by Eq. (6) is, with the additional condition of constant ρi
and σi,

Pj→i = L

∫ π/2

−π/2
τji(ϕ) cosϕdϕ × Ī+j , (28)

where the mean incident radiative intensity Ī+j has been substituted for the exact radiative intensity
Ij(p). Introducing the average transmission efficiency,

τ̄ji =
1

2

∫ π/2

−π/2
τji(ϕ) cosϕdϕ, (29)

the transmitted power is,

Pj→i = L
τ̄ji
π

(
ρj l̄ζ + σj

)
. (30)

Eqs. (20), (22) and (30) constitute a set of equations on the energy quantities valid for constant
sources. But we have not yet investigated the condition for σi to be constant. σi is related to
domain sources ρi by Eq. (8) for reflection and by Eq. (10) for transmission. Let consider Eq. (8)
with constant ρi and σi,

σi
π

= (1− α)e−ml̄

(
ρi

∫

Ωi

cosϕ

2πR
dΩ+ σi

∫

Γi

cos θ cosϕ

2πR
dΓ

)
, (31)

where the term e−mR has been substituted by its average value e−ml̄. Once again, it appears as
two integrals which only depend on the shape of Ω,

C(p) =

∫

Ω

cosϕ

2πR
dΩ, (32)

D(p) =

∫

Γ

cos θ cosϕ

2πR
dΓ. (33)

By the change of variable dΓ cos θ/R = dϕ, the second integral is constant,

D(p) =

∫ π/2

−π/2

cosϕ

2π
dϕ =

1

π
. (34)

For the first integral, the change of variable dΩ = RdRdϕ leads to,

C(p) =

∫ π/2

−π/2

cosϕ

2π
dϕ

∫ l(p,ϕ)

0
dR =

1

2π

∫ π/2

−π/2
l(p,ϕ) cosϕdϕ. (35)

8



Published in Journal of Sound and Vibration 300 (2007) 763-779

This is the average of the distances from p to other points of Γ weighted by the function cosϕ/2
and divided by π. From Eq. (34), Eq. (31) becomes,

σi
π

=
1− αe−ml̄

1− (1 − α)e−ml̄
ρiC(p). (36)

The question of constancy of σi is equivalent to the constancy of C(p). By virtue of symmetry,
C(p) is constant for a disk and therefore σi too (see Eq. (31)). When Ω is not a disk, C(p) and
therefore σi are approximately constant when Ω has a compact shape in the sense that it has not
a size much larger than the other ones. But, Eq. (36) rather shows the inverse. The only way for
σi to be constant is that C(p) is constant and therefore that Ω has a compact shape.

By comparing Eq. (35) and Eq. (16), the mean free path is l̄ = π
∫
CdΓ/P and therefore, the

constancy of C(p) reads,

C(p) =
l̄

π
. (37)

Finally,

σi =
1− αe−ml̄

1− (1− α)e−ml̄
ρil̄. (38)

In summary, Eqs. (20), (22) and (30) respectively derived for energy, intensity and power apply
when Ω has a compact shape with no dimension much greater than the mean free path. In this
case, σi is constant and σi and ρi are related by Eq. (38).

4 SEA equation in diffuse field

Diffuse field means that energy is homogeneous and isotropic. The question of homogeneity and
isotropy can be discussed from Eq. (22). In Eqs. (20), (22) and (30) respectively for energy,
intensity and transmitted power, the first term involving ρi is the direct field whereas the second
term involving σi is the reverberant field. In Eq. (22) the constancy of Ii(p,ϕ) requires that l(r,ϕ)
is constant i.e. independent of both r and ϕ which is impossible for any bounded geometry. In a
bounded domain, the direct field is neither homogeneous nor isotropic. Thus, the only chance for
the energy and the intensity to be constant is that the direct field is negligible compared with the
reverberant field. That is,

ρil(r,ϕ) << σi. (39)

Assuming that this inequality holds at any point and in any direction, Eqs. (20), (22) and (30)
respectively give,

Wi =
σi
c
, (40)

Ii =
σi
2π

, (41)

