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Comparison of vibrational conductivity and radiative energy
transfer methods
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Laboratoire de Tribologie et Dynamique des Systèmes CNRS

École centrale de Lyon, FRANCE alain.le-bot@ec-lyon.fr

Abstract

This paper is concerned with the comparison of two methods well-suited for the predic-
tion of the wideband response of built-up stuctures subjected to high frequency vibrational
excitation. The first method is sometimes called the vibrational conductivity method and the
second one is rather known as the radiosity method in the field of acoustics, or the radiative
energy transfer method. Both are based on quite similar physical assumptions i.e. uncorre-
lated sources, mean response and high frequency excitation. Both are based on analogies with
some equations encountered in the field of heat transfer. However these models do not lead to
similar results. This paper compares the two methods. Some numerical simulations on a pair
of plates joined along one edge are provided to illustrate the discussion.

1 Introduction

For many years, there have been attempts to generalize the Statistical Energy Analysis (SEA)
in such a way that the repartition of energy inside sub-systems can be predicted. Among these
attempts, the so-called power flow finite element analysis [1], energy finite element method [2]
or vibrational conductivity approach [3] has been studied by several laboratories. This is a direct
generalization of SEA for non diffuse fields. The flow of energy is assumed to be proportional to the
difference of energy levels, as in SEA where the exchanged power is proportional to the difference
of modal energies. But the relationship now is local, leading to an analogy with Fourier’s law in
heat conduction. The governing equation for energy density is thus quite similar to the conduction
equation in heat transfer with a convective term. This analogy has been developed to allow the use
of thermal software in order to solve some problems in structural vibrations [1, 4]. This method has
been successfully applied to bars, beams [2, 5], membranes [6], plates [7, 8] and built-up structures
[9].

In the field of acoustics, the so-called radiosity method [10, 11, 12, 13, 14] has been developed
to allow the prediction of time reverberation in complex rooms beyond the validity of Sabine’s
formula. This method seems to stem from the field of radiative heat transfer and, more precisely,
is analogous to the so-called standard procedure or view factor method. However, the aims of the
radiosity method and the standard procedure are quite different, the prediction of reverberation
time for the former and the prediction of the temperature of walls for the latter. More recently,
these methods have been applied in structural acoustics [15, 16, 17, 18]. The resulting method is
able to predict the decrease of energy, the time reverberation, but also the repartition of energy in
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steady state conditions. Diffraction effects have also been included especially to take into account
the radiation of sound by structures [19].

It is clear that the two methods, that is to say, the vibrational conductivity method on the one
hand and the radiative energy transfer method on the other hand, apply for the calculation of the
repartition of energy in built-up structures. Both methods are also based on analogies with some
equations in thermics, conduction for the former and radiative heat transfer for the latter.

This paper aims to compare the results of these methods. The discussion is focused on a typical
example, a pair of joined plates excited by out-of-plane motions. The paper is organized as follows.
Section 2 introduces the basic concepts of the vibrational conductivity and section 3 introduces
the radiative energy transfer. Some comments are given in Section 4. For the sake of simplicity,
both methods are restricted to steady state vibration of a scalar wave field. In Section 5 , the
solutions of the governing equations are presented for the joined plates and, finally, in Section 6,
some numerical simulations are compared and discussed.

2 Vibrational conductivity

The vibrational conductivity is first based on the local energy balance in steady state condition,

divI+ ηωW = ρ, (1)

where I is the structural intensity vector, η is the damping loss factor, ω is the circular frequency,
W is the energy density, ηωW is the power density being dissipated and ρ is the power density
being injected. By integrating Eq. (1) overall the system Ω leads to

Pinj = ηωWΩ, (2)

where Pinj =
∫
Ω ρdΩ is the total injected power and WΩ =

∫
Ω WdΩ is the total vibrational energy.

The most fundamental assumption of the vibrational conductivity is that the intensity can be
related to the energy density with the relationship

I = − c2

ηω
gradW, (3)

where c is the group speed. This equation is well verified for a plane wave travelling in a damped
medium and also for a superposition of uncorrelated plane waves [6, 7]. By introducing Eq. (3)
into Eq. (1), it yields

− c2

ηω
∆W + ηωW = ρ. (4)

This is a second order partial differential equation which is analogous to the conduction equation in
heat transfer with a convective term. This equation can be solved with the finite element method
although it is also possible to re-use the numerous thermic softwares.

