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Abstract

The flexural energy distribution in two right-angled point-excited thin plates at high fre-
quencies is investigated by means of an integral energy flow approach. Time and frequency-
averaged energy fields are described by the superposition of uncorrelated cylindrical waves
stemming from both boundaries and direct sources. Specular and diffuse laws are considered
for the reflection and transmission of rays, giving rise to two kinds of energy equations. The
diffuse law leads to a Fredholm integral equation while the specular law is shown to allow an
image source solution when the plates have identical propagation properties. The algorithm
for computing the image position, magnitude and directivities is described. Then, some com-
parisons between the results from the two energy formulations and also from the Statistical
Energy Analysis and the numerical solving of the equations of motion are performed with a
couple of damped plates at high frequency. The non diffuse pattern of the averaged flexural
energy fields is well described by the energy flow approaches.

1 Introduction

One is here interested in the prediction of vibratory levels of systems of damped thin plates in
the high frequency range. Due to system uncertainties and the high computation cost, classical
finite element methods are not suitable for high frequencies. By mean of statistical hypothesis,
energy approaches provide an efficient tool for the evaluation of averaged energy levels. However,
the most commonly used, the Statistical Energy Analysis (SEA) [1] assumes that energy fields are
diffuse and does not give the energy distribution inside systems, but only its averaged value. It
consequently leads to poor results when systems are highly damped and, therefore, when energy
fields are non-diffuse.

Several investigations have been performed to contravene this feature. The conductivity ap-
proach initiated by Nefske et al. [2] and developed by Bouthier et al. [3] is based on a plane waves
decomposition and the diffuse directivity of energy is assumed for both incidence and emission
on boundaries. It is shown to be reliable for lightly damped systems only where energy fields
are slightly non-diffuse [4, 5]. Kuttruff [6], Miles [7] and Le Bot [8] presented an integral energy
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Figure 1: Two right-angled plates. The plate 1 is excited by a point force.

approach using spherical waves in acoustics and cylindrical waves for plates, and assuming the
diffuse law for the reflection of rays. It proves to accurately predict the non diffuse energy fields of
acoustical enclosures [9] and highly damped plates [10, 11]. A similar approach using specular laws
for the emission was also developed by Franzoni et al. [12] and Le Bot [13]. Cotoni et al. applied
this approach to radiation problems and obtained an accurate description of the non diffuse exte-
rior acoustic field [10, 14]. Recently, Chae et al. [15] applied a ray tracing method using specular
reflection law and ray tube concepts. They focused on the ability of the approach to account for
the filtering effect of junctions, that is all incidences are not similarly transmitted and reflected.

Very little work has been published on the differences and similarities of energy approaches
using diffuse and specular reflections of energetic rays [16]. This paper is concerned with such a
comparison on a system of right-angled plates with particular stress on the influence of specular and
diffuse directivities to describe the filtering effect of the junction. The propagation of the flexural
energy with cylindrical rays is first addressed. Then, both specular and diffuse directivities are
investigated to characterize the boundary energy conditions of each plate. It is shown how the
image source method may be applied to solve the specular energy equation for coupled plates.
Finally, some comparisons are performed with SEA results and reference results from the solving
of the equations of motion.

2 Description of flexural energy fields

The integral energy flow approach developed in references [8, 11, 13] is applied to the system of two
right-angled plates shown in Figure 1. A complete description of dynamics in plates in terms of rays
as presented in reference [11] requires taking into account both out-of-plane and in-plane motions.
But, for a transversely excited thin plate, the out-of-plane motion dominates the dynamics and,
therefore, for the sake of simplicity we shall consider that in-plane motion is negligible. This
section describes the flexural energy field in plates with a decomposition in cylindrical traveling
waves. The energy field for a single cylindrical wave is first derived. Then, the complete energy
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field is obtained by super-imposing these elementary fields. Two boundary conditions are derived
depending on the kind of reflection-transmission law adopted for rays at the interface between
plates.

2.1 Energy propagation

Consider a homogeneous plate, damped with the loss factor η, under harmonic excitation at pul-
sation ω. We seek to determine the time-averaged flexural energy of the direct field at any point
r, due to a point source of unit power being injected on point s. Since evanescent waves do not
carry any power and rapidly vanish at high frequencies, the approximate direct energy density G
and intensity vector H are estimated by considering only the traveling wave contribution, [8, 13]

G(s, r) =
1

c

e−mr

2π r
, H(s, r) =

e−mr

2π r
usr, (1)

where m = ηω/c is the attenuation coefficient and c is the group speed of flexural waves. r = |r−s|
is the distance between s and r and usr = (r− s)/r is the unit vector in the direction from s to r.

