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Abstract. The vision of the Semantic Web is becoming a reality with
billions of RDF triples being distributed over multiple queryable end-
points (e.g. Linked Data). Although there has been a body of work on
RDF triples persistent storage, it seems that the problem of providing
an efficient, in terms of query performance and data redundancy, in-
ference enabled approach is still open. In this work, we take benefit of
recent papers proposing a vertically-partition approach implemented on
a column-oriented relational database management system and extend
it with a novel approach enabling to represent less relations, thus re-
quiring less joins in practical queries. This extension uses the fact that
properties are first-class citizens in the RDF model to propose a par-
ticularly efficient solution when inferences are performed on property
hierarchies. Another contribution of this paper is to propose a set of se-
mantic query rewriting rules to improve query performance by reasoning
over the ontology schema of the RDF triples. We provide an experimen-
tal evaluation on synthetic databases which emphasizes the relevance of
our two contributions in efficient RDF triples storage.

1 Introduction

The vision of the Semantic Web, as proposed by [6], is becoming a reality with
billions of RDF triples and hundreds of RDFS/OWL ontologies being distributed over
multiple queryable endpoints (e.g. Linked data). These endpoints can generally
be queried using the SPARQL query language [22] or in a programmatic manner
via one of the many available RDF APIs [1]. Practically, these queries usually
require some form of reasoning, a feature not natively supported by the current
SPARQL W3C’s recommendation. An approach generally encountered consists in
performing inferences in an RDFS/OWL compliant reasoner, to use their results
in order to generate a set of queries and to execute them over the appropriate
data sets. This approach corresponds to the one we have designed in a medical
application [12] where inferences need to be performed on chemical molecules
in order to detect contra indications, side effects, etc. In Fig. 1, we present an
extract of the information stored for the Ibuprofen molecule concerning several
forms of contra indications. Moreover, our ontology contains a contra indication
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property hierarchy which is defined as follows: (1) diseaseContraIndication
v contraIndication, (2) stateContraIndication v contraIndication, (3)
moleculeContraIndication v contraIndication with all contraIndication
siblings being mutually disjoint. An interesting query over this data set would be
to retrieve all objects contra indicated to the Ibuprofen molecule. That is, we
want to retrieve all sub properties of contraIndication (namely {molecule,
state, disease}ContraIndication) and to generate for each one a query that
retrieves the objects where the subject is Ibuprofen. On the dataset of Fig. 1,
this would yield a result set containing all entries of the last column.

Fig. 1. Extract of the contra indications for the Ibuprofen molecule
Subject Property Object

Ibuprofen moleculeContraIndication Ticlopidin

Ibuprofen moleculeContraIndication Clopidrogel

Ibuprofen stateContraIndication Breast feeding

Ibuprofen stateContraIndication Pregnant

Ibuprofen diseaseContraIndication Hypertensive heart

Another form of inference-based query would be to retrieve all objects contra
indicated to all Nonsteroidal Anti-Inflammatory Drugs (e.g. Ketoprofen).
Note that queries with such inference patterns can be required by an application
as well as by some data quality or data exchange external tools.

Providing efficient performances to reasoning dependent queries is an impor-
tant issue when the ontology and data sets are large (e.g. OpenGalen or SNOMED).
We believe that to enable efficient response time to these queries, one has to give
a special attention to these triples storage system. But RDF is basically a data
model and its recommendation does not guide to a prefered storage solutions.

In [3], a novel approach to store RDF triples (i.e. subject, property and object,
see Section 2 for more details) is presented, implemented in a system named
swStore and evaluated. It consists in creating a relation containing only two
columns (one for each the subject and the object of a triple) for each property
in the ontology. Due to this relation structure, the implantation of this approach
is particularly efficient on a column-oriented database system. Nevertheless, the
authors of [3] never consider any forms of reasoning in the queries they evaluate
on their solution. We consider that this is an important drawback of this ap-
proach since inferences is a key feature in applications dealing with RDF graphs.
Moreover, [23] emphasized that this approach presents some limits when the set
of ontology properties is large.