Several types of boundary conditions can be applied. The simplest one is obtained by consid-
ering that the net outgoing power density P = I.n = −c2/ηω×∂W/∂n where n is the unit normal
to the boundary, is zero on the boundary i.e the boundary is conservative,

P = 0. (5)
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At the common edge of two structures such as bars, beams, membranes or plates, the coupling
conditions usually encountered in the literature involve the averaged transmission and reflection

efficiencies τ̄ij =
∫ π/2
0 τij(θ) cos θdθ where τij(θ) is defined as the ratio of the power transmitted

towards sub-system j over the power coming from sub-system i at incidence θ. For a non-dissipating
interface,

∑
j τ̄ij = 1. If the right-travelling power in the sub-structure i is denoted by P+

i with

i = 1, 2 and the left-travelling power is denoted by P−
i , the coupling conditions are

P−
1 = τ̄11P

+
1 + τ̄21P

−
2 , (6)

P+
2 = τ̄12P

+
1 + τ̄22P

−
2 , (7)

the sub-structure 1 being on the left side. Eqs. (6) and (7) have been introduced in Ref. [5] for
coupled beams where the wave decomposition (left- and right-travelling waves) is straightforward.
The same conditions are used for coupled plates in Ref. [8] where Eq. (4) is solved using a wave
decomposition which allows to clearly separate the left- and right-travelling powers. A slightly
different approach is adopted in Ref. [9]. The total energy is the sum of left- and right-travelling
energies, Wi = W+

i + W−
i , and similarly, Pi = P+

i − P−
i . Defining the mean speed of incidence

of energy vi as the ratio of power over energy, P+
i = viW

+
i and P−

i = viW
−
i , the left- and right-

travelling powers are related to total quantities with, 2P+
i = viWi + Pi and 2P−

i = viWi − Pi. By
subtituting these relationships into Eqs. (6) and (7), it yields

P1 =
π

2
(µ1v1W1 − µ2v2W2) , (8)

P2 =
π

2
(µ1v1W1 − µ2v2W2) . (9)

where µ1 = τ̄12/πτ̄11 and µ2 = τ̄21/πτ̄22. Note that in general µ1 #= µ2. In Eqs. (8), (9) and all
subsequent ones, powers are positive if energy flows from left to right and thus, Pi = −c2i /ηω ×
∂Wi/∂n where n is the unit normal to the interface oriented from sub-structure 1 to sub-structure
2. Equality of net powers P1 and P2 is clear from Eqs. (8) and (9). Eqs. (6) and (7) and Eqs. (8)
and (9) are equivalent provided that a correct expression for the mean speed of incidence of
energy is used. Assuming that the field is diffuse in the vicinity of the interface, all incidences are
equiprobable. Then, the mean value for the velocity normal to the interface of plane waves is

v = c
2

π

∫ π/2

0
cos θdθ =

2

π
c. (10)

Furthermore, the assumption of light coupling τ̄12, τ̄21 << 1, is usually done, although it seems to
be not necessary, leading to µ1 = τ̄12/π and µ2 = τ̄21/π. Thus, the coupling conditions for the
interface are

P1 =
1

π
(τ̄12c1W1 − τ̄21c2W2) , (11)

P2 =
1

π
(τ̄12c1W1 − τ̄21c2W2) . (12)

Let compare Eqs. (11) and (12) with the classical SEA equation,

P12 = ω (η12WΩ1 − η21WΩ2) , (13)

where P12 is the exchanged power from sub-system 1 to sub-system 2 andWΩ is the total vibrational
energy of system Ω. For a diffuse field WΩi = WiSi where Si is the area of sub-system i and
P12 = P1b where b is the length of the common edge. It is then apparent that Eqs. (11) and (12)
leads to the coupling loss factors,

ηij =
bci
πωSi

τ̄ij , (14)
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which is consistent with the classical wave approach of SEA [20, 21]. The coupling conditions (11)
and (12) were first derived in Ref. [3] where the link with SEA is also remarked.