The direct field is reflected when impinging on the boundary Γ of the plate, giving rise to new
traveling waves. Thus, assuming that all traveling waves are uncorrelated, the complete energy
density W and intensity vector I are the sum of the contributions of the direct sources s with
magnitude pinj and the boundary sources p with magnitude σ,

W (r) =

∫

Ω
pinj(s)G(s, r)dΩs +

∫

Γ
σ(p, θp)G(p, r)dΓp, (2)

I(r) =

∫

Ω
pinj(s)H(s, r)dΩs +

∫

Γ
σ(p, θp)H(p, r)dΓp. (3)

where Ω is the domain of the plate, Γ the boundary and θp the emission angle at p towards r. The
first integral in each expression is the direct field, the second is the reflected field. Notice that the
boundary sources σ may have a non-uniform directivity. The magnitude pinj of direct sources is
the time-averaged density of power being injected. For the case of a single driving force at point
s0, it is written pinj(s) = Pinjδs0 with Pinj being the time-averaged injected power attached to the
direct field. It is derived from the infinite thin plate solution [17], for an applied force F with a
bending stiffness D, and a mass per unit surface m,

Pinj = F 2/16
√
Dm. (4)

Now, the density of source σ is to be evaluated, by expressing the appropriate energy boundary
conditions. At this stage, two assumptions may be made on the way energetic rays are reflected
and transmitted. Specular or diffuse laws lead to different forms of energy integral equations. In
the following, all energy quantities are now written with a subscript i, j = 1, 2 of the corresponding
plate.

2.2 Energy reflection and transmission

Any boundary is characterized in terms of energy balance by efficiencies that are the ratios of
reflected and transmitted powers over the incident one. They are usually derived according to
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Figure 2: Power balance at the point p of the interface between plates i and j.

the locality principle valid at high frequencies [18] which states that the dynamics of the coupling
only depends on the local properties of the system in the vicinity of the coupling. The underlying
assumption is that the wavelength is small enough so that the boundary appears locally straight
and homogeneous. It follows that diffraction effects are not considered in the present analysis. For
the case of two coupled plates of Figure 1, the junction is characterized by a reflection efficiency
Ri(φ) and a transmission efficiency Ti(φ) depending on the incidence angle φ. The subscript i
denotes the plate of incidence. Explicit values for Ri and Ti may be found in reference [19]. If the
other boundaries of the plates are perfectly reflective boundaries (like simply supported, free or
clamped edges) they are characterized by the uniform reflection efficiency Ri(φ) = 1.

The most general case of junction is now presented. Following notations of Figure 2, let ui

denote the emission direction with emission angle θi, u′
i and u′

j the incident directions from both
plates with incidences φi, φj , and ni the outside unit normal to the boundary of plate i.

The power balance at any point p of the junction is written

Pi,emit(ui)dθi = Ri(φi)Pi,inc(u
′
i)dφi + Tj(φj)Pj,inc(u

′
j)dφj , (5)

where Pi,inc(u′
i) denotes the incident power at p stemming from the direction u′

i and Pi,emit(ui)
the emitted power in direction ui. dθi is an infinitesimal angle of emitted directions about ui, dφi
the corresponding angles of incident directions from plate i and dφj the corresponding angles of
incident directions from plate j. These powers may be expressed in terms of the direct sources
pi,inj and the diffracted sources σi of equation (3).

Considering first the diffuse law for reflection and transmission [20], any ray impinging on
the boundary is assumed to be reflected and transmitted with the Lambert directivity i.e. with
a magnitude proportional to the cosine of the emission angle, whatever is the incident angle.
The magnitude of the boundary sources σi(p, θ) may be factorized in σi(p) cos θ. By integrating
equation (5) over all emission angles and related incident angles, a Fredholm equation of second
kind on the unknowns σi is obtained [8, 9, 11],

σi(p)

π
=

[∫

Ωi

Ri(φs)pi,inj(s)Hi(s,p)dΩs +

∫

Γi

Ri(φq)σi(q) cos θqHi(q,p)dΓq

]
.ni+

[∫

Ωj

Tj(φs)pj,inj(s)Hj(s,p)dΩs +

∫

Γj

Tj(φq)σj(q) cos θqHj(q,p)dΓq

]
.nj . (6)
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where θq is the emission angle at q towards p and φs (resp. φq) the incident angle at p from s (resp.
q). The terms in the first brackets are the reflected power from plate i, the second brackets the
transmitted power from plate j to plate i. Note that although the emitting directivity is postulated
following the Lambert law, incidence is not assumed to be diffuse and the directional efficiencies

Ri(φ) and Tj(φ) are used in equation (6) and not the mean-efficiency T =
∫ π/2
0 T (φ) cos(φ)dφ

usually preferred in SEA. Equation (6) may be solved with a collocation algorithm as detailed in
section 3. Substituting its solutions for σ1 and σ2 in equation (2) gives the energy field in each
plate.

