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Abstract—This paper deals with a dial-a-ride problem with
time windows applied to a demand responsive transport service.
An evolutionary approach as well as new original representa-
tion and variation operators are proposed and detailed. Such
mechanisms are used with three state-of-the-art multi-objective
evolutionary algorithms: NSGA-II, IBEA and SPEA2. After
introducing the general problem, the solution encoding and the
algorithm mechanisms are depicted. The approach is assessed
by applying the algorithms to both random and realistic dial-a-
ride instances. Then a statistical comparison is provided in order
to highlight the most suited evolutionary algorithms to optimize
real-life transportation problems.

Index Terms—Dial-a-ride, Demand responsive transport,
Multi-objective, Evolutionary algorithm, Optimization

I. INTRODUCTION

The demand responsive transport (DRT) is a transport

service which involves the satisfaction of a set of travel

requests. A request corresponds to a customer who wants

to be carried from a pick-up location to a delivery at a

predetermined time. In its usual form, DRT is related to the

dial-a-ride problem (DARP) or to the vehicle routing problem

(VRP), which both consist in optimizing the vehicles routes by

reducing the number of vehicles and the travel durations [1],

[2]. Nevertheless, the main differences between the DARP and

the VRP consist of the precedence constraints imposed by the

customer journeys and in their tolerance to the delays (quality

of service [3]). A DRT service is a specific case of the DARP,

the latter being the academical formulation of routing with

passengers.

Given that the DARP is NP -hard [1], we propose to use an

Evolutionary Algorithm (EA), which is known to efficiently

cope with scalable problems. Moreover, EAs can produce

multiple distinct solutions in a single run which could help

the decision making. Besides, the DARP involves antagonist

objectives which have to be optimized concurrently. Since

using an EA paired to a Pareto approach has already been

shown to efficiently solve multi-objective real-life problems

[4], [5], a Pareto approach is preferred in our application in

order to not hierarchize the criteria under study.

Although a lot of metaheuristic methods exist for solving

the DARP [6], [1], EA are generally used as single-criterion

optimization methods aggregating multiple objectives in order

to make the computation easier [7], [8], [9]. As far as we

know, only Chevrier [10] used a Pareto-based three-objectives

model to cope with the DARP with time window (DARPTW).

In this paper, a new encoding mechanism based on a two-

dimensional representation as well as original operators are

proposed for the DARPTW. They are integrated in three

state-of-the-art algorithms: the Non dominated Sorting Genetic

Algorithm II (NSGA-II) [11], Strength Pareto EA 2 (SPEA-

2) [12] and Indicator Based EA (IBEA) [13]. Then they are

applied to benchmark instances and pairwise compared.

The paper is organized as follows. The problem formulation

is described in Section II. In Section III, the evolutionary

multi-objective principles are introduced. Then we present the

proposed encoding used to represent the DARP, as well as

the variation operators, in Section IV. Experimental results

for Chevrier’s instances [10] are presented and discussed in

Section V. Finally, Section VI concludes the paper.

II. PROBLEM OVERVIEW

A. Definitions

First, we define a set of basic notations useful for the

remainder of the paper. Let r be a request and R the set of the

requests: r ∈ R. Let V denote the set of pick-up and delivery

locations. A request r is defined by: r+, r− the (resp.) pick-

up and delivery locations: {r+, r−} ∈ V ; hr+ the desired

pick-up time; wr the number of customers to be carried from

r+ to r−. The travel durations are stored in a matrix M . Let

x, y be two points and tx→y the travel duration from x to

y: tx→y = Mxy . Note that the matrix M is not necessarily

symmetrical: Mxy 6= Myx. Given a travel duration, we can

deduce a theoretical delivery time hr− = hr+ + tr+→r− .

B. Objectives

In the DRT service under study, we aim at minimizing three

objectives. The first (ϕ1) is economic and consists in minimiz-

ing the number of required vehicles. The second corresponds

to the duration reduction of the vehicle journeys (ϕ2) which

could correspond to an environmental objective in so far as

we look to limiting the emission of pollutants, and also in

expectation of a hypothetical ’carbon tax’. The last objective

minimizes the likely delays (quality of service: ϕ3). In the

remainder of the paper, Λ denotes the set of required vehicles,

t a duration, and d a delay.