3 Radiative energy transfer

In the radiative energy transfer, the energy density at any point r in the domain Ω is given by
superimposing the contributions of actual sources of power density ρ and fictitious sources of power
density σ/π located on the boundary Γ which reflects the energy,

W (r) =

∫

Ω
ρ(s)

e−mR

2πcR
dΩs +

∫

Γ
σ(q) cos θ

e−mR′

2πcR′ dΓq, (15)

where R = |r−s|, R′ = |r−q|, θ is the emission angle at point q i.e. the angle between the normal
n and the direction r − q. e−mR/2πcR is the contribution of a unit source at a distance R for
two-dimensional systems such as plates, with m being the absorption factor. A similar expression
for the intensity is

I(r) =

∫

Ω
ρ(s)

e−mR

2πR
udΩs +

∫

Γ
σ(q) cos θ

e−mR′

2πR′ u
′dΓq, (16)

where u = (r− s)/R and u′ = (r−q)/R′. This equation is valid for any r lying inside the domain
Ω. A similar equation is obtained for any point p belonging to the boundary Γ by taking the limit
r → p ∈ Γ. It results in [22],

I(p) =

∫

Ω
ρ(s)

e−mR

2πR
udΩs +

∫

Γ
σ(q) cos θ

e−mR′

2πR′ u
′dΓq − σ(p)

π
n, (17)

where n is the outward unit normal to the boundary at point p.

The function G(R) = e−mR/2πcR appearing in Eqs. (15)-(17) may be justified as follows. This
is the energy field which results from a unique driving point with unit power in an unbounded
domain Ω. This can be checked by substituting ρ = δ in Eq. (15) and by cancelling the second
integral. In another hand, it is shown in Appendix A that this function arises from the integral
form solution of Love plate equation when assessing the energy density under the assumption that
all waves are uncorrelated. Monopoles, dipoles and other multipoles radiate energy following the
same e−mR/2πcR law but with different directivities. A further argument in favour of this law is
that the energy field G(R) jointly with the intensity field H(R) = cG(R), verify the power balance
[16],

divH+mcG = δ. (18)

Any other choice for G and H would violate the power balance.

In the second integrals of Eqs. (15)-(17), a cosine law is employed for the directivity of reflective
sources σ(p). This is Lambert’s law. In Appendix A, it is shown that the boundary reflects energy
with a directivity which is not the same for every points, that is σ(p, θ) depends on the position p
and also on the emanating angle θ. A statistical law can be adopted if rays, after several reflections,
forgot their initial direction. This property, called ”mixing” in billiards theory, arises for systems
with complex geometries. Then it is well-known [23] that the only permissible memoryless law for
reflectivity, that is a law identical everywhere and which does not depend on incident direction, is
the cosine Lambert’s law.
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These fields W and I verify the local power balance in steady state condition,

divI+mcW = ρ, (19)

which is, indeed, similar to Eq. (1) provided that m = ηω/c. The global power balance is

Pinj = mcWΩ, (20)

with same notations as in Eq. (2).

The power of actual sources is assumed to be known. But the power reflected by the boundary
is an unknown. The equation on σ is derived by applying the condition I.n = 0 at any point p of
the boundary,

1

π
σ(p) =

∫

Ω
ρ(s)

e−mR

2πR
cosϕdΩs +

∫

Γ
σ(q) cos θ

e−mR′

2πR′ cosϕdΓq, (21)

where ϕ is the incidence angle at point p. The left hand-side is the reflected power whereas the
right hand-side is the incident power, the first integral being the power supplied by actual sources
and the second integral being the power supplied by other fictitious sources. This is a Fredholm
integral equation of second kind valid for non absorbing boundaries. More elaborated equations
can be derived for absorbing boundaries [10] and for diffusely or specularly reflecting boundary
[22].

Finally, the coupling conditions on the unknowns σi at interfaces of two sub-systems i = 1, 2
are [16, 17]

1

π
σi(p) =

∑

j

∫

Ωj

τji(ϕ)ρj(s)
e−mjR

2πR
cosϕdΩs +

∫

Γj

τji(ϕ)σj(q) cos θ
e−mjR

′

2πR′ cosϕdΓq, (22)

where the sum in the right hand-side runs over j = 1, 2. Eq. (22) involves the transmission
efficiencies τij(ϕ) at incidence ϕ and not the mean efficiencies τ̄ij .

4 Comments

The fundamental solution of Eq. (4) is g(R) = ηω/2πc2 × K0(mR) where K0 is the modified
Bessel function of second kind and order zero and m = ηω/c. The differential equation (4) is then
equivalent to the integral equation,

W (r) =

∫

Ω
ρ(s)g(R)dΩs +

c2

ηω

∫

Γ

∂W

∂n
(q)g(R′)−W (q)

∂g

∂n
(R′)dΓq, (23)

which reads,

W (r) =
ηω

2πc2
×
(∫

Ω
ρ(s)K0(mR)dΩs +

∫

Γ
cW (q) cos θK1(mR′)− P (q)K0(mR′)dΓq

)
, (24)

where P is the net outgoing power. This equation is to be compared with Eq. (15) for the radiative
energy transfer. However, it appears several differences. First of all, an asymptotic development
of g in far-field is g(R) = (m/8πc2)1/2 × e−mR/