In this paper, we address both of these issues by proposing a solution that
outperforms the approach of swStore when reasoning over property hierarchies
is necessary. The performance improvement are due to the generation and main-
tenance of less relations than in swStore. The approach consists in creating a
single property table for each property hierarchy in the ontology. Such a table
contains three columns which correspond to standard RDF triples. Hence per-
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formance of an important number of queries requiring inferences on property
hierarchies are improved since less joins are needed.

In order to address the notion of RDFS inferences in our storage of RDF triples,
we also propose a set of semantic query rewriting rules for the generation of SQL
queries. These rules tackle all the inferences possible in RDFS and generate a
single SQL query retrieving the correct answer set.

In this paper, we make the following contributions: (1) we extend the RDF
triples storage solution of swStore by minimizing the number of relations pro-
portionnally to the number of property hierarchies present in the RDFS ontology.
This approach is particularly relevant when inferences are performed over prop-
erty hierarchies, outperforming swStore by several orders of magnitude; (2) we
propose a set of semantic query rewriting rules to enforce RDFS inferences when
retrieving data from the underlying relational database; (3) we evaluate this new
approach on both a row and column store against the swStore solution.

The remainder of this paper is organized as follows. In Section 2, we provide
background knowledge of some of the key notions used in this work: namely RDF,
RDFS and SPARQL. Section 3 presents related work relevant in the RDF triple stor-
age. In Section 4, we detail our storage approach, named RDFS Inference-Based
Store (RIBStore) as well as the set of query rewriting rules we are proposing.
Section 5 compares our approach with swStore via an evaluation on synthetic
data sets over both row and column oriented databases.

2 Preliminaries

In this section, we briefly introduce the background required for the rest of this
paper on the following W3C recommendations: RDF model, the RDFS vocabulary
language and SPARQL, a query language for RDF.

RDF is a logical data model consisting of triples of the form 〈s,p,o〉 where
s, p and o are resp. called the subject, property and object of the triple. The
signature of an RDF triple corresponds to (U ∪ B) × U × (U ∪ B ∪ L) where U,
B and L are possibly infinite sets of respectively URI resources, blank nodes (a
form of existentially quantified variable) and RDF literals.

The RDFS vocabulary (henceforth RDFS) specifies a set of reserved words used
to describe relationships between resources and properties. We are particularly
interested in the following two groups of terms, and invite interested readers to
study [8] for further details: (1) classes from which instances are created; (2)
properties, i.e. rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range,
rdfs:domain and rdf:type which resp. specify a sub class (resp. sub property)
relationship between classes (resp. properties), the range and domain of a prop-
erty, and the type of an instance. We summarize in Fig. 2 the sound and complete
set of rules for the entailment of RDF graphs with RDFS (see [15] for details).

SPARQL is a graph-matching query language for RDF. A query is composed
of three parts: (i) a pattern matching part which takes the form of triples and
includes several interesting features, e.g. filtering, (ii) solution modifiers like dis-
tinct, order, limit, etc. (iii) output of the query. Several works are tackling some
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Fig. 2. RDFS inference rules
(1) (a rdf :type rdf :Property)

a rdfs:subPropertyOf a
(2) (a rdfs:subPropertyOf b)(x a y)

x b y

(3) (a rdfs:subPropertyOf b)(b rdfs:subPropertyOf c)
a rdfs:subPropertyOf c

(4) (a rdf :type rdf :class)
(a rdfs:subClassOf a)

(5) (a rdfs:subClassOf b)(b rdfs:subClassOf c)
a rdfs:subClassOf c

(6) (a rdfs:subClassOf b)(x rdf :type a)
x rdf :type b

(7) (a rdfs:domain b)(x rdf :type a)
x rdf :type b

(8) (a rdfs:range c)(x a y)
y rdf :type c

of the current limitations of SPARQL, namely the lack of inference support and
absence of standard update mechanisms.

3 Related work

This section gives an overview of techniques for storing RDF data. There is a
real need to efficiently store and retrieve RDF data as the number and scale of
Semantic Web in real-word applications in use increase. The related work about
RDF data management systems can be subdivided into two categories : the ones
involving a mapping to a Relational DataBase Management System (RDBMS)
and the ones that do not.