Consider now that the specular law for reflection and transmission applies for rays. The power
balance (5) is applied direction by direction. The emission angle θi is now related to the incident
angle φj by the Snell law of refraction sin θi/c′i = sinφj/c′j where c′i is the phase speed in plate
i. Indeed φi = θi and we also introduce θj = φj . Incident angles φi, φj are no longer necessary
and notations θi, θj are now preferred. The points p′

i are defined as being the point lying in the
boundary Γi in such a manner that the point p is viewed from p′

i in direction u′
i. The emission

angle at p′
i is noted θ

′
i. From reference [13], the functional equation for the diffraction sources σi

located on each side of the interface at any point p is

σi(p, θi)

cos θi
= Ri(θi)

[
σi(p′

i, θ
′
i)

cos θ′i
e−mir

′
i +

∫

p′
ip

pi,inj(s)e
−misds

]

+
c′j
c′i
Tj(θj)

[
σj(p′

j , θ
′
j)

cos θ′j
e−mjr

′
j +

∫

p′
jp

pj,inj(s)e
−mjsds

]
, (7)

where r′i = |p′
i − p|, s = |s − p|. The first terms in each bracket is the contribution of other

boundary sources σi modified with the attenuation term e−mir
′
i , whereas the second term, an

integral over the path p′
ip is the contribution of actual sources pi,inj located inside the plate i. The

points p′
i may not exist in some particular situations like semi-infinite plates. In such a case the

corresponding terms in the previous equation must be canceled and the integral for actual sources
is extended to a semi-infinite line ∞p. The functional equation (7) may be solved by the image
source method when the plates have identical propagation properties, as will be shown in section
4.

2.3 Application limits

Integral energy approaches are based on the three assumptions that i) vibrating fields are composed
of rays, ii) these rays are uncorrelated, iii) couplings are local phenomena. The first and third
assumptions are those invoked by classical ray methods so that a similar validity range is expected
for the integral energy approaches: the wavelength must be small compared to the characteristic
dimensions of the systems. This condition is well suited as frequency increases meaning that the
approach is confined to middle and high frequencies. Another consequence is that near fields are
neglected leading to an incorrect description of energy in the neighborhood of discontinuities. The
second assumption is related to the uncertainty on the phase of rays at high frequency, which leads
to the use of energy variables as in SEA [1]. The validity in terms of frequency will consequently
be similar as that of SEA. However, no assumption has been made on the diffuse nature of the
vibrating fields so that the integral energy approaches allow to extend the SEA prediction to
systems with non diffuse fields.
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3 Collocation solution for the integral equation (6)

The integral equation (6) is solved for the couple of square plates of Figure 1 by using the collocation
method. A special software named CeReS has been developed to achieve this task for various
problems involving assembled plates of arbitrary shape.

The method for the resolution is as follows. Each edge of plates is divided into a limited number
of elements Lk, k = 1, 2... of equal size. The magnitude σi of the boundary sources is assumed
to be constant over each boundary element. The unknown magnitude attached to the boundary
element numbered k is noted σki . For each element k, equation (6), depending on the position of
the element at edge or interface, is applied at the middle pk of the element. This point pk is called
the collocation point. First, for an element k located at the edge of plate i,

σki = π

[
Pi,injHi(s0,pk) cosφs0 +

∑

l

σli

∫

Ll

Hi(q,pk) cos θq cosφqdΓq

]
, (8)

where φs0 is the incidence angle at the collocation point pk from the actual source s0, φq is the
incidence angle at pk from q and θq the emanating direction at q. Hi is the magnitude of the
intensity Hi. The first term inside the brackets is the direct contribution of the actual source, and
is to be considered for plate 1 only since plate 2 is not directly excited (P2,inj = 0). The second
sum runs over all boundary elements of the plate. Second, for an element located at the interface
between the two plates,

σki = π

[
Pi,injRi(φs0)Hi(s0,pk) cosφs0 +

∑

l

σli

∫

Ll

Ri(φq)Hi(q,pk) cos θq cosφqdΓq +

Pj,injTj(φs0)Hj(s0,pk) cosφs0 +
∑

l

σlj

∫

Ll

Tj(φq)Hj(q,pk) cos θq cosφqdΓq

]
. (9)