√
R showing that the decrease is like 1/

√
R, unlike

5



Published in Journal of Sound and Vibration 283 (2005) 135-151

1/R for radiative transfer. Furthermore, in near-field g(R) = −m/2πc × logmR, unlike 1/R
for radiative transfer. Thus, G > g when mR << 1 and G < g when mR >> 1. Secondly,
Eq. (24) involves two layers whereas Eq. (15) just has a single layer. However, for large arguments
K0(z) = K1(z) = e−z

√
π/2z and then for r being far from the boundary mR′ >> 1 it yields,

W (r) =

∫

Ω
ρ(s)

√
m

8π

e−mR

c
√
R

dΩs +

∫

Γ
[cW (q) cos θ − P (q)]

√
m

8π

e−mR′

c
√
R′

dΓq. (25)

Thus, both methods leads to the conclusion that a single layer is enough to describe the energy in
far-field. In addition, when P = 0 (on the edges of plates), the magnitude of the boundary source
in Eq. (25) is cW (q) cos θ showing that, in accordance with the radiative transfer approach, the
directivity follows Lambert’s law. The only disagreement between both methods is then the choice
of the direct field, g or G.

It now arises the question of whether the energy field given in Eq. (15) can be solution of a
differential equation. As superposition applies to energy field (under the assumption that inter-
ferences have been neglected), the differential operator must be linear. Furthermore, considering
plane plates, the differential operator must respect homogeneity and isotropy of space. Homogene-
ity implies that coefficients of the operator are constant and isotropy leads to further conditions. It
is straighforward by a direct calculation that, up to the order 2, the only differential operators with
constant coefficients obeying isotropy are identity, Laplacian and, indeed, any linear combinations
of the two. It is now apparent that G cannot be the fundamental solution of these operators. In
Appendix C, it is shown that this conclusion is valid for any order in dimension 2 and, thus the
field given in Eq. (15) cannot be obtained by solving a differential problem.

5 Solutions for a pair of plates

Let consider a pair of rectangular plates of length a and width b and joined along a common edge
as shown in Fig. 1. The plates are in the same plane with simply supported edges excepted the
common edge which is free. The plates are made of the same material with different thicknesses.
The plates are excited by some transverse forces located at xs, ys, s = 1, 2, ... in a local frame
whose origin is the lower left corner of the plate (Fig. 1). The density of power being injected of
Eqs. (4) and (15) is thus, ρ(x, y) =

∑
s Psδ(x− xs)δ(y− ys) where Ps is the power injected by the

sth force.

The solution for the vibrational conductivity equation (4) is expanded as a Fourier series,

W (x, y) =
∞∑

n=0

Wn(x) cos(
nπy

b
), (26)

where the sine functions has been discarded since the condition ∂W/∂y = 0 applies at y = 0 and
y = b. Substitution of Eq. (26) into Eq. (4) yields

d2Wn

dx2
−
[
(
nπ

b
)2 + (

ηω

c
)2
]
Wn = −2− δn

b

ηω

c2

∑

s

Ps cos(
nπys
b

)δ(x− xs), (27)

where δn = 1 if n = 0 and δn = 0 otherwise. The general solution for this differential equation is,

Wn(x) = Ane
−αnx +Bne

−αn(a−x) +
∑

s

Cnse
−αn|xs−x|, (28)
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Figure 1: Two coplanar plates with different thicknesses. The edges are simply supported excepted
the common edge which is free. The first plate is excited by a transverse force and four receiver
points are located on both plates.

where

αn =
[
(
nπ

b
)2 + (

ηω

c
)2
]1/2

, (29)

and

Cns = Ps
2− δn
2bαn

× ηω

c2
cos(

nπys
b

). (30)

The right hand-side of Eq. (28) may be splitted into two terms, one term W+ is attached to the
right-travelling wave and the other one W− to the left-travelling wave,

W+
n (x) = Ane

−αnx +
∑

s

CnsY(x− xs)e
−αn|xs−x|, (31)

W−
n (x) = Bne

−αn(a−x) +
∑

s

CnsY(xs − x)e−αn|xs−x|, (32)

where Y is the Heaviside function. The powers flowing in x-direction are derived by applying
Eq. (3),