C. Example

In the example of Figure 1, a DRT service must transport

two customers. Customer A wants to go from Point A+ to

Point A− at hA+ = 0, while Customer B wants to be carried

from B+ to B− at hB+ = 100. The matrix of durations

indicates the ’point to point’ durations (a line index indicates

the origin and a column the destination). Note that the service

proposed here is not ’door-to-door’ because it is more usual

to pick-up and deliver customers at predefined stops (those of

the public transport company)

Several solutions could be designed according to the objec-

tives under consideration. Each detailed solution has advan-

tages and drawbacks. Hence, Solution S1 requires two vehicles

(|Λ| = 2), whereas Solutions S2 and S3 need only one vehicle.

According to the economic point of view, S2 and S3 are better

than S1. However, this latter has no delay (
∑

d = 0) contrary

to S2 and S3 which have a few delay (resp. 140 and 150). If

we consider the quality of service only, S1 would be better

than S2 and S3. In the same way, the total durations spent in

traveling (
∑

t) indicate that S2 would be the best solution in

this case. Thus, these three solutions are incomparable if we

want to optimize all objectives concurrently [4]. Given that the

research of an optimal solution in a multi-criteria problem is

intractable [5], we propose a multi-objective algorithm based

on a Pareto approach.

A+

B+

A−

B−

A+ B+ A- B-

A+ 0 110 300 260

B+ 100 0 250 300

A- 300 255 0 130

B- 250 300 120 0

Matrix of durations

Sol. Itinerary and times (arrival/scheduled time) |Λ|
P

t
P

d

S1

v1 A+ A-

2 600 0
0/0 300/300

v2 B+ B-

100/100 400/400

S2
v1 A+ B+ B- A-

1 530 140
0/0 110/100 410/400 530/400

S3
v1 A+ B+ A- B-

1 490 150
0/0 110/100 360/300 490/400

Fig. 1. Example of a DARP instance with two customers and three solutions
S1, S2, S3.

D. Introduction of a delay tolerance

A usual DRT service uses the tolerance of the customers to

accept more or less delays. Making detours allows a vehicle to

group the customers more easily while producing a few delays.

In this perspective, we introduce a coefficient of relaxation kr

applied to the travel duration to define a maximal delivery

time. Let t′r+→r− be the slackened travel duration: t′r+→r− =
kr.tr+→r− . Consequently, the maximal delivery time h′

r− is

defined as follows: h′
r− = hr+ + t′r+→r− .

E. Introduction of time windows

In the case of VRP, time windows are generally used as

time slots to make delivery easier. In the case of DARP, a

time window facilitates the picking-up when a travel duration

slightly exceeds the picking-up time. With such a mechanism,

it is easier to bring together customers into the same vehicles.

So, a time window in a point r+ is denoted twr+ and is

proportional to the theoretical travel duration to the point r−:

twr+ = kw.tr+→r− , where kw is a coefficient indicating the

percentage of the duration allocated to the time window.

F. Constraints

The flexibility is introduced by using relaxation and time

windows while authorizing delays on the travels. Nevertheless,

for limiting delays and for keeping a good quality of service,

the likely delays must be limited by adding a set of constraints.

Firstly, it is necessary to define what a feasible travel is. We

denote x, y two arbitrary points to be potentially connected

and Hx the effective starting time at Point x. Indeed, there

may be some accumulated delays that Hx takes into account.

Two cases may happen:

• if y is a picking-up point then the travel from x to y is

feasible iff Hx + tx→y ≤ hy + twy

• if y is a delivery point then the travel from x to y is

feasible iff Hx + tx→y ≤ h′
y

Note that H is evaluated after each travel between two points

and depends on the travel durations and whether the vehicle

arrives before or after a theoretical starting time. Therefore,

two cases may arise for determining Hy , which corresponds

to the effective time in Point y coming from Point x:

• Hx + tx→y < hy ⇒ Hy = hy;

• Hx + tx→y ≥ hy ⇒ Hy = Hx + tx→y

After calculating the effective visiting time, it is possible to

evaluate the delay at a delivery point. A delay d corresponds

to the difference between H and the theoretical arrival time,

thus in a delivery point y:

dy =

{

Hy − hy if Hy > hy

0 otherwise.

III. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

A. Multi-objective Optimization

A general Multi-objective Optimization Problem (MOP) can

be defined by a set of n objective functions (f1, f2, . . . , fn),
a set X of feasible solutions in the decision space, and a

set Z of feasible points in the objective space. Without loss of

generality, we here assume that each objective function is to

be minimized. To each solution x ∈ X is assigned an objective

vector z ∈ Z on the basis of the vector function f : X → Z

with z = f(x) = (f1(x), f2(x), . . . , fn(x)) as illustrated by

Figure 2. An objective vector z ∈ Z is said to dominate1

another objective vector z′ ∈ Z iff ∀i ∈ {1, 2, . . . , n}, zi ≤ z′i
and ∃j ∈ {1, 2, . . . , n} such as zj < z′j . An objective vector

z ∈ Z is said to be non-dominated iff there does not exist

another objective vector z′ ∈ Z such that z′ dominates z. A

solution x ∈ X is said to be efficient if its mapping in the

objective space results in a non-dominated point. The set of

all efficient solutions is the efficient set, denoted by XE . The

1We will also say that a decision vector x ∈ X dominates a decision vector
x′
∈ X if f(x) dominates f(x′).



set of all non-dominated vectors is the Pareto front, denoted

by ZN . A possible approach in MOP solving is to find the

minimal set of efficient solutions, i.e. one solution x ∈ XE

for each non-dominated vector z ∈ ZN such as f(x) = z.

However, generating the entire efficient set is usually infeasible

due to the complexity of the underlying problem. Therefore,

the overall goal is often to identify a good approximation of

it. EAs are commonly used to this end as they are able to find

multiple and well-spread non-dominated solutions in a single

simulation run [4].

x
1

x
2 2

y

1
y

y
3

Decision space Objective space

Fig. 2. Representation of a solution (x1, x2) in the decision space and the
corresponding values in the objective space: (y1, y2, y3) = f(x1, x2).

B. Evolutionary Multi-objective Algorithms

1) NSGA-II: [11] is probably the most widely used multi-

objective resolution method. At each NSGA-II generation,

solutions from the current population are ranked into several

classes. Individuals mapping to vectors from the first front

all belong to the best efficient set; individuals mapping to

vectors from the second front all belong to the second best

efficient set; and so on. Two values are then assigned to the

population members. The first one corresponds to the rank the

corresponding solution belongs to, and represents the quality

of the solution in terms of convergence. The second one,

the crowding distance, consists in estimating the density of

solutions surrounding a particular point of the objective space,

and represents the quality of the solution in terms of diversity.

A solution is said to be better than another one if it has a best

rank value, or in case of equality, if it has the best crowding

distance. The selection strategy is a deterministic tournament

between two random solutions. At the replacement step, only

the best individuals survive, with respect to a predefined

population size. Furthermore, note that, in addition to the

original NSGA-II, we add an external population, the so-called

archive, in order to store the whole set of potentially efficient

solutions found during the search.
2) IBEA: [13] is a more recent method that is a good illus-

tration of the new trend dealing with indicator-based search,

and started to become popular in recent years. The main idea

of IBEA is to introduce a total order between solutions by

means of a binary quality indicator. Its fitness assignment

scheme is based on a pairwise comparison of solutions from

the current population with regards to an arbitrary indicator I .

To each individual x is assigned a fitness value F (x) measur-

ing the ’loss in quality’ if x was removed from the current

population P , i.e. F (x) =
∑

x′∈P\{x}(−e−I(x′,x)/κ), where

κ > 0 is a user-defined scaling factor. Different indicators can

be used for such a purpose, and we choose to use the binary

additive ǫ-indicator (Iǫ+) as defined in [13]. Iǫ+(x, x′) gives

the minimum value by which a solution x ∈ X has to or

can be translated in the objective space to weakly dominate

another solution x′ ∈ X . Selection for reproduction consists

of a binary tournament between randomly chosen individuals.

Selection for replacement consists in iteratively removing the

worst solution from the current population until the required

population size is reached; fitness information of the remaining

individuals is updated each time there is a deletion. Similarly,

we added an archive to store non-dominated solutions in order

to prevent their loss during the stochastic search process.