Thus, the set of equations (8,9) leads to a system of linear equations for the unknowns σki . The
coefficients involve some integrals evaluated by Gauss quadrature. Once the source magnitudes σki
are computed, the energy density inside plate i is evaluated from the discrete version of equation
(2),

Wi(r) = Pi,injGi(s0, r) +
∑

k

σki

∫

Lk

Gi(p, r) cos θpdΓp. (10)

In this expression, the sums of the right-hand side run over all sources acting on the plate where
r lies.

4 Image source solution for the functional equation (7)

The problem is now to solve the functional equation (7) for the couple of square plates of Figure 1.
Several methods are available, like the boundary element method proposed in [12], where the
directivity of each source is discretized with a Fourier series expansion, or the ray tracing approach
based on ray tubes developed in [15]. However, it will be shown that the current problem can be
solved with the image source technique due to the simple geometry. We proceed in two steps. The
first step is to solve it for the case of two semi-infinite plates separated by an infinite interface. A
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Figure 3: Notations for the specular law of transmission and reflection between two semi-infinite
plates.

single excitation point acts in plate 1. The second step is to apply the image source technique for
the couple of square plates.

4.1 Two semi-infinite plates

First, consider a steady-state source point s0(0, h) within plate 1 and a point p(ν, 0) lying on the
interface whose equation is y = 0 (see Figure 3). The actual source density is written pinj(s) =
Pinjδs0 . where Pinj is given in equation (4). Both plates are considered semi-infinite, and the
functional equation (7) for the interface reduces to

σ1(ν, θ1)

cos θ1
= R1(θ1)

∫

∞p
Pinjδs0(s)e

−m1sds, (11)

σ2(ν, θ2)

cos θ2
=

c′1
c′2
T1(θ1)

∫

∞p
Pinjδs0(s)e

−m1sds, (12)

The delta Dirac function may be expanded in polar coordinates (s, θ) centered at p,

δs0(s) =
δrν (s)δϕν (θ)

s
, (13)

where rν = |s0 − p| = [ν2 + h2]1/2 and ϕν is the incident angle at p from s0. It leads to the
solutions

σ1(ν, θ1)

cos θ1
= PinjR1(θ1)

e−m1rν

rν
δϕν (θ1), (14)

σ2(ν, θ2)

cos θ2
= Pinj

c′1
c′2
T1(θ1)

e−m1rν

rν
δϕν (θ1). (15)

In the second equality, the angles θ1 and θ2 are related each other with the Snell law for refraction.

Let now evaluate the energy fields inside both plates. First, let r(x, y) be any point in plate 1.
Following equation (2) the energy density W1 is found to be

W1(r) = Pinj
e−m1q0

2πc1q0
+

∫ ∞

−∞
σ1(ν, θ1)

e−m1dν

2πc1dν
dν. (16)
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where q0 = |s0 − r| = [x2 + (y − h)2]1/2 and dν = |p − r| = [(x − ν)2 + y2]1/2. θ1 is the emission
angle at p towards r. Substituting equation (14) into equation (16) gives

W1(r) =
Pinj

2πc1

[
e−m1q0

q0
+

∫ ∞

−∞
R1(θ1)

e−m1rν

rν
δϕν (θ1)

e−m1dν

dν
cos θ1dν

]
. (17)

Now let denote ψν = θ1−ϕν . There exists one point p0 at ν0 which fulfills the condition θ1 = ϕν0 .
The emission angle θ1 is equal to the incident angle ϕν0 . Then,

W1(r) =
Pinj

2πc1

[
e−m1q0

q0
+R1(θ1)

e−m1r0

r0

e−m1d0

d0

cos θ1

|dψν

dν |ν=ν0

]
, (18)

where r0 = [ν20 + h2]1/2 and d0 = [(x − ν0)2 + y2]1/2 have been substituted for rν0 and dν0 .
Furthermore,

ψν = arctan
ν − x

y
+ arctan

ν

h
. (19)

By differentiating with respect to ν,

dψν
dν

=
1/y

1 + (ν−x
y )2

+
1/h

1 + ( νh)
2
=

y

d2ν
+

h

r2ν
. (20)

Since y ! 0 and h > 0, the derivative is never zero, and expression (18) is always defined. Then
we obtain for W1,

W1(r) =
Pinj

2πc1

[
e−m1q0

q0
+R1(θ1)

e−m1r0

r0

e−m1d0

d0

cos θ1
y
d2
0
+ h

r20

]
. (21)

Remarking that cos θ1 = y/d0 = h/r0, it yields

W1(r) =
Pinj

2πc1

[
e−m1q0

q0
+R1(θ1)

e−m1q1

q1

]
, (22)

with q1 = d0 + r0. W1 is shown to be the sum of the contributions of the actual source located
at s0(0, h) with magnitude Pinj, and the image source at s1(0,−h) with magnitude R1(θ1)Pinj.
Notice that the image source magnitude is not uniform, but accounts for the filtering effect of the
reflection efficiency R1(θ1).