P+
n (x) =

αnc2

ηω

[
Ane

−αnx +
∑

s

CnsY(x − xs)e
−αn|xs−x|

]
, (33)

P−
n (x) =

αnc2

ηω

[
Bne

−αn(a−x) +
∑

s

CnsY(xs − x)e−αn|xs−x|

]
. (34)

Inside each plate i = 1, 2, the total energy densities, left- and right-travelling energies and left-
and right-travelling powers are given by Eqs. (28)-(34). The speed of incidence of energy for the
nth component is

vn =
αnc2

ηω
. (35)

In Ref. [8], the coupling conditions (6) and (7) are applied with the left- and right-travelling
powers given in Eqs. (33) and (34). Thus, the actual speed of energy given in Eq. (35) is employed
for the nth component, instead of the mean speed appearing in Eqs. (11) and (12). In a similar
manner, it is possible to substitute in Eqs. (8) and (9) the efficiencies τij at the incidence of the nth

component instead of the mean efficiencies τ̄ij valid for diffuse incidence. However, this approach
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requires the knowledge of each component and then, deeply depends on the cosine development (26)
adopted for the solution of Eq. (4). It seems to be limited to the particular case of a line of plates.
The approach of Refs. [3, 9] is adopted in this paper, with the mean speed of incidence given in
Eq. (10) and the efficiencies τ̄ij averaged over all incidences.

The constants Ai,n and Bi,n attached to the plate i are determined by applying Eqs. (5),
(11) and (12). The boundary conditions (5) are P1,n(0) = 0 and P2,n(a) = 0 and the coupling
conditions (11) and (12) at the interface are, P1,n(a) = P2,n(0) = τ̄12c1/πW1,n(a)−τ̄21c2/πW2,n(0).
All these conditions are summarized in the system




1 −e−α1,na 0 0
(v1,n − µ1c1)e−α1,na −v1,n − µ1c1 µ2c2 µ2c2e−α2,na

−µ1c1e−α1,na −µ1c1 v2,n + µ2c2 (−v2,n + µ2c2)e−α2,na

0 0 −e−α2,na 1









A1,n

B1,n

A2,n

B2,n



 =





∑
s C1,nse−α1,nxs

∑
s(−v1,n + µ1c1)C1,nse−α1,n(a−xs) +

∑
s −µ2c2C2,nse−α2,nxs

∑
s µ1c1C1,nse−α1,n(a−xs) +

∑
s(v2,n − µ2c2)C2,nse−α2,nxs

∑
s C2,nse−α2,n(a−xs)



 . (36)

The above system fully determines the four constants for any n, the energy is then calculated at
any point x, y by applying Eq. (26).

Eqs. (21) and (22) are solved with the collocation method. The boundary is discretized into
N elements on which the unknown σ is assumed to be constant. The constant value is denoted
σi,k where the first subscript is related to the system i and the second is related to the element k.
Eq. (21) is re-written as

1

π
σi,k =

∑

s

Ps
e−mR

2πR
cosϕ+

∑

l

σi,l

∫

Γl

cos θ
e−mR′

2πR′ cosϕdΓ, (37)

where R is the distance between the sth force and the collocation point pk chosen as the centre of
the segment Γk, R = |q − pk|, ϕ is the incidence angle at pk and θ the emission angle at q. In a
similar manner, Eq. (22) at the interface of two sub-systems, becomes

1

π
σi,k =

∑

j,s

Rji(ϕ)Ps
e−mjR

2πR
cosϕ+

∑

j,l

σj,l

∫

Γl

Rji(ϕ) cos θ
e−mjR

′

2πR′ cosϕdΓ. (38)

Finally, the vibrational energy at any point r inside sub-system i is calculated with the dis-
cretized form of Eq. (15),

Wi(r) =
∑

s

Ps
e−mR

2πcR
+
∑

k

σi,k

∫

Γk

cos θ
e−mR′

2πcR′ dΓ. (39)

The integrals of Eqs. (37)-(39) are evaluated with a Gauss quadrature.

6 Numerical simulation

The numerical simulation is performed with the following characteristics. Both plates are made of
steel, volumic mass ρ = 7800 kg/m3, Young’s modulus E = 2.1 1011 N/m2, Poisson’s coefficient
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125 Hz 1 kHz 4 kHz 16 kHz
λ/h 150 53 26 13
a/λ 4 10 21 43
M 2.4 19 78 313

Table 1: Ratios λ/h, a/λ and modal overlap M (η = 5%) versus frequency for plate 1.

