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with an Evolutionary Multi-Objective Approach
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Abstract—This paper deals with a dial-a-ride problem with
time windows applied to a demand responsive transport service.
An evolutionary approach as well as new original representa-
tion and variation operators are proposed and detailed. Such
mechanisms are used with three state-of-the-art multi-objective
evolutionary algorithms: NSGA-II, IBEA and SPEA2. After
introducing the general problem, the solution encoding and the
algorithm mechanisms are depicted. The approach is assessed
by applying the algorithms to both random and realistic dial-a-
ride instances. Then a statistical comparison is provided in order
to highlight the most suited evolutionary algorithms to optimize
real-life transportation problems.

Index Terms—Dial-a-ride, Demand responsive transport,
Multi-objective, Evolutionary algorithm, Optimization

I. INTRODUCTION

The demand responsive transport (DRT) is a transport ser-
vice which involves the satisfaction of a set of travel requests.
A request corresponds to a customer to be carried from a
pick-up location to a delivery at a predetermined time. In its
usual form, DRT is related to the dial-a-ride problem (DARP)
or to the vehicle routing problem (VRP) which both consist
in optimizing the vehicles routes by reducing the number of
vehicles and the travel durations [1], [2]. Nevertheless, the
main differences between the DARP and the VRP consist of
the precedence constraints imposed by the customer journeys
and their tolerance to the delays (quality of service [3]). A
DRT service is a specific case of the DARP, the latter being
the academical formulation of routing with passengers.

The DARP involves antagonist objectives which have to be
optimized concurrently. That is why the proposed approach has
to cope with a multi-objective problem in which the criteria
under study are not hierarchized. Furthermore, since the DARP
is N P-hard [1], we propose to use an Evolutionary Algorithm
(EA) which is known to efficiently cope with scalable prob-
lems. Besides, an EA can produce multiple distinct solutions
in a single run which could help the decision making. Given
that it is almost unlikely to have a single optimal solution in a
multi-criteria problem [4], the multi-objective algorithm has
to deal with a set of incomparable solutions. In this case,
a Pareto approach is preferred for assessing incomparable
solutions. Moreover using an EA paired to a Pareto approach
has already been shown to efficiently solve multi-objective
real-life problems [5], [4].
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Although a lot of metaheuristic methods exist for solving
the DARP [6], [1], EA are generally used as single-criterion
optimization methods aggregating multiple objectives in order
to make the computation easier so that a single solution has
to be found [7], [8], [9]. As far as we know, only Chevrier
[10] used a Pareto-based three-objectives model to cope with
the DARP with time windows (DARPTW).

In this paper, a new encoding mechanism based on a two-
dimensional representation as well as original operators are
proposed for the DARPTW. They are integrated in three
state-of-the-art algorithms: the Non dominated Sorting Genetic
Algorithm II (NSGA-II) [11], Strength Pareto EA 2 (SPEA-
2) [12] and Indicator Based EA (IBEA) [13]. Then they are
applied to benchmark instances and pairwise compared.

The paper is organized as follows. The problem formu-
lation is described in Section II. Section III introduces the
evolutionary multi-objective principles. Then the proposed
encoding to represent the DARP, as well as the variation
operators, are presented in Section IV. Experimental results
for Chevrier’s instances [10] are provided and discussed in
Section V. Finally, Section VI concludes the paper.

II. PROBLEM OVERVIEW
A. Formulation

The multi-objective problem (MOP) under study needs to be
formulated as a set of three objective functions to be achieved
(f = (f1,f2, f3)) and a set of constraints to be taken into
account. The problem solving is based on specific parameters
such as a relaxation and time windows which introduce more
tolerance to slight delays and hence flexibility. For helping
the reader, the symbols used in the paper are summarized in
Table I. Since the DRT problem contains a DARPTW, the
reader can refer to [1] to have a mathematical model. Due to
the lack of space in the paper, we only detail the specificities
of the DRT problem and its multi-objective formulation.
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TABLE I
DEFINITION OF SYMBOLS USED FOR THE DARPTW

Input data
Objective function
Set of the used vehicles
Set of the pick-up (V1) and delivery (V' ™) points
such that V. =Vt uv-
Arbitrary points such that {z,y} € V
Travel duration from x to y
Delay at a point x
Set of the requests
A request such that » € R
Pick-up (resp. delivery) point of the request r
such that r+ e VT, r~ e V—

<P

8
<

z—y

8

‘K:UQ..

rt (resp. v )

r* One point of request 7: 7* = {r+|r~}
Wy Number of people of request 7 to be carried
v A vehicle. At a point z, it is denoted: v,
Qv Capacity of vehicle v, v € A
h,+ Desired pick-up time
h,.— Theoretical arrival time
k, Relaxation coefficient
Kw Coefficient for the time windows

Variables
to Amount of each travel duration

between each point visited by vehicle v

dy Sum of each delay of vehicle v at delivery points
Do Number of passengers in vehicle v
Hy, Effective arrival time at a point x
twy Time window at a point x

B. Objectives

In the DRT service under study, we aim at minimizing
three objectives. The first (f1) is economic and consists in
minimizing the number of required vehicles (eq. (2)). The
second corresponds to the duration reduction of