3) SPEA2: [12] is an extension of SPEA, where an im-

proved fitness assignment strategy is proposed. It intrinsically

handles an internal archive of fixed size that is used during

the selection step to create offspring solutions. At a given

iteration of SPEA2, to each population and archive member

x is assigned a strength value S(x) representing the number

of solutions it dominates. Then, the fitness value F (x) of

solution x is calculated by summing the strength values of

all individuals solution x currently dominates. Additionally,

a diversity preservation strategy, based on a nearest neighbor

technique, is incorporated. The selection step consists of a

binary tournament with replacement applied on the internal

archive only. At last, given that the SPEA2 archive has a

fixed size storage capacity, a bounding mechanism, based on

fitness and diversity information, is used when the size of

the non-dominated set is too high. On the contrary, when the

size of the non-dominated set is too small, some dominated

solutions are allowed to be incorporated. As well, we added

an external archive to store the whole set of non-dominated

solutions found during the search.

IV. APPLICATION TO THE DARPTW

A. Solution encoding and initialization

1) Representation: The main idea of the representation is

to simplify the reading of the vehicle routes. So, we use a

two-dimensional representation (not a matrix but a vector of

vectors), in which a gene corresponds to a single vehicle route

(one vector). The sequence of data literally indicates the order

of the points traversed by a vehicle. In order to ensure the

points precedence, a cell indicates a request identifier and not

the point itself in such a way that we can retrieve the associated

point by counting the number of times the corresponding

request identifier is encountered. If a request r appears for

the first time, it is necessarily the pick-up point r+, otherwise

it is the delivery point r−. Given that there are two points per

request, a gene has necessarily an even number of cells.

The examples of Figures 3(b,c,d) are solutions to a

DARPTW instance (Fig. 3(a)). For each solution, the associ-

ated encoding is depicted. Each gene i is a vector translating

the route of vehicle vi. The order of the cell values indicates

the sequence of the points visited by a vehicle, such as in the



example 3(b), where the sequence (A, B,A, C, B, C) is the

counterpart of the path (A+, B+, A−, C+, B−, C−).

A+

B+

A−

B−

C+

C−

A+

B+

A−

B−

C+

C−

(a) Initial problem (b) One vector

v1 A B A C B C

A+

B+

A−

B−

C+

C−

A+

B+

A−

B−

C+

C−

(c) Three vectors (d) Two vectors

v1 A A v1 B B C C

v2 B B v2 A A

v3 C C

Fig. 3. Examples of solution encoding: (a) Initial problem with three
customers A, B, C, (b) a solution with one vehicle (one vector), (c) a solution
with three vehicles (three vectors), (d) a solution with two vehicles (two
vectors).

2) Population initialization: The population is composed

of N feasible solutions. To be sure of their feasibility we

assign one request per vehicle, so that |Λ| = |R|. Hence,

the previous DARP instance (Fig. 3(a)) requires three vehicles

and the population P = {Si} could be initialized as follows:
S1 S2 S3 S4

v1 A A C C A A B B

v2 C C A A B B A A

v3 B B B B C C C C

B. Evaluation

The evaluation function Φ = (ϕ1, ϕ2, ϕ3) applied to a solu-

tion S computes three values corresponding to the respective

objectives:

• ϕ1 = min |Λ|;
• ϕ2 = min

∑

v∈Λ tv , that is the minimization of the sum

of each vehicle route duration tv (tv corresponds to the

amount of each travel duration between each point visited

by Vehicle v);

• ϕ3 = min
∑

v∈Λ dv , that is the minimization of the

amount of each vehicle delay dv (dv equals to the sum

of each delay at arrivals (delivery points)).

If a solution is not feasible and marked as wrong, its score

is penalized in such a way that the solution is unlikely to be

kept in the next population.

C. Crossover

The crossover aims at producing new individuals (offspring)

from two individuals of the current population (parents). Let

P1, P2 be two parents in the population and C1, C2 two

solutions built from P1, P2. C1 (resp. C2) is the copy of P1

(resp. P2) with elements from P2 (resp. P1).

After creating C1, the next step consists in randomly choos-

ing a gene of P2 at position λ (vector vλ). vλ contains the

values that will be reassigned to C1. But, in order to avoid

duplicated data, the values of C1 matching those of vλ are

removed. Then, the data of vλ can be inserted in Gene λ at a

random position α of C1.

In the example of Figure 4, Vector v1 of P2 is randomly

chosen (α = 1) and the values (C C) have to be assigned

to the counterpart vector of C1. These values are randomly

inserted into Vector v1 of C1 and removed from Vector v2.

If the solutions to be crossed do not have the same size, i.e.

the vector to be filled does not exist, a new vector is created

before filling it. Producing C2 follows the same process by

inverting P1 and P2.