3.1 RDBMS based solutions of RDF data storage

A set of techniques have been proposed for storing RDF data in relational databases.
Several research groups think that this is likely the best performing approach
for their persistent data store, since a great amount of work has been done
on making relational systems efficient, extremely scalable and robust. Efficient
storage of RDF data has already been discussed in the literature with different
physical organization techniques such as triple table, property table and the ver-
tical partitioning approach, each one requiring sometimes prioritization of one
performance metric to another.
Triple table.

The triple-table approach is perhaps the most straightforward mapping of
RDF into an RDBMS. Each RDF statement of the form (subject, property, object)
is stored as a triple in one large table with a three-columns schema (i.e. a column
for the subject, property and object resp.). Indexes are then added for each of
the columns in oder to make joins less expensive. It has been used by Sesame[9],
Jena[27], Oracle[10] and 3store[14].

However, since the collection of triples are stored in one single RDF table, the
queries may be very slow to execute. Indeed when the number of triples scales,
the RDF table may exceed size of memory. Additionally, simple statement-based
queries can be satisfactorily processed by such systems, although they do not
represent the most important way of querying RDF data. In the other hand, RDF
triples store scales poorly because complex queries with multiple triple patterns
require many self-joins over this single large table as pointed out in [27, 25, 18].
Property table.
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The property table technique has been introduced later on for improving
RDF data organization by allowing multiple triple patterns referencing the same
subject to be retrieved without an expensive join. In this model, RDF tables are
physically stored in a representation closer to traditional relational schemas in
order to speed up the queries over the triple stores[26, 10]. In this approach, each
named table includes a subject and several fixed properties. The main idea is to
discover clusters of subjects often appearing with the same set of properties. A
variant of the property table named property-class table uses the property called
“type“ of subjects to cluster similar sets of subjects together in the same table.

The immediate consequence is that self-joins on the subject column can be
avoided. However, the property table technique has the drawback of generating
many NULL values since, for a given cluster, not all properties will be defined
for all subjects. This is due to the fact that RDF data may not be very structured.
A second disadvantage of property table is that multi-valued attributes, that are
furthermore frequent in RDF data, are hard to express. In a data model without
a fixed schema like RDF, its common to seek for all defined properties of a given
subject, which, in the property table approach, requires scanning all tables.

Note that, in this approach, adding properties requires also to add new tables;
which is clearly a limitation for applications dealing with arbitrary RDF content.
Thus the flexibility in schema is lost and this approach limits the benefits of using
RDF. Moreover, queries with triples patterns that involve multiple property tables
are still expensive because they may require many union clauses and joins to
combine data from several tables and consequently complicate query translation
and plan generation. In summary, property tables are poorly used because of
their complexity and inability to handle multi-valued attributes.
Vertically partitioned table.

The vertical partitioning approach suggested in [3] is an alternative to the
property table solution that speeds up queries over a triple store providing similar
performance while being easier to implement. In this approach, the RDF data is
vertically partitioned by using a fully decomposed storage model (DSM)[11].
Each triples table is divided into n two columns tables where n is the number of
unique properties in the data. In each of these resulting tables, the first column
contains the subject and the second column the object value of that subject.

The tables being sorted by subject, one has a way to use fast merge joins
to reconstruct information about multiple properties for subsets of subjects.
The vertically partitioned approach offers a support for multi-valued attributes.
Indeed, if a subject has more than one object value for a given property, each
distinct value is listed in a successive row in the table for that property. For a
given query, only the properties involved in that query need to be read and no
clustering algorithm is needed to divide the triples table into two-column tables.

Note that inserts can be slow in vertically partitioned tables since multiple
tables need to be accessed for statement about the same subject.

In [3], the authors described how a column-oriented DBMS[24] (i.e., a DBMS
designed especially for the vertically partitioned case, as opposed to a row-
oriented DBMS, gaining benefits of compressibility [4] and performance [2]) can
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be extended to implement the vertically partitioned approach. This is done by
storing tables as collections of columns rather than collections of rows. The
goal is to avoid reading entire row into memory from disk, like in row-oriented
databases, if only a few attributes are accessed per query. Consequently, in col-
umn oriented databases only those columns relevant to a query will be read.