Now consider any point r(x, y) in plate 2. According to equation (2), the energy density W2 is

W2(r) =

∫ ∞

−∞
σ2(ν, θ2)

e−m2dν

2πc2dν
dν, (23)

with dν = |p− r| = [(x− ν)2 + y2]1/2. θ2 is the emission angle at p towards r.

W2(r) =
Pinj

2πc2

c′1
c′2

∫ ∞

−∞
T1(θ1)

e−m1rν

rν
δϕν (θ1)

e−m2dν

dν
cos θ2dν. (24)

θ1 is the angle related to θ2 with the Snell law of refraction. Now the condition ψν = 0 states that
the incident angle ϕν0 and the emission angle θ2 satisfy the Snell condition. Furthermore,

dψν
dν

=
dθ1
dθ2

dθ2
dν

− dϕν
dν

=
c′1
c′2

cos θ2
cos θ1

−1/y

1 + (ν−x
y )2

+
1/h

1 + ( νh )
2
=

c′1
c′2

cos θ2
cos θ1

|y|
d2ν

+
h

r2ν
. (25)
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Using the condition y " 0, we obtain for W2,

W2(r) =
Pinj

2πc2

c′1
c′2



T1(θ1)
e−m1r0

r0

e−m2d0

d0

cos θ2
c′1
c′2

cos θ2
cos θ1

|y|
d2
0
+ h

r20



 . (26)

With cos θ1 = h/r0 and cos θ2 = |y|/d0, it yields

W2(r) =
Pinj

2πc2

[
T1(θ1)e

−(m1r0+m2d0) c′1
c′1r0

cos θ2
cos θ1

+ c′2d0
cos θ1
cos θ2

]
. (27)

This relationship is not related with an image source solution except when c′1 = c′2, that is the
plates have identical propagation properties. In this case, θ1 = θ2 and equation (27) reduces to

W2(r) =
Pinj

2πc1

[
T1(θ1)

e−m1q1

q1

]
, (28)

with q1 = d0 + r0.

The second step is to solve the problem for the couple of square plates shown in Figure 1. Now,
we reduce the problem to the particular case where c′1 = c′2 and thus, the image source technique
is valid.

4.2 Two finite plates with identical propagation properties

Since both plates of Figure 1 have identical propagation properties, incidence and transmission
angles at the junction are equal. In addition, R1 = R2 and T1 = T2 and the subscripts will be
omitted in what follows.

For finite plates, an infinite number of image sources contributes to the energy. A recursive
procedure is used to compute the position, magnitude and directivity of the image sources which
account for the successive reflections and transmissions [21]. At step n, the algorithm computes
positions and magnitudes of all image sources of order n + 1. Notice that due to the rectangular
geometry of plates, distinct sources of same order may produce identical sources of higher order.
For instance, a source which reflects at a corner successively to the right and to the upper edge or
the upper and the right edge, gives rise to the same image source as depicted in Figure 4.

The mathematical reason is that two symmetries with respect to right-angles axes commute.
In this case, the new similar sources are to be taken into account just one time.

Two important properties of rectangular billiards greatly simplify the determination of image
sources [22]. The first one is that during its travel, a ray impinges on the interface always with the
same incidence θ as illustrated in Figure 5.

The magnitude of the corresponding image source is thus a product of terms R(θ) and T (θ)
depending on the number of reflection and transmission through the interface. Other reflections do
not modify the magnitude since the reflection efficiency of edges is assumed to be one. The second
property of a rectangular billiard leads to splitting the problem into two separated steps. The first
one is the determination of reflections along the y-axis and the second one is the determination
of reflections and transmissions along the x-axis. Positions of image sources created by reflections
along the y-axis are shown in Figure 6.

9
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Figure 4: Identical image sources produced by two successive reflections on right-angled edges.