Copying P1 and choosing v1 Assigning (C C) to v1

C1 = P1 P2

⇒

C1

v1 B A A B C C B A C A C B

v2 C C D D A D D A D D

v3 B B

Fig. 4. Example of crossover of two solutions P1, P2 for producing a new
individual C1.

D. Mutation

The mutation generally aims at bringing diversity into a

population and prevents the population to converge towards

local optima. Our operator mixes two mechanisms, each one

used in half cases:

• an analogy to the well-known 2-OPT exchange operator,

which reverses a sequence of values (random size) of

a randomly chosen gene (Fig. 5(a)). For example a

sequence (C A C B) becomes (B C A C);

• a shifting of a random customer from a vector to another

(Fig. 5(b)), the pair values are randomly inserted in the

host vector.

(a) Analogy to the 2-OPT operator

C1

⇒
C′

1

B A C A C B B A B C A C

D D D D

(b) Shifting of one customer

C1

⇒
C′′

1

B A C A C B A C A C

D D B D B D

Fig. 5. Example of mutation of chromosome C1 into chromosome C′

1
and

C′′

1

V. EXPERIMENTAL RESULTS

A. Benchmark Test Instances

Two sets of instances are used to evaluate our modeling

on existing algorithms. Each instance has 100 trips and is

built on geographically realistic data [10]. All picking-up

or delivery locations are geolocalized stops and the shortest

duration matrix M is built using a GIS2.

The first set, denoted ’Rnd100’, is composed of 10 randomly

generated instances, whereas the instances of the second set,

named ’Gravit100’, are generated by a geographical model of

flows. The ’gravity model’ [14], as well as other interaction

models, allows to quantify people flows in a geographical

2Geographical Information System



space according to a calibration based on inhabitant densities,

the time dimension...

Set ’Rnd100’ has instances with an almost homogeneous

distribution of customers while set ’Gravit100’ has instances

with a non-homogeneous distribution representing flows be-

tween 8:00am and 9:00am. This effect results from the ex-

istence of attractive areas, which draw most flows instead of

less attractive areas such as residential downtowns which are

rather emission areas.

The algorithms the most suited to real-life applications can

be highlighted by using realistic instances. Indeed, optimizing

transport applications need efficient and robust algorithms.

B. Parameter Setting and Performance Assessment

The population of 100 individuals evolves over 10, 000
generations. Crossover (xr) and mutation (mr) rates are re-

spectively set to xr = 0.9 and mr = 0.5.

In addition, specific parameters exist for some algorithms.

Hence, SPEA2 requires an internal archive whose size is fixed

to 100 individuals. Following [13], the scaling factor κ of

IBEA is set to 0.05.

A set of 20 runs per instance has been performed for

each EA by using the ParadisEO-MOEO framework [15]. In

order to evaluate the quality of the approximations for every

instance we solved, we follow the protocol proposed in [16].

For a given instance, let Zall denote the union of the outputs

we obtained during all our experiments. We first compute

a reference set Z⋆
N containing all the non-dominated points

of Zall. Second, we define zmin = (zmin
1 , . . . , zmin

n ) and

zmax = (zmax
1 , . . . , zmax

n ), where zmin
k (resp. zmax

k ) denotes

the lower (resp. upper) bound of the kth objective for all the

points contained in Zall. In order to give a roughly equal

range to the objective functions, values are normalized with

respect to zmin and zmax. Then, to measure the quality of an

output set A in comparison to Z⋆
N , we compute the difference

between these two sets by using the unary hypervolume

metric [17], zmax being the reference point. The hypervolume

difference indicator (I−H ) computes the portion of the objective

space that is dominated by Z⋆
N and not by A. Furthermore,

we also consider the additive ǫ-indicator proposed in [17]. The

unary additive ǫ-indicator (I1ǫ+) gives the minimum factor by

which an approximation A has to be translated in the objective

space to dominate the reference set Z⋆
N . Note that both I−H -

and I1ǫ+-values are to be minimized.

Thus, for each test instance, we obtain 20 I−H measures and

20 Iǫ+ measures corresponding to the 20 simulation runs per

algorithm. Once all these values are computed, we perform a

statistical analysis for a pairwise comparison of methods. To

this end, we use the Wilcoxon signed rank test. For a given

test instance, and with respect to a p-value of 0.05 and to

the metric under consideration, this statistical test reveals if

the sample of approximation sets obtained by a given search

method is significantly better than the one of another search

method, or if there is no significant difference between both

of them.