In [23], an independent evaluation of the techniques presented in [3], the
authors pointed out potential scalability problems for the vertically partitioned
approach when the number of properties in an RDF data-set is high. With a
larger number of properties, the triple store solution manages to outperform the
vertically partitioned approach.

3.2 Other RDF data storage approaches

Most of these approaches eschew the mapping to an RDBMS and focus instead
on indexing techniques specific to RDF data model. They are motivated by the
fact that using a traditional RDBMS for RDF data storage results in propagating
RDBMS deficiencies such as inflexible schemas whereas avoiding these limita-
tions is, arguably, one of the major reasons for adopting the RDF data model[18].
These proposals aim to be closer to the query model of the Semantic Web.
Graph based RDF data storage

These solutions are in general based on main-memory graph implementations
and face scaling limitations. In the approaches presented in [7, 17], the RDF data
is stored as graph. Nevertheless, the authors did not emphasize the scalability
problems. Others similar approaches[19] use the path-based schemes to store the
subgraphs in distinct tables of a relational database.
Multiple-index frameworks

The systems using an index structure are: YARS, Kowari, Hexastore, RD-
FJoin and RDFKB.

The YARS[16] system stores RDF data by using six B+ tree indices. It stores
not only the subject, the property and the object, but also the context infor-
mation about the provenance of the data as a quad. Each element of the quad
is encoded in a dictionary. In each B+ tree, the key is a concatenation of the
subject, predicate, object and context. The six indices constructed cover all the
possible access patterns of quads in the form 〈s,p,o,c〉 where c is the context
of the triple 〈s,p,o〉. This representation allows fast retrieval of all triple access
patterns. Thus, it is also oriented towards simple statement-based queries and
has limitations for efficient processing of more complex queries. The proposal
sacrifices space and insertion speed for query performance since each triple is
encoded in the dictionary six times.

The Kowari[5] system uses an approach similar to YARS. The RDF statements
are also stored as quads like in YARS. However, Kowari uses an hybrid of AVL
and B trees instead of B+ trees for multiple indexing.

Hexastore[25] takes also a similar approach to YARS. The framework is based
on the idea of main-memory indexing RDF data in a multiple-index framework.
The RDF data is indexed in six possible ways, one for each possible ordering of the
three RDF elements. Two vectors are associated with each RDF element, one for
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each of the other two RDF elements (e.g., [subject,property] and [subject,object]).
Moreover, lists of the third RDF element are appended to the elements in these
vectors. Hence, a sextuple indexing scheme is created. These indices materialize
all possible orders of precedence of the three RDF elements. The representation
is based on any order of significance of RDF resources and properties and can be
seen as a combination of vertical partitioning and multiple indexing approaches.
Hexastore provides efficient single triple pattern lookups, and also allows fast
merge-joins for any pair of two triple patterns. However, space requirement of
Hexastore is five time the space required for storing statement in a triples table.
Hexastore favors query performance over insertion times passing over applica-
tions that require efficient statement insertion.

The RDFJoin[20] project provides several new features built on top of Hex-
astore. Hexastore is a main-memory solution whereas RDFJoin proposes a per-
sistent database storage for these tables. The authors store all the third column
tuples in a bit vector, and provide hash indexing based on the first two columns.
This reduces storage space and memory usage and improves the performance of
both joins and lookups.

RDFKB[21] (Resource Description Framework Knowledge Base) is a rela-
tional database system for RDF datasets supporting inference and knowledge
management. The solution is implemented and tested using column store and
the RDFJoin[20] technology and supports inference at data storage time rather
than as part of query processing. All known inference rules are applied to the
dataset to determine all possible knowledge. The inferred knowledge is stored
in the dataset. The authors make the choice to store redundant information.
At query execution time, there is information about which knowledge relates
to the query, and this can be used to limit the scope of the inference search.
Queries against inferred data are simplified, and performance is increased. How-
ever, inferring all possible knowledge may be very expensive and the performance
penalty can be high as the vocabulary is increased.