"

Figure 5: Reflections in a rectangular billiard.
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Figure 6: Image sources describing the reflections along the y-axis.
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Figure 7: Image sources describing the first reflections and transmission of the actual source s0
along the (x1, x2)-axis.

They are easily computed by applying symmetries to the actual source with respect to the
edges y = b/2 and y = −b/2 where b is the width of plates. Since the reflection efficiency of edges
is one, all these image sources have the same magnitude. Now, it may be considered that all image
sources of Figure 6 reflect along the x1-axis and x2-axis as a group. The problem is thus confined
into the (x1,x2)-plane.

From now on, we define the order of a source as the number reflections and transmissions along
the x1, x2-axis without counting reflections along the y-axis. To start the algorithm, we consider
that three events may occur to the actual source: a reflection on the right edge, a reflection on the
interface and a transmission through the interface (Figure 7).

The first two event give rise to image sources located along the x1-axis and obtained by applying
symmetries with respect to the right edge and the interface. The magnitude of the first one is
unchanged and the magnitude of the second one is R(θ). They are the only image sources of first
order acting on the plate 1 and they are denoted s11,i, i = 1, 2 with magnitudes A1

1,1 = 1 and
A1

1,2 = R(θ). The upperscript denotes the plate of interest, the first subscript is the order of the
source and the second subscript runs over 1,2. The third event is the transmission through the
interface. The source now acts on the second plate. The corresponding image source is obtained
by turning down the actual source on the x2-axis. It is denoted s21,1 with a magnitude A2

1,1 = T (θ)
(Figure 7).

Now, it is apparent that all image sources lying on the x1-axis act on plate 1 whereas those
sources located on x2-axis only act on plate 2. At step n of the algorithm, several events (reflection
and transmission) may occur to sources of order n. The nature of these events depends on the
position of the sources. A source located on the right of the interface (Figure 8a) may be

• reflected by the interface and then submitted a symmetry with respect to the interface, its
magnitude is multiplied by R(θ),

• transmitted through the interface and then is turned down to the x2-axis, its magnitude is
multiplied by T (θ).

A source located on the left of the interface (Figure 8b) may only be reflected by the right edge
and then submitted to a symmetry with respect to that edge with an unchanged magnitude. A
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Figure 8: Image sources describing the reflections and transmission of the image source sin,1 along
the (x1, x2)-axis.
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Figure 9: Image sources for the specular law of transmission and reflection between for two finite
plates.

source located below the interface (Figure 8c) may only be reflected on the upper edge with an
unchanged magnitude. Finally, a source located above the interface (Figure 8d) may be

• reflected by the interface, its magnitude is multiplied by R(θ),

• transmitted through the interface and then is turned down to the x1-axis, with its magnitude
multiplied by T (θ).

By recursively applying this algorithm, all the image sources that is, all the paths between the
actual source and any point on plate 1 or 2 are determined.

We note sin,k and Ai
n,k(θ) the position and magnitude of the kth image source of order n acting

on plate i. θ denotes the angle between the vector r−s1n,k from the source to the observation point
and the outside normal to the interface ni. Now, k runs over −∞ to ∞ to take into account the
effect of reflections along the y-axis. The sources of order 0 and 1 and some sources of order 2 are
shown in Figure 9.

At any point r in plate 1, the energy is the sum of all contributions of the actual source s0 and
image sources s1n,k,

W1(r) = PinjG1(s0, r) +
∞∑

n=1

∞∑

k=−∞
A1

n,k(θ)G1(s
1
n,k, r). (29)

Similarly, for plate 2,

W2(r) =
∞∑

n=1

∞∑

k=−∞
A2

n,k(θ)G2(s
2
n,k, r). (30)

In these expressions, the angle θ depends on the location of the source sin,k and observation point
r.

5 Results and discussion

Energy fields of the two right-angled plates of Figure 1 are now evaluated by both reference and
energy approaches. The calculations are summarized in the next section. Then the global energy
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level and the energy distribution inside each plate are investigated.

5.1 The calculated system

Applications have been performed with two identical aluminum plates (ρ = 2800 kgm−3, ν =
0.3, E = 72 109N m−2 ). The plates are 1m square, of thickness 10−3m, clamped on the sides
parallel to the junction and simply supported on the other sides. The plate 1 is excited by a
transverse force of 1N at the point s0 given by x1 = 0.2m, y = 0.3m. Both plates are damped with
a loss factor η = 1%. The calculation frequency is chosen in order to get 40 flexural wavelengths
within the plates, thus f = 16000Hz.