C. Results and Discussion

Table I details a statistical comparison of each algorithm

vs each other (symbols ≺, ≻, ≡ resp. indicate that the

algorithm of a specific row is significantly ’better’, ’worse’ or

’equivalent’ than the one of a specific column). The obtained

results confirm that NSGA-II and IBEA are globally equivalent

according to I−H , but that NSGA-II is always better (or at least

equivalent) than IBEA according to I1ǫ+. SPEA2 is always

outperformed by the other methods. Thus, it appears that

NSGA-II is better than both IBEA and SPEA2 for optimizing

randomly generated instances of DARPTW.

Table II is the counterpart for the realistic instances. Con-

trary to Table I, IBEA is shown to be the best algorithm

with respect to both I−H and I1ǫ+ metrics (except for instance

Rnd100-4). These unambiguous results indicate that IBEA is

the most efficient (or at least equivalent) algorithm for opti-

mizing realistic DARPTW instances while comparing pairwise

algorithms. If we focus on the comparison of the two other

algorithms, we see that SPEA2 is always better than NSGA-

II with respect to I−H , while they are almost equivalent with

respect to I1ǫ+.

The main differences between the two kinds of instances are

the densities of customers on the territory. Given the level of

homogeneity of the distribution of the requests, the algorithms

differently cope with the clustering effects. Hence, it seems

that IBEA which uses a selection by indicator, appears to be

more robust to the clustering effects due to the heterogeneous

distribution of the customers.

VI. CONCLUSION AND PERSPECTIVES

This paper is devoted to solve a DARPTW applied to a

Demand Responsive Transport service. After having reminded

the general problem, an original evolutionary multi-objective

approach was presented. Thanks to the Pareto-dominance

principles, our approach is capable to build a set of distinct

solutions for helping decision makers. To fit the evolutionary

algorithms to be compared, a specific representation and

variation operators were developed.

The candidate algorithms are: NSGA-II, IBEA and SPEA2.

They were performed on two sets of transport instances. The

first set is composed of random instances and the second of

realistic instances. Such instances allow to assess the algorithm

efficiency to cope with real-life applications.

The analysis of the results underline the more or less

adapted behavior of the algorithms. It results of this compara-

tive study that NSGA-II generally seems to be more efficient

than IBEA for the random instances and SPEA2 is always

outperformed by its counterparts. However, if we focus on the

realistic instances, the results are opposite and bring to light

that IBEA is the best algorithm for solving realistic DARPTW.

Given that the algorithms are sensitive to the distribution of

customers and flows, a preemptive and relevant work would

be to integrate the geographical dimension. Indeed, the better

results obtained by IBEA on the realistic instances invite us

to take this dimension into account.



We believe that future research on more robust multi-

objective evolutionary algorithms applied to real-life problems

such as transportation will intensify. Moreover, the experi-

ments on realistic instances indicate the algorithm sensibility

to a specific topology. Then, it is necessary to evaluate

the algorithms behavior according to the problem structures.

Besides, an uncertainty integration [18] in the method will

help us to develop dynamic DARPTW services.
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[6] O. Bräysy, W. Dullaert, and M. Gendreau, “Evolutionary algorithms for
the vehicle routing problem with time windows,” Journal of Heuristics,
vol. 10, pp. 587–611, 2004.

[7] R. Chevrier, P. Canalda, P. Chatonnay, and D. Josselin, “Comparison
of three algorithms for solving the convergent demand responsive
transportation problem,” in ITSC’2006, 9th Int. IEEE Conf. on Intelligent

Transportation Systems, Toronto, Canada, Sep. 2006, pp. 1096–1101.
[8] R. Jørgensen, J. Larsen, and K. Bergsvindottir, “Solving the dial-a-ride

problem using genetic algorithms,” Journal of the Operational Research

Society, vol. 58, pp. 1321–1331, 2007.
[9] C. Cubillos, N. Rodriguez, and B. Crawford, Bio-inspired Modeling of

Cognitive Tasks, ser. Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer, 2007, ch. A Study on Genetic Algorithms for the
DARP Problem, pp. 498–507.

[10] R. Chevrier, “Optimization of demand responsive transport in polarized
territories,” Ph.D. dissertation, UMR ESPACE (CNRS 6012), University
of Avignon (France), november 2008, 244 p.