4 The RIBStore approach

As previously mentioned, we propose a new approach - namely RIBStore - which
provides two main contributions: storing less relations (thus requiring less joins
in practical queries) and a set of semantic query rewriting rules improving query
performance. We consider that the applications which are using our approach
express their queries in SPARQL, which are then translated into SQL queries and
executed over a relational database. The framework we are providing enables,
through the use of an API, to express inference requests within a SPARQL query.
This enables end-users to specify that all properties (resp. concepts) of a hierar-
chy are needed in a query. Note that such a mechanism is currently not specified
in the SPARQL recommendation.
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4.1 Storage approach

The storage approach extends swStore by adding a third column to each prop-
erty belonging to a property hierarchy. This new column contains property
names. The reduction of the number of property tables has a big impact on
the performance of queries requiring joins over properties of same property hi-
erarchy. This is typically the case when one wants to reason over the triples of a
property hierarchy. In swStore and RIBStore, a two columns relation is created
for properties of the RDF and RDFS vocabularies, e.g. rdf:type, rdfs:subClassOf.
And for all other properties of the ontology, we apply the following approach:
(1) if a property is not part of a property hierarchy, generate a relation as in
swStore. That is a two columns relation with subject and object attributes and
the property name as relation name; (2) otherwise, for all properties in a prop-
erty hierarchy, generate a single relation with the name of the top property of
the hierarchy as relation name and a three columns pattern (subject, object and
property). Each tuple of this relation contains the name of the property of the
corresponding triple in the property column.

Example 1 Fig. 3 proposes an example with a property hierarchy (Fig. 3a)
and a small data sets (Fig. 3b). With swStore, the triples would be distributed
over 5 different relations as displayed in Fig. 3c. Comparatively, in RIBStore
a single relation named after the top property of the hierarchy is created and
would correspond exactly to Fig. 3b. Thus, we consider an ontology consisting
of n property hierarchies with an average of k properties in each hierarchy. The
RIBStore approach will store n × k less relations than a swStore approach.

Fig. 3. Storage comparison of swStore and RIBStore

(a) pa property
hierarchy:
pb v pa,
pc v pa,
pd v pc,
pe v pc

(b) triple extract

sub. prop. obj.

a pa b

c pc d

e pb f

g pe h

(c) swStore relations

sub. obj.

a b

sub. obj.

g h

sub. obj.

c d
pa relation pb relation pc relation
sub. obj. sub. obj.

e f

pd relation (empty) pe relation

We now consider the following query: one wants to retrieve all objects in-
volved in a triple with a property of the pa hierarchy. With swStore’s physical
design, the following query is needed:

SELECT object FROM pa UNION (SELECT object FROM pb UNION (SELECT
object FROM pc UNION (SELECT object FROM pd UNION (SELECT object FROM
pe))));

while the same query is answered far more efficiently in RIBStore with:
SELECT object FROM pa;
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4.2 Inference-based query rewriting

The second contribution of this work corresponds to a set of semantic query
rewriting rules. The semantic aspect of this rewriting is provided by a thorough
usage of the RDFS inferences described in Section 2. The goals of this approach
are (i) to detect, relying exclusively on ontology inferences, if the answer set
of a query is empty or not and (ii) to optimize a given query via a semantic
rewriting of some SQL queries. The rules can be decomposed into two sets: (1) A
set of rules, denoted subsume, dealing with concept and property subsumptions
which are being dealt with rules (1) to (6) of Fig. 2; (2) A set of rules, denoted
propertyCheck, dealing with the domain and range of a given property. They
are inferred by rules (7) and (8) from Fig. 2.

The rules processed by the subsume procedure are using the RDFS inference
rules to compute all the sub concepts (resp. properties) of a given concept (resp.
property). All RDFS APIs propose efficient implementation of rules (1) to (6) of
Fig. 2. The query studied in Example 1 was already using the subsume procedure.