The reference result is the numerical solution for the Love-Kirchhoff’s plate equations with
the relevant boundary and coupling conditions. It is derived using the approach developed in
reference [23] with the same assumption that plates are rigid in-plane, i.e in-plane displacements are
neglected. Due to the simply supported boundary conditions, the displacement field is thought of as
the sum of sine functions in the y direction. A wave decomposition is applied in the x1,2 directions.
Like SEA, integral energy approaches give an averaged estimation of the real response, and three
reference calculations have consequently been performed depending on the kind of average that is
achieved: since frequency, material properties and geometry can be considered as being inaccurately
known, the energy has been averaged over the frequency, ω ∈ [ωc−∆ω/2, ωc+∆ω/2], the Young’s
modulus, E ∈ [Ec−∆E/2, Ec+∆E/2], and the excitation location, s0 ∈ [s0c−∆s0/2, s0c+∆s0/2]).
The subscript c denotes the center value of the variables given below. In each case, the range of
variation is calculated to get a variation of one wavelength in the smallest distance between two
sources. For the present system, this smallest distance is between the direct source on plate 1 and
the boundary x1 = 0m.

Energy calculations use the injected power of equation (4), and the efficiencies at the junction
evaluated with the wave decomposition of reference [17], by keeping in mind that plates are assumed
to be rigid in-plane. Since both plates have identical propagation properties, R1 = R2 and T1 = T2

and the subscripts may be omitted. The variations of R(θ) and T (θ) at the frequency of excitation
(16000Hz) are shown in Figure 10, where it can be seen that the transmission is higher for low
angles.

The integral energy formulation with the specular directivity is derived with the image source
method described in section 4.2. The level N of the image sources to be considered in order to
get a good estimation of the energies is defined by considering that sources of level higher than
N have negligible contributions. The criteria given in reference [24] is expressed in terms of the
percentage P of energy which should have been attenuated, the average absorption coefficient
at boundaries α, the mean free path of the plates l, and the attenuation coefficient m = ηω/c :
N = ln(1− P )/[ln(1− α)−ml]. In the present application, no absorption is to be considered and
the mean free path for plates is given in [17] by l = πS/L, where S and L denote the surface and
perimeter of plate. By choosing P = 99.99%, one obtains for the present calculation N = 10. Note
that due to the frequency dependence of the attenuation coefficient, the required CPU-time for
the image source approach reduces as the frequency increases, which is a very interesting feature
compared to reference calculations.

For the integral energy formulation with the Lambert directivity, the collocation algorithm of
section 3 with 10 elements per side of plate was used. Equations (8,9) are consequently derived
by solving an 80*80 linear system. It is not required for the size of the boundary elements to be
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Figure 10: Evolution of the reflection and transmission efficiencies, R(θ) and T (θ) at the junction
versus the incidence angle, at 16000Hz.

small compared to the flexural wavelength, since the describing variable is the averaged energy
whom variations are expected to extend over much more than one wavelength. The size of the
element is only related to the non-diffuse characteristic of the energy field which is directly re-
lated to the damping and geometry. As a result, while the required CPU-time for the reference
calculation increases with the frequency, it remains quite stable for the integral energy approach.
However, both integral energy approaches remain more time expensive than SEA and require a
better knowledge of the system. Note that the low computation time is not the only interest of
the energy approaches that provide a new intuitive tool to analyze the vibrations of structures at
high frequencies.

Some SEA calculations have been performed using the same injected power (4) and efficiencies.
By noting Ei the total energy of the plate i, the global power balances for both plates are written

{
Pinj = ηωE1 + η12ωE1 − η21ωE2,
0 = ηωE2 + η21ωE2 − η12ωE1,

(31)

where η12 and η21 are the coupling loss factors. Since the plates are identical, η12 and η21 are
equal. They are expressed in terms of the transmission efficiency by the integral over all incidence
angles,

η12 = η21 =
Lc

ωπS

π/2∫

0

T (θ) cos θdθ, (32)

where L is the junction length, c the group speed of flexural waves and S the surface of the plates.
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Reference < ω > Reference < E > Reference < s0 > SEA Specular Lambert
Pinj (mW ) 14.54 14.74 14.74 14.55 14.55 14.55
E1 (dB) 31.07 31.11 31.07 31.36 31.06 31.02
E2 (dB) 21.82 21.82 22.10 19.04 21.62 21.94

Table 1: Injected power and total energy in both plates, by the three reference calculations, the
SEA and the two integral energy approaches.

5.2 Global energy

The injected power and the total energy stored in each plate are shown in Table 1 for reference,
energy and SEA results. Energies E1 and E2 are the integrals of the energy densities W1 and
W2 given by the reference calculation and the integral energy approaches in equations (29,30,10).
They are expressed in dB (re 10−8 J).