125 Hz 1 kHz 4 kHz 16 kHz
λ/h 89 31 16 8
a/λ 2 6 13 25
M 0.8 6 25 101

Table 2: Ratios λ/h, a/λ and modal overlap M (η = 5%) versus frequency for plate 2.

ν = 0.3, with same dimensions, length and width a = b = 2 m but with different thicknesses,
h1 = 3.25 mm for the first plate and h2 = 10 mm for the second plate.

Plate 1 is excited by a transverse force of strenght F = 1 N located at x0 = 0.6, y0 = 0.5. The
resulting injected power is given by the asymptotic formula P = |F 2|/16

√
Dρh = 4.83 10−4 W,

where D = Eh3/12(1 − ν2) is the bending stiffness of the excited plate. Although this example
has been chosen to highlight the difference between both energy methods, these plates may be
encountered in ships or other large vehicles for which it is sometimes necessary to increase the
damping loss factor by adding a damping material.

The wavelength is about 10 cm at 4 kHz for the thin plate and 16 cm for the thick plate. This
is large enough compared with the thickness to apply Love plate equation. It is shown in Tables 1
and 2 that the ratio wavelength over thickness is larger than 8 for all the octave bands from 125 Hz
up to 16 kHz. Compared with the size of plates, wavelength of flexural wave is short even for
the thick plate at the lowest frequency. The values of the ratio length over wavelength are also
summarized in Tables 1 and 2. It is then apparent that both plates vibrate at high frequencies
over all the octave bands.

The reference calculation given in Appendix C is realized with 200 sine functions in Eq. (53)
which is enough to predict the 200× 200 = 40000 first modes of a square plate. The asymptotic
modal densities of the plates are respectively 0.39 mode/Hz for the first plate and 0.13 mode/Hz for
the second plate. The total number of modes in the bandwidth 88 Hz - 22600 Hz (8 octave bands) is
approximately 11700. The solution for the vibrational conductivity is given by Eq. (26). The series
is assessed with 200 cosine functions. Finally, the radiative energy transfer equations (37)-(39) are
discretized with 1600 boundary elements which is very large to get an accurate response.

In Fig. 2 is shown the energy density at two points on each plate from 88 Hz to 22600 Hz
for a damping loss factor η = 5%. The positions are x = 0.5, y = 0.5 (points 1 and 3) and
x = 1.5, y = 1.5 (points 2 and 4) in the local frames of Fig. 1. Results from vibrational conductivity
and from radiative energy transfer have been computed at the frequencies 125 Hz, 250 Hz, 500 Hz,
1 kHz, 2 kHz, 4 kHz, 8 kHz and 16 kHz. Point 1 is located in the vicinity of the driving point and
thus, the vibrational level is dominated by the direct field. However, it has ever been remarked in
the literature [3, 24] that the energy of a cylindrical wave is poorly represented by a superposition of
plane wave energies. This explains that the energy of direct field is under-estimated by vibrational
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Figure 2: Vibrational energy versus frequency at (a), point 1, (b), point 2, (c), point 3 and (d),
point 4 for η = 5%: (—), reference calculation; (- -), vibrational conductivity; (-.-), radiative
energy transfer.

conductivity. Furthermore, both energy methods verify the global power balance (Eqs. (2) and
(20)). For a same amount of injected power, the total vibrational energy predicted by vibrational
conductivity and radiative energy transfer, is the same. An under-estimation of energy in the
direct field then leads to an over-estimation of energy in far-field (points 2, 3 and 4).

In Figs. 3-5 is shown the vibrational energy density contained in the octave band centred in
4000 Hz along the x-axis for three values of damping loss factor (η = 10%, η = 5% and η = 1%).
In case (a) the line y = 0.5 m passes near the excitation point and in case (b) the line y = 0.98 m
is almost centred in the pair of plates. The direct field is particularly clear in the case η = 10%
(Fig. 3). The decrease of the energy density like e−mr/r where r is the source-receiver distance is
well predicted by the radiative energy transfer whereas vibrational conductivity leads to the law
e−mr/

√
r. A lack of 1.5 dB per doubling distance is attributable to the last law. In the second

plate, the energy seems to be correctly predicted by both methods. However, a careful observation
of the results reveals that if the mean energy is the same for both methods, the repartition of
energy is not. For instance, the case of light damping (Fig. 5) shows that vibrational conductivity
does not predict any variation in the energy field whereas radiative energy transfer predicts 2 dB
difference from left to right. When the damping loss factor goes to zero, (Figs. 4 and 5) vibrational
conductivity and radiative energy transfer converge to SEA. It is then apparent that vibrational
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Figure 3: Wideband vibrational energy (octave 4000 Hz) versus position for η = 10%. Case (a),
y = 0.5 m and case (b), y = 0.98 m. (—), reference calculation; (...), SEA; (- -), vibrational
conductivity; (-.-), radiative energy transfer.

conductivity applies for slightly damped structures.