Example 2 Consider that the range of the property pb in Example 1 is of
type ClassA which is the top concept in the following concept hierarchy: ClassC
v ClassA, ClassB v ClassA and ClassC v ClassB. That is ClassA has two
sub concepts which are disjoint. Consider a query asking for all subjects and
objects of triples where pb is the property and all subjects belong to the ClassA
hierarchy. Using subsume, the query can be translated in the following SQL query:

SELECT subject, object FROM pb, type WHERE type.subject =
pb.subject AND type.object IN (’ClassA’,’ClassB’, ’ClassC’);

Thus this approach enables to generate a singe SQL query whatever the size
of the concept hierarchy. Note that it also applies to property hierarchies.

The rules of propertyCheck are being processed as follows: first the SPARQL
query is parsed and for each property explicitly mentioned in the query with a
typed (rdf:type) subject or object, we store the property name and types of
the subject and/or object. Then for each subject (resp. object) in the structure,
we search if there is a direct or indirect (via subsumptions) correspondence with
the type of the rdf:domain (resp. rdf:range) defined in the ontology for this
property.

Example 3 Consider the triples defined in Fig. 1 with the following ontol-
ogy axioms: (1) rdf:range of diseaseContraIndication is an instance of the
Disease concept, (2) Disease v Top, (3) Molecule v Top and (4) Disease v ¬
Molecule. Intuitively, axioms (2) to (4) state respectively that the Disease con-
cept is sub concept ot the Top concept, identically for the Molecule concept and
finally, the Disease and Molecule concepts are disjoint. Consider the following
SPARQL query:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.
?o rdf:type :Molecule.}

which asks for subjects and objects involved in triples where the property
is diseaseContraIndication and the object has a type Molecule. Clearly the
answer set to this query is empty since the rdf:domain of the property can not
be a Molecule is this ontology.
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Example 4 Consider the context of Example 3 with the following query:
SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.

?o rdf:type :Disease.}
The query is satisfiable since there is model where its answer set is not empty.

Anyhow, the query can be optimized. In fact, it is not necessary to check the
rdf:type of the object because it corresponds exactly to the one defined as
rdf:range in the ontology. Thus this query is rewritten in:

SELECT ?s ?o WHERE {?s :diseaseContraIndication ?o.}
which once translated into SQL does not require any join and will thus perform

far more efficiently than the orginal query.

5 Evaluation

We now describe an experimental study that stresses the effectiveness and rele-
vancy of the techniques presented in Section 4. First, we provide details of the
experiment settings, i.e. data sets, queries, benchmark system, database man-
agement systems and reasoner. Then results are represented and analyzed in a
systematic way.

5.1 Experimental settings

All our experiments have been conducted on four synthetic databases. They all
have been generated from the Lehigh University Benchmark (LUBM) [13] which
has been developed to facilitate the evaluation of Semantic Web repositories
in a standard and systematic way. The RDF data sets generated with LUBM
all commit to a single realistic ontology dealing with the university domain.
This ontology is composed of 43 concepts, 25 object properties and 7 data type
properties. Since we are interested in inferences using concept and property hi-
erarchies, our queries will take advantage of the 36 subclass and 5 subproperty
axioms. Some of our queries imply to infer on subclass axioms. For this purpose,
we have selected the hierarchy of the Person class from which we present and
extract: AssociateProfessor v Professor v Faculty v Employee v Person,
AdministrativeStaff v Employee and Faculty v ¬AdministrativeStaff .
The sub property axioms we are using the most in our evaluation (queries 1 to
6) concern the membership hierarchy which is classified as follows : headOf v
worksFor v memberOf . Surprisingly, these 3 object properties are underspec-
ified since no domain and range are provided. Since we also want to evaluate
our query rewriting technique, queries 7 to 9 are using the teacherOf property
because its domain and range are clearly defined.

This ontology serves as the schema underlying the 4 data sets we have cre-
ated. This is an important requisite for our evaluation since our set of queries
will be executed on all data sets in order to provide information on scalability
issues. Table 1 summarizes the main characteristics of these data sets in terms
of overall number of triples, number of concept and property instances.