It is shown that the averaged injected powers by the three reference calculations are in good
agreement with that given by equation (4). Concerning the energies, both integral energy results
are very closed to the reference ones. The SEA results are less accurate, which was expected since
the plates are highly damped. In particular, the transmitted energy in plate 2 is underestimated
because of the importance of the direct field contribution in plate 1: since the direct source is
closed to the junction, the average energy on the plate 1 as predicted by the SEA is less than
the real energy on the junction. Consequently, the predicted level of transmitted energy is lower.
The spatial description of energy by the integral energy approaches succeeds in improving the
prediction.

Note that the information on the strength of damping is rather given by the attenuation coeffi-
cient m than by the damping coefficient η. Indeed, the attenuation coefficient is directly involved
in the decreasing of energy of rays as shown by equations (1). In the present case, the attenuation
produced by damping over the mean free path l is e−ml ∼ 0.36, meaning that in average, one third
of the energy is attenuated between two reflections of rays.

5.3 Distribution of energy

Contour plots of the flexural energy repartition in both plates by reference and integral energy
calculations are shown in Figure 11. The plate 1, directly excited, is on the right. Energy densities
are expressed in dB (re 10−8 J m−2). The reference calculation corresponds to the frequency-
averaged results. Anyway, the three averages lead to very similar results.

In both plates the energy field is shown to be not diffuse, with more than 6 dB of variation
in each plate. These variations are well described by the energy flow approaches. One easily
recognizes the cylindrical pattern of the direct field due to the excitation in plate 1. About the
energy field in plate 2, one may observe that the specular directivity leads to a slightly better
description than the diffuse one. Due to the proximity of the direct source in plate 1, the upper-
right corner of plate 2 (x2 = 0m, y = 0.5m) shows the higher energy level, which is predicted by
both energy approaches. However, the energy density does not have a cylindrical shape centered
on the upper-right corner as predicted by the diffuse directivity. The specular law provides a more
reliable description. The reason is that the specular law accurately accounts for the filtering effect
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Figure 11: Flexural energy distribution in both plates, in dB (re 10−8 J m−2). The reference
frequency averaged result, and the energy flow results with specular and Lambert directivities are
presented. The SEA gives W1 = 31.36 dB and W2 = 19.04 dB.
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of the junction: the largest part of the transmitted energy in plate 2 comes from the part of plate
1 around the excitation where the energy level is the higher. Since the transmission efficiency is
lower for large incidence angles (see Figure 10), the energy transmitted in plate 2 is lower on the
low part of plate 2 (y < 0) than in the upper part (y > 0). This effect is well predicted by the
integral energy approach with the specular directivity.

For both energy flow approaches, the prediction in the vicinity of the driving point and the
boundaries is incorrect because near-field terms are neglected in the description. One may consider
that a distance of one wavelength is enough for this terms to be negligible, which gives 0.025m in
the present case.

6 Conclusion

The presented integral energy flow approach is shown to be particularly suitable for damped
systems at high frequency, when energy fields are not diffuse. The main assumptions of the method
are the decomposition in uncorrelated cylindrical waves, and the kind of reflection-transmission
law to be used at boundaries. It is shown that both specular and Lambert laws lead to an accurate
estimation of the averaged energy fields. The specular law seems to give a better description of the
distribution of energy since it accounts for the filtering effect due to the dependence of reflection
and transmission efficiencies on the incidence angle.

Compared to the SEA, the integral energy approaches require more CPU-time as well as a
more complete knowledge of the system. As a result, they lead to a more reliable description
of the system and give the distribution of energy inside subsystems. Compared to an reference
resolution, the integral energy approaches give averaged values of the energy density, with a great
gain of CPU-time. They also provide an interesting tool to analyze the vibrations of structures at
high frequencies.

Although the diffuse and specular versions of the energy flow approach only differ by the
assumed directivity of reflected and transmitted rays at boundaries, they lead to completely distinct
mathematical resolutions. It is shown in this paper how the image source method is suitable to solve
the specular case. However, even if the image source method may be extended to non rectangular
geometries as was done for acoustic rooms in [21], it is applicable only when the coupled plates
have the same propagation properties. In other cases, ray or boundary element approaches may
be used to solve the equations for the specular reflection [12, 15]. On the other hand, the integral
equation derived with the diffuse reflection is general and may be easily solved for any geometries
and material of coupled plates by using the standard collocation procedure described in this paper.
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