Pi→j = L
τ̄ij
π
σi. (42)

Eqs. (40)-(42) are the fundamental relationships of energy quantities in diffuse field. By eliminating
the unknown σi, it yields,

Ii =
ci
2π

Wi, (43)

Pi→j = L
ciτ̄ij
π

Wi. (44)

9
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The equality (43), in opposition with Eq. (25) is now valid at any point r and for any direction ϕ.
Furthermore, by denoting Si the area of subsystem i, the transmitted power is,

Pi→j = L
c

πSi
τ̄ijEi, (45)

where Ei = WiSi is the total vibrational energy of subsystem i with area Si. By introducing the
coupling loss factor,

ηij = L
cτ̄ij
πωSi

, (46)

the power transmitted from subsystem i to subsystem j is,

Pi→j = ηijωEi, (47)

and finally the net exchanged power is,

Pij = ω (ηijEi − ηjiEj) . (48)

This is the fundamental equation of SEA. The expression for the coupling loss factor given in
Eq. (46) is exactly the same one derived in the conventional wave approach of SEA [10].

The validity domain of SEA is usually evaluated by introducing several parameters. The modal
density ni is defined as the number of eigenfrequencies per rad/s,

ni =
Siω

2πcc′
, (49)

where c is the group speed and c′ the phase speed. In order to allow a statistical treatment of
modes, the mode count Ni,

Ni = ni∆ω >> 1, (50)

that is the number of modes within the frequency band ∆ω, must be large. The modal overlap Mi

must also be large,
Mi = ηiωni >> 1, (51)

where ηi is the damping loss factor of subsystem i. A high modal overlap means that modes overlap
each other and therefore that the dynamic behaviour is not dominated by a particular mode. This
is the condition for rays to be uncorrelated.

In addition to these two parameters, condition (39) is necessary for direct field to be negligible.
By denoting Pi = ρiSi the power being injected in subsystem i and since σi = cWi = cEi/Si,
Eq. (39) may be re-written as,

Pi
l̄

c
<< Ei. (52)

This form of the condition (39) is useful for SEA models since it allows to check a posteriori
whether the field is diffuse or not. But, it is also possible to check the condition (39) before SEA
equation has been solved, i.e. before Pi and Ei are known. From Eq. (38), it is apparent that ρi l̄
is much smaller than σi if m̄i/(1 − m̄i) << 1 where m̄i = 1 − (1− α)e−ml̄. At the first order, for
small α and ml̄, this is equivalent to m̄i << 1 with m̄i = α +ml̄. Let us consider the damping
loss factor ηi of subsystem i. The energy being dissipated per unit time is Pdiss = ηiωEi. On the
other hand, the energy lost by a single reflection is αEi and since the number of reflections per
second is c/l̄ the power being absorbed by boundaries is αc/l̄×Ei. In addition, the attenuation of

10



Published in Journal of Sound and Vibration 300 (2007) 763-779

rays during propagation introduces a further dissipation mcEi. The total power being dissipated
is thus, Pdiss = ηiωEi = (mc+ αc/l̄)× Ei. The condition m̄i << 1 now reads,

m̄i =
ηiω

c
l̄ << 1. (53)

This last form of the diffuse field condition introduces a dimensionless factor m̄i which is a nor-
malized attenuation factor in opposition with the attenuation factor m which has the dimension
of the reciprocal of length. In room acoustics, this factor is called absorption exponent and noted
a∗ in Eq. (5-43) of Ref. [23] whereas in Ref. [24], Eq. (20), it is called the reflectance of plate. The
normalized attenuation factor gives the ratio of energy which is absorbed during the propagation
to length the mean free path. A ratio greater than one simply means that the energy of rays is
totally absorbed in a distance less than the mean free path. A ratio much smaller than one means
that the lost of energy of rays is not significant before a large amount of reflections, creating the
condition of diffuse field.