7 Conclusion

In this paper, two methods intended for the prediction of wideband vibrational levels have been
compared. Both methods were developped to extend the validity domain of SEA, and, in particular,
to predict the repartition of energy inside sub-structures. Indeed, this gain of information requires
more computation than SEA, but yet significantly less than classical FEM which can predict
pure tone vibrational levels. These methods are thus midway between classical FEM and SEA.
The vibrational conductivity is based on an analogy with conduction in heat transfer whereas
the radiative energy transfer approach is based on an analogy with radiative heat transfer. The
former assumes that the vibrational field is a superposition of plane waves, that is the field is
diffuse or slightly non diffuse. The latter assumes that the energy propagates as rays and then
applies for wider class of fields under the condition that the wavelength is short. Radiative energy
transfer leads to some integral equations solved with conventional numerical schemes of BEM.
Vibrational conductivity leads to a differential equation which can be solved with FEM, more widely
spread than BEM. This is probably an important argument to explain the increasing popularity
of vibrational conductivity.
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Figure 4: Wideband vibrational energy (octave 4000 Hz) versus position for η = 5%. Case (a),
y = 0.5 m and case (b), y = 0.98 m. (—), reference calculation; (...), SEA; (- -), vibrational
conductivity; (-.-), radiative energy transfer.
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Figure 5: Wideband vibrational energy (octave 4000 Hz) versus position for η = 1%. Case (a),
y = 0.5 m and case (b), y = 0.98 m. (—), reference calculation; (...), SEA; (- -), vibrational
conductivity; (-.-), radiative energy transfer.
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Appendix A

In this Appendix, it is found that the energy field given in Eq. (15) results from the boundary
integral solution of Love plate equation.

Consider the solution of Eq. (52),

v(r) =
∑

k

Fkg(sk, r) +

∫

Γ

∂ ' g

∂n
v −'g

∂v

∂n
+
∂g

∂n
' v − g

∂' v

∂n
dΓ, (40)

where in the integral g (and its derivatives) is taken as g(p, r) and v is v(p). n is the outward unit
normal to the boundary at point p and g is the standard Green function for infinite plates, i.e.

g(p, r) = i[H(2)
0 (kR) − H(2)

0 (ikR)]/8k2 (convention eiωt) where R = |p − r| and k = k0(1 − iη/4)

is the complex wavenumber of the plate and H(2)
0 is the Hankel function of second kind and order

zero. The energy field is obtained by squaring the modulus of the response.

W (r) =
1

2
ρω2|v(r)|2, (41)

where ρ is the mass per unit area. Now, all forces Fk and responses v(p) (and its derivatives) are
assumed to be δ-correlated random variables. The correlations are,

< Fk F ∗
l >=< Fk F

∗
k > δkl, (42)

< Fk Liv
∗(p) >= 0, (43)

< Liv(p) Ljv
∗(p′) >=< Liv(p) Ljv

∗(p) > δ(p− p′), (44)

where Li = 1, ∂./∂n, '., ∂ ' ./∂n for i = 0, ... 4. This assumption ensures that all interferences
have been neglected. So, the expected value of energy is,

< W >=
1

2
ρω2




∑

k

< Fk F ∗
k > |g|2 +

∑

i,j

∫

Γ
(−1)i+jLig Ljg

∗ < L4−iv L4−jv
∗ > dΓ



 . (45)

The sixteen functions Lig Ljg∗ can be evaluated from the expression for the Green’s function. In
far-field, the asymptotic expansions are,

g =
i

8k2
eiπ/4

√
2

πkR
e−ikR, (46)

∂g

∂n
=

1

8k
cos θeiπ/4

√
2

πkR
e−ikR, (47)

'g = − i

8
eiπ/4

√
2

πkR
e−ikR, (48)

∂ ' g

∂n
= −k

8
cos θeiπ/4

√
2

πkR
e−ikR, (49)

where θ is the emanating angle at p. It is now apparent that,

Lig Ljg
∗ ∝ e−mR

2πR
, (50)
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where m = ηk0/2 for any i, j. Finally,

< W >=
∑

k

Pk
e−mR

2πcR
+

∫

Γ
σ(p, θ)

e−mR

2πcR
dΓ, (51)

where Pk = ρω3 < Fk F ∗
k > /32k6 and σ is an unknown function (since v is a priori not known on

the boundary Γ) depending on the position p (through v and its derivatives) and the emanating
angle θ.