D
RAFT

Table 1. Synthetic datasets

DB name Universities Concept instances Property instances Triples

lubm1 1 15195 60859 100868

lubm2 2 62848 251252 236336

lubm5 5 114535 456137 643435

lubm10 10 263427 1052895 1296940

The RDF data sets are later translated into the different physical models we
would like to evaluate. They are decomposed into two main approaches: the solu-
tion of [3] – henceforth refered as swStore – and the solution we have proposed
in this paper: RIBStore. In order to emphasize the efficiency of our solution
in situations needing reasoning, we had to test these settings in a similar con-
text as [3]. More precisely, each conceptual solution needs to be evaluated on
a row store and a column store RDBMS. This yields the four following ap-
proaches: swStore resp. on a row (swRStore) and column (swCStore) store
and RIBStore resp. on a row (RIBRStore) and column (RIBCStore) store.
Hence a total of 16 databases are generated (each data set is implemented on
each physical approach).

We have selected postgreSQL and MonetDB as the RDBMS resp. for the
row-oriented and the column-oriented databases. We retained MonetDB instead
of C-store (the column store used for evaluation in [3]) essentially due to (1) the
lack of maintenance of the latter one, (2) the open-source licence of MonetDB
and (3) the fact that MonetDB is considered state of the art in column-oriented
databases. The tests were run on MonetDB server version 5 and postgreSQL
version 8.3.1. The benchmarking system is an Intel Core 2 Duo T7700 2.4 GHz
operated by a Linux Ubuntu 9.10, with 2Gbytes of memory, 4MB L2 cache and
one disk of 160 Gbyte spinning at 7200rpm. The disk can read cold data at a
rate of approximatively 55MB/sec. For the swRStore, there is a clustered B+
tree index on the subject and an unclustered B+ tree on the subject. Similarly,
for the RIBRStore, a clustered B+ tree index is created on the property column
and an unclustered B+ tree on the subject. As noted in [23] MonetDB does
not include user defined indices. Hence we relied on the ordering of the data on
property, subject and object in both swCStore and RIBCStore.

We have designed 9 queries to evaluate our approach. They can be decom-
posed into 2 sets depending on their need for inferences.

The set of queries not requiring any form of reasoning is composed of:

– Query 1 (Q1): retrieves the subject of triples where the property is memberOf .
– Query 2 (Q2): retrieves the subject of triples where the property is headOf .

This query is interesting since the distributions of memberOf and headOf
axioms in all data sets is not equiprobable (i.e. there is an average factor
of 500 between the number of instances of these two properties, e.g. 7490
memberOf and 15 headOf axioms in lubm1).

– Query 3 (Q3): provides a result set with subjects and objects involved in
triples where the property is worksFor and the subject has a type concept
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equal to AssociateProfessor. Thus this query requires a join between the
type relation and the memberOf (resp. worksFor) relation in RIBStore
(resp. swStore).

The set of queries requiring inferences is composed of the following 6 queries:

– Query 4 (Q4): retrieves all subjects involved in triples where the property is
one of the properties of the memberOf property, i.e. memberOf , headOf
and worksFor. This query is an extension of Q1 requiring reasoning.

– Query 5 (Q5): extends Q3 with reasoning over the concept hierarchy of the
Professor concept. That is, all subjects and objects involved in triples where
the property is worksFor and the type of subject is one of the 6 distinct
concepts derived from Professor.

– Query 6 (Q6): further extends Q5 by considering that properties of the se-
lected triples are in the memberOf property hierarchy. This means that
reasoning at the property and concept levels are required.

– Query 7 (Q7): selects the subject and the object in triples where the prop-
erty is teacherOf and subject is of type AdministrativeStaff . This query
returns an empty answer set since the domain of teacherOf is the Faculty
concept which is disjoint with AdministrativeStaff . This query enables
to test our rewriting query approach which is defined declaratively in our
framework but it could also be computed via a query written in SPARQL.

– Query 8 (Q8): selects the subject and the object in triples where the property
is teacherOf and subject is of type Faculty. This query requires a join.