The final condition for SEA to apply is that the coupling is weak. Several definitions of the
weak coupling can be found in the literature. For instance, in Ref. [24] it is proposed to define
the weak coupling of adjacent plates by comparing the mean transmission efficiency τ̄ij and the
reflectance of plate m̄i (the normalized attenuation factor in this text). In the context of the
radiative exchanges, it is natural to define the weak coupling as the situation where the transmitted
power Pi→j = ηijωEi is lower than the dissipated power ηiωEi or, in other words,

ηij << ηi. (54)

WIth Eq. (46) the condition becomes τ̄ij << πωηiSi/cL and introducing the normalized attenua-
tion factor τ̄ij << m̄iπSi/l̄L. Finally, Eq. (16) leads to,

τ̄ij <<
P

L
m̄i. (55)

This is the definition we adopt in this text for the weak coupling. It is similar to the one of Ref. [24]
excepted the presence of the ratio P/L of the perimeter and the coupling length.

These four criteria, mode count N , modal overlap M , the normalized attenuation factor m̄
and the strength of coupling Lτ̄ij/Pm̄ are all necessary to define the validity domain of SEA.
The population of modes N must be large in each sub-system for the statistical method to apply.
A modal overlap guarantees that rays are uncorrelated (the condition necessary for energy to be
additive) or, in other words, that mode peaks are not too acute. In room acoustics, the so-called
Shroeder’s frequency f = 2000

√
(V/T ) where V is the room volume and T the reverberation-time is

the frequency for which the modal overlap is 3. Beyond the Shroeder’s frequency, modes sufficiently
overlap to ensure the validity of the geometrical acoustics approach. The modal overlap is thus
related to fluctuations of the actual vibrational level in pure tone compared with the mean value in
broadband predicted by SEA. The necessity of the third criterion, the normalized attenuation factor
m̄, clearly appears in the proof of SEA equations presented in this section. The condition m̄ < 1
ensures that the vibrational field is diffuse that is each sub-system is in thermal equilibrium. Finally
a light coupling means that two coupled sub-systems can be individually in thermal equilibrium
but in the mean time, they are not jointly in thermal equilibrium and therefore they can exchange
a vibrational power.
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Figure 3: Geometry of the seven plates structure. (a), General view. (b), Position of the driving
points (small hammers) and the receiver points (+).

5 Numerical simulation

In order to test the validity of previous theoretical developments, a numerical simulation is proposed
on the structure shown in Fig. 3a. This structure is made of seven square plates. All plates are
identical and are made of aluminium, volumic mass ρ = 2700 kg/m3, Young’s modulus E = 71 GPa,
Poisson’s coefficient ν = 0.3, size L = 1 m and thickness h = 1 mm.

The assembly is realized with four L-junctions and two T-junctions. The junctions are assumed
to be massless and infinitely rigid. The transmission and reflection efficiencies are calculated
on the basis of the continuity of displacements and rotations and the equilibrium of forces and
moments. All details are available in Refs. [8, 9]. All uncoupled edges of plates are assumed to be
simply supported. This condition is indeed chosen in order to simplify the reference calculation
(Appendix).

1 kHz 2 kHz 4 kHz 8 kHz
l̄/λ 8 11 15 22
N 303 607 1215 2430
τ̄14 0.33 0.32 0.32 0.32
τ̄12 0.15 0.15 0.15 0.15
τ̄15 0.15 0.14 0.13 0.13

Table 1: Number of wavelengths l̄/λ, mode countN and mean efficiencies τ̄ij for L- and T-junctions.

The wavelength is about 10 cm at 1 kHz and 4 cm at 8 kHz for the bending wave. This is
large enough compared with the thickness to apply the Love plate equation. Tab. 1 summarizes
the number of wavelengths in the mean free path from 1 kHz to 8 kHz which is always greater
than eight. This value ensures that a high frequency model makes sense. The modal density from
Eq. (49) is constant and has the value 0.048 meaning that 2π× 1000×n = 303 modes are included
within the octave band centred on 1 kHz and more for other octave bands. This is an assessment
of the population of modes we are dealing with.
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M 1 kHz 2 kHz 4 kHz 8 kHz
η = 0.1% 0.3 0.6 1.2 2.4
η = 1% 3 6 12 24
η = 10% 30 60 120 240

Table 2: Modal overlap M versus frequency and damping loss factor.

m̄ 1 kHz 2 kHz 4 kHz 8 kHz
η = 0.1% 0.02 0.03 0.05 0.07
η = 1% 0.2 0.3 0.5 0.7
η = 10% 2 3 5 7

Table 3: Normalized attenuation factor m̄ versus frequency and damping loss factor.