[11] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, Parallel Problem

Solving from Nature PPSN VI. Berlin/Heidelberg: Springer, 2000, vol.
1917/2000, ch. A Fast Elitist Non-dominated Sorting Genetic Algorithm
for Multi-objective Optimization: NSGA-II, pp. 849–858.

[12] E. Zitzler, M. Laumanns, and L.Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm,” Computer Engineering and Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland, Tech. Rep. 103, 2001.

[13] E. Zitzler and S. Künzli, Parallel Problem Solving from Nature - PPSN

VIII. Berlin/Heidelberg: Springer, 2004, vol. 3242/2004, ch. Indicator-
Based Selection in Multiobjective Search, pp. 832–842.

[14] P. Haggett, Locational Analysis in Human Geography. London: Edward
Arnold, 1977, 2nd edition, Volume I: ”Locational Models” (298 pages)
and Volume II: ”Locational Methods” (346 pages).

[15] A. Liefooghe, L. Jourdan, and E.-G. Talbi, “A unified model for
evolutionary multiobjective optimization and its implementation in a
general purpose software framework: ParadisEO-MOEO,” INRIA, Re-
search Report RR-6906, 2009.

[16] J. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the performance
assessment of stochastic multiobjective optimizers,” Computer Engineer-
ing and Networks Laboratory (TIK), ETH Zurich, Switzerland, Tech.
Rep., 2006, (revised version).

[17] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. Grunert
da Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, 2003.

[18] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments - a survey,” IEEE Transactions on Evolutionary Computation,
vol. 9, pp. 303–317, 2005.

TABLE I
STATISTICAL COMPARISON FOR RANDOMLY GENERATED INSTANCES.

I
−

H
I1
ǫ+

NII I S2 NII I S2

R0 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≡
S2 ≺ ≺ - ≺ ≡ -

R1 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≻
S2 ≺ ≺ - ≺ ≺ -

R2 NII - ≡ ≻ - ≡ ≻
I ≡ - ≻ ≡ - ≻
S2 ≺ ≺ - ≺ ≺ -

R3 NII - ≺ ≻ - ≻ ≻
I ≻ - ≻ ≺ - ≻
S2 ≺ ≺ - ≺ ≺ -

R4 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≺
S2 ≺ ≺ - ≺ ≻ -

R5 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≡
S2 ≺ ≺ - ≺ ≡ -

R6 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≡
S2 ≺ ≺ - ≺ ≡ -

R7 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≡
S2 ≺ ≺ - ≺ ≡ -

R8 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≻
S2 ≺ ≺ - ≺ ≺ -

R9 NII - ≡ ≻ - ≻ ≻
I ≡ - ≻ ≺ - ≡
S2 ≺ ≺ - ≺ ≡ -

For each instance, the algorithms are opposed and compared by twos (NII:
NSGA-II, I: IBEA, S2: SPEA2); Instance Ri indicates instance Rnd100-i

TABLE II
STATISTICAL COMPARISON FOR REALISTIC INSTANCES.

I
−

H
I1
ǫ+

NII I S2 NII I S2

G0 NII - ≺ ≺ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≻ ≺ - ≡ ≺ -

G1 NII - ≺ ≡ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≡ ≺ - ≡ ≺ -

G2 NII - ≺ ≺ - ≺ ≺
I ≻ - ≻ ≻ - ≻
S2 ≻ ≺ - ≻ ≺ -

G3 NII - ≺ ≡ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≡ ≺ - ≡ ≺ -

G4 NII - ≺ ≡ - ≡ ≻
I ≻ - ≻ ≡ - ≡
S2 ≡ ≺ - ≺ ≡ -

G5 NII - ≺ ≺ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≻ ≺ - ≡ ≺ -

G6 NII - ≺ ≺ - ≺ ≺
I ≻ - ≻ ≻ - ≻
S2 ≻ ≺ - ≻ ≺ -

G7 NII - ≺ ≡ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≡ ≺ - ≡ ≺ -

G8 NII - ≺ ≡ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≡ ≺ - ≡ ≺ -

G9 NII - ≺ ≺ - ≺ ≡
I ≻ - ≻ ≻ - ≻
S2 ≻ ≺ - ≡ ≺ -

For each instance, the algorithms are opposed and compared by twos (NII:
NSGA-II, I: IBEA, S2: SPEA2); Instance Gi indicates instance Gravit100-i