– Query 9 (Q9): has the same purpose as Q8 but exploits one of our rewriting
rules to improve the performances of Q8. In fact, the join in Q8 is not
necessary if one knows that the domain of teacherOf is the concept Faculty.

Finally, reasoning operations assume that the LUBM ontology is stored in
main-memory and are performed using the Jena framework [1].

5.2 Experimental results

The analysis of figures 4, 5 and 6 of the queries not requiring inferences (Q1,
Q2 and Q3) confirm the results highlighted in [3] and [23]; namely that the
column store outperforms the row one. Unsurprisingly, the swStore approaches
provide better query execution performances than RIBStore counterparts. This
is easily comprehensible since for swStore, a simple scan of the tuples of the
memberOf (Q1) or headOf (Q2) relations are sufficient while RIBStore requires
a selection of tuples according to the values of the property column. These results
are confirmed even in the presence of a join(Q3).

The remaining queries imply a form of reasoning and emphasize the effective
approach of RIBStore. For instance, Fig. 7 shows the performances of query Q4
and clearly demonstrates the efficiency of RIBStore over swStore. Even the row
oriented RIBStore outperforms the column oriented swStore. This is due to the
presence of UNION SQL operators in the queries executed on the swStore while
RIBStore only requires a complete scan of the tuples of one relation.
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Fig. 4. Performance results for Q1 Fig. 5. Performance results for Q2

Fig. 6. Performance results for Q3 Fig. 7. Performance results for Q4

The conclusions of the analysis of Q1/Q2 and Q4 are confirmed even in the
presence of reasoning over the concept hierarchy. This is not surprising since
concept subsumption does not impact performance in swStore and RIBStore.

Finally, queries Q7, Q8 and Q9 emphasize the importance of reasoning over
the ontology before executing queries over any of the store solutions. Fig. 10
displays the duration times for all databases, ranging from approximately 42ms
(column store with 1 university) to 1450 ms (row store with 10 universities).
This can be considered rather long to propose empty answer set since, according
to the ontology, the query is incoherent. Comparatively, we have implemented a
simple generic method which scans the query and checks if the domain and/or
range of the selected property matches the concept introduced in the query as
a subject or object. This method executes in an average time of 1ms and only
depends on the ontology schema. Hence, a system implemented on top of an
RDFS compliant reasoner is able to determine almost instantly if the answer
set is empty. Moreover, it could also provide some explanations concerning the
lack of tuples in the answer. We believe that such optimization are quite useful
especially when end-users are not well aware of the details of the ontology.
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Fig. 8. Performance results for Q5 Fig. 9. Performance results for Q6

Fig. 10. Performance results for Q7
Fig. 11. Comparison of performance re-
sults of Q8 and Q9

The performance results of Q8 and Q9 are provided together in Fig. 11 in
order to highlight their comparisons. The purpose of Q8 and Q9 is to emphasize
the importance of analyzing property domain and range in a property table
approach. The execution of Q8 does not perform any optimizations while Q9
checks that the concept Faculty is the domain of the teacherOf property and
hence a join to the rdf:type relation is not necessary.

6 Conclusion

The first contribution of this paper is to propose a set of semantic query rewrit-
ing rules to support RDFS inferences when one wants to query RDF triples. This
contribution adapts to the vertically partitioned approach of [3] by enabling do-
main, range, sub class and sub property inferences. In a second contribution, we
extended the vertically partitioned approach with a third column correspond-
ing to a property in the presence of property hierarchies. This extension was
motivated by the fact that properties are first-class citizen in RDF and by the
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interesting performances obtained when inferences are required on these hier-
archies. Our new approach retains all the interesting properties presented in
[3], namely support for multi-valued attributes and heterogeneous records, only
properties accessed by a query are read, fewer unions and fast joins. Moreover,
by storing less relations (one for each property hierarchy instead of the size of
the property hierarchy), even less union and joins are needed. This is particu-
larly valuable in many practical queries and when data quality operations are
performed over the triple store.

In future works, we would like to extend our query rewriting rules to ontolo-
gies expressed in OWL and we would also like to consider other forms of storage
layers outside of the field of relational databases.
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