The modal overlaps are summarized in Tab. 2. It can be seen that the condition of Eq. (51)
is fulfilled when η ≥ 1%. Beyond this value, modes are expected to sufficiently overlap to be lost
in the frequency average. This condition is necessary for both, SEA and non-diffuse equations of
Section 2 to apply. The normalized attenuation factors are summarized in Tab. 3. The condition
of Eq. (53) is fulfilled when η ≤ 1%. This is the additional condition for SEA to apply. Thus, it
is expected that SEA gives correct results in the only case η = 1%. When η = 10% the modal
overlap is large enough meaning that no mode dominates the dynamics. But m̄ > 1 and therefore
the field is not diffuse. When η = 0.1%, the normalized attenuation factor is correct but not the
modal overlap.

The mean efficiencies are about 0.13 for the T-junction and 0.3 for the L-junction. With a ratio
P/L = 2, the coupling is weak (Eq. (55)) for η = 1 % and η = 10 % (τ̄ij < 2m̄i) but the coupling is
strong for η = 0.1 % (τ̄ij > 2m̄i). This result also holds when adopting the definition of Ref. [24].

Plate 1 (bottom right) is excited by sixteen driving points located at x = 0.2, 0.4, 0.6, 0.8 and
y = 0.2, 0.4, 0.6, 0.8 in the frame of Fig. 3. The receiver points are located at the centre of each
plate. Each driving point applies a force of F = 1 N (peak value). The resulting injected power
is assessed with the impedance of infinite plates, Pinj = |F |2/16

√
Dρh = 14.8 mW where D is the

bending stiffness of the plate. This relationship shows that the injected power does not depend on
the frequency neither the damping loss factor.

Three calculations have been done for each octave band (1 to 8 kHz) and each damping loss
factor (η = 0.1%, 1% and 10%). The first one is a SEA calculation with the coupling loss factors
given in Eq. (46). Indeed some other more elaborated coupling loss factors are available in the
literature [24]. However, the purpose is to demonstrate the convergence of radiative exchange
equations to SEA in same conditions rather than to test SEA itself. This is the motivation of
this choice. The equation of SEA of this system is a linear set of seven equations. The second
calculation is based on equations of Section 2. The system of Eqs. (8), (10) is first solved by using
the collocation method with sources being constant on the segments. Once the unknowns σi have
been determined, the energy density is computed with Eq. (1). The description of this algorithm
is available in Ref. [25]. For this system, the boundary is discretized with 322 boundary elements
that is more than 10 elements per edge of plate. The third calculation is the reference one. It is
based on a semi-analytical solution of the governing equation of a Love plate. The deflection is
developed in a Fourier series along the y-axis. The simply supported conditions are then fulfilled.
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Figure 4: Vibrational response of (a), plate 1; (b), plate 3; (c), plate 6; (d), plate 7 for a damping
loss factor η = 0.1%.
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Figure 5: Vibrational response of (a), plate 1; (b), plate 3; (c), plate 6; (d), plate 7 for a damping
loss factor η = 1%.
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Figure 6: Vibrational response of (a), plate 1; (b), plate 3; (c), plate 6; (d), plate 7 for a damping
loss factor η = 10%.
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Along the x-axis (or z-axis for vertical plates), the deflection is the sum of four travelling waves.
The total number of unknowns coefficients is thus 28. The coupling conditions at both edges of the
plates give 4 equations for a L-junction and 6 equations for a T-junction giving the 28 expected
conditions (Appendix). This calculation is done from 707 Hz up to 11312 Hz (4 octaves), one step
per Hertz, and for the 16 loading cases. The final result on each plate is the RMS-response over
each octave band, and the sum of the 16 loading cases assuming to be uncorrelated.