It is remarkable that in Eq. (51) all terms collapse in a single scalar function. It means that,
under the far-field assumption, monopoles, dipoles and other multipoles up to the order 4 radiate
energy following a e−mR/2πR law. The only difference between these sources is the directivity
function which,indeed, is quite different.

Appendix B

It is proved here that the energy field given in Eq. (15) cannot verify a linear differential equation.
Homegeneity implies that the differential operator has constant coefficients and isotropy implies
that it is elliptic. Consider the case m = 0 and Ω = B(0, 1) the unit open ball centred in the origin
in dimension 2. If it exists an elliptic differential operator P of order l such that Pu = δ then
u ∈ H−2+l(Ω) where Hs(Ω) is the Sobolev’s space. The case l ≤ 2 can be discarded by a direct
calculation since isotropy implies that P = aId+b' . and 1/r cannot be the fundamental solution.
Then we can assume l ≥ 3 and thus, u ∈ H−2+l ⊂ H1 but 1/r #∈ H1. This proves that 1/r cannot
be the fundamental solution of any elliptic operator of any order in dimension 2.

Appendix C

The reference calculation is considered in this Appendix. The Love equation for plates is

∆2v − k4v =
1

D

∑

s

Fsδ(x − xs)δ(y − ys), (52)

where v is the transverse deflection, D is the bending stiffness and k the wavenumber. The
deflection v is developped as a Fourier series,

v(x, y) =
∞∑

n=1

vn(x) sin(
nπy

b
), (53)

where the cosine terms are discarded since the simply supported condition imposes v = ∂2v/∂y2+
ν∂2v/∂x2 = 0 at y = 0 and y = b. Subtitution of Eq. (53) into Eq. (52) leads to,

d4vn
dx4

− 2
(nπ

b

)2 d2vn
dx2

−
[
k4 − (

nπ

b
)4
]
vn =

2

Db

∑

s

Fs sin(
nπys
b

)δ(x− xs), (54)

with the solution,

vn(x) = Ane−iβnx +Bne−iβn(a−x) + Cne−iγnx +Dne−iγn(a−x)+∑
s Ense−iβn|xs−x| + Fnse−iγn|xs−x|,

(55)
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where βn, −βn, γn, −γn are the four roots of the characteristic equation,

X4 + 2
(nπ

b

)2
X2 −

[
k4 − (

nπ

b
)4
]
= 0. (56)

The constants Ens and Fns are determined by applying the continuity of d2vn/dx2 i.e. Ensβn +
Fnsγn = 0 and the condition iEnsβ3

n + iFnsγ3n = 2Fs/bD × sin(nπys/b). The constants Ai,n, Bi,n,
Ci,n and Di,n of plates i = 1, 2 are finally determined by applying the boundary conditions for
simply supported edges,

v1,n(0) = 0, (57)

∂2v1,n
∂x2

(0) + ν
∂2v1,n
∂y2

(0) = 0, (58)

v2,n(a) = 0, (59)

∂2v2,n
∂x2

(a) + ν
∂2v2,n
∂y2

(a) = 0, (60)

and the continuity conditions at the interface,

v1,n(a) = v2,n(0), (61)

∂v1,n
∂x

(a) =
∂v2,n
∂x

(0), (62)

∂2v1,n
∂x2

(a) + ν
∂2v1,n
∂y2

(a) =
∂2v2,n
∂x2

(0) + ν
∂2v2,n
∂y2

(0), (63)

∂3v1,n
∂x3

(a) + (2− ν)
∂3v1,n
∂x∂y2

(a) =
∂3v2,n
∂x3

(0) + (2− ν)
∂3v2,n
∂x∂y2

(0), (64)

leading to a system of eight linear equations.

Finally, the energy density density at any point is given by,

W (x, y) =
ρω2

4
|v|2 + D

4

[
|∂

2v

∂x2
|2 + |∂

2v

∂y2
|2 + 2νRe

(
∂2v

∂x2

∂2v∗

∂y2

)
+ 2(1− ν)| ∂

2v

∂x∂y
|2
]
, (65)

where Re designates the real value, * the complex conjugate and ρ the mass per unit area.
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