Figs. 4-6 show the energy density for plates 1, 3, 6 and 7 versus octave band for each damping
loss factor. It can be observed that both, SEA and radiative exchanges lead to similar results when
η = 0.1% and η = 1%. In these two cases, the normalized attenuation factor m̄ is less than unity
(Tab. 3) showing that the energy field is diffuse. However, an important discrepancy can be seen for
the case η = 10%. The differences can reach up to 40 dB for plate 6 which is the most distant plate
from driving points. In this case, the normalized attenuation factor is greater than unity showing
that the field is not diffuse and thus, an important assumption of SEA is violated. On the other
hand, the reference results show that for η = 0.1% some slight differences may appear with the
energy methods. This is the case when the modal overlap (Tab. 2) is low. However, the agreement
between the reference calculation and both energy methods is quite good for η = 1% for which
the modal overlap is high and the normalized attenuation factor is low. When η = 10%, reference
calculation and radiative exchanges are still in good agreement, but not with SEA, showing that
the validity domain of radiative exchange equations is larger than the one of SEA.

6 Diagram of validity

The validity domain of the energy methods may be assessed. Both methods require to have a large
number of modes N . But, the modal density n is constant in frequency for plates and since the
bandwidth is doubled for successive octave bands, it yields N ∝ f where f is the central frequency.
The limit N = 100 is then a vertical line in the η, f -plane of Fig. 7. According to Eq. (51),
M ∝ ηf . The boundary of the domain M > 1 is therefore the hyperbolic line η = 1/2πnf which
is the bottom solid line of Fig. 7. Finally, the group speed c is proportional to the square root of
the frequency. From Eq. (53), it results in m̄ ∝ η

√
f . The upper solid line of Fig. 7 is therefore

η = a/
√
f where a is a proportionality constant. The validity domain of the energy exchanges is

N > 100 and M > 1 and is thus quarter plane shown in Fig. 7. The validity domain of SEA is
limited by N > 100, M > 1 and m̄ < 1 and is therefore the half-strip shown in Fig. 7. The only
case located within the strip is η = 1% where the three methods well agree.

7 Conclusion

In conclusion, the present paper has shown that the radiative exchange equations in structural ray
theory converge to SEA equations when the field becomes diffuse. The coupling loss factor derived
by this convergence process matches with the simplest one commonly derived in SEA literature
and the well-known proportionality of exchanged power with the difference of energy densities is
recovered.

The numerical simulations proposed in this paper highlight how it is important to check the
validity domain of a method before to use it. Diagrams such as the one presented in Section 6 can
be useful to this end. Validity of SEA and the ray method is confined within a domain defined
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Figure 7: Validity domain SEA and uncorrelated rays in frequency - damping loss factor plane.
(\\), domain of SEA defined by N > 100, M > 1 and m̄ < 1; (//), domain of rays defined by
N > 100 and M > 1; (+), position of the twelve calculations of Figs. 4-6.

by three boundary curves in the f, η-plane (constant mode count, modal overlap and normalized
attenuation factor). The two first conditions delimit the validity of the ray method whereas the
three conditions are necessary for SEA. To use SEA or the ray method on the left side ofN = cste is
simply meaningless. Both methods require to be in the high frequency range. This is a shortcoming
commonly encountered in SEA models that a sub-system has a too low mode count for instance,
when a sub-system is stiffer than the adjacent sub-systems. This difficulty is the main motivation
for the studies on the coupling of the finite element method with SEA. Below the curve M = cste
is the domain of large fluctuations. SEA and the ray method apply in principle but are inaccurate.
Their use is therefore unwise. A low modal overlap is encountered in undamped structures made
of metal for instance. A dominating mode within a single sub-system can affect not only the
structural response of this sub-system but also the transmission through this sub-system. The
entire system can therefore be affected. The prediction of fluctuations around the mean value of
SEA is a crucial question in this regard. This has inspired many studies on confidence and SEA.
The line m̄ = cste is the boundary between SEA and the ray method. To increase the damping
loss factor leads to a non-diffuse field which can damage SEA results. But, this is also the case by
increasing the frequency. This fact is inconsistent with the widely spread idea that SEA results
are better as the frequency increases. SEA is valid in high frequencies indeed, but provided that
the field remains diffuse. From this point of view, the normalized attenuation factor appears to be
an appropriate criterion of the validity of the diffuse field assumption. The knowledge of this limit
is obviously useful for SEA but also for the ray method. In principle, the ray method applies in
diffuse field but its use instead of SEA would be inappropriate since it requires more computation
than SEA.

Appendix A

The reference calculation for the structure shown in Fig 3 is considered in this Appendix. As stated
in Section 5, Love’s equation ∆2v − k4v = F0/D × δ(x − x0)δ(y − y0) applies for the transverse
deflection v(x, y). D is the bending stiffness of the plate, F0 the transverse force at frequency ω
applied to point x0, y0 and k the wavenumber at same frequency. For each plate i, the transverse
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deflection vi is developped in a Fourier series,

vi(x, y) =
∞∑

n=1

vi,n(x) sin(
nπy

L
), (56)

The boundary conditions along the simply supported edges y = 0 and y = L are satisfied. In-
troducing the Fourier’s series into Love’s equation leads to a fourth order differential equation for
each Fourier’s term vi,n whose solution is,

vi,n(x) = Ai,n exp−βnx +Bi,n exp−βn(L−x)+Ci,n exp−γnx +Di,n exp−γn(L−x)+
Ei,n exp−βn|x0−x| +Fi,n exp−γn|x0−x| .

(57)

The four first terms in the right-hand side are the solution of the homogeneous fourth order
differential equation and βn, −βn, γn, −γn are the four roots of its characteristic equation,

X4 − 2
(nπ
L

)2
X2 −

[
k4 − (

nπ

L
)4
]
= 0. (58)

The two last terms in the right-hand side of Eq. (57) are proportional to the fundamental solution of
the fourth order differential equation with the conditions Ei,nβn+Fi,nγn = 0 and Ei,nβ3

n+Fi,nγ3n =
−F0/LD × sin(nπy0/L).

The constants Ai,n, Bi,n, Ci,n and Di,n are determined by applying the coupling conditions at
the interfaces x = 0 and x = L. For the L-coupling between subsystems 5 and 6 of Fig. 3, these
conditions are,

v5,n(L) = 0, (59)

v6,n(0) = 0, (60)

∂xv5,n(L) = ∂xv6,n(0), (61)

D5

[
∂2xv5,n(L) + ν∂2yv5,n(L)

]
= D6

[
∂2xv6,n(0) + ν∂2yv6,n(0)

]
, (62)

where due to the Fourier’s series development, ∂2y denotes a multiplication by −(nπ/L)2 and Di is
the bending stiffness of plate i. While for the T-coupling 1-2-5 of Fig. 3, the conditions are,

v1,n(L) = 0, (63)

v2,n(0) = 0, (64)

v5,n(0) = 0, (65)

∂xv1,n(L) = ∂xv2,n(0), (66)

∂xv1,n(L) = ∂xv5,n(0), (67)

D1

[
∂2xv1,n(L) + ν∂2yv1,n(L)

]
= D2

[
∂2xv2,n(0) + ν∂2yv2,n(0)

]
+

D5

[
∂2xv5,n(0) + ν∂2yv5,n(0)

]
. (68)

Finally, the energy density density at any receiver point is given by,

W (x, y) =
ρω2

4
|v|2 + D

4

[
|∂

2v

∂x2
|2 + |∂

2v

∂y2
|2 + 2νRe

(
∂2v

∂x2

∂2v∗

∂y2

)
+ 2(1− ν)| ∂

2v

∂x∂y
|2
]
, (69)

where Re designates the real value, * the complex conjugate and ρ the mass per unit area.
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[8] Beckmann Th. Wöhle W. and Schreckenbach H. Coupling loss factors for statistical energy
analysis of sound transmission at rectangular slab joints, part. I. Journal of Sound and
Vibration, 77(3):323–334, 1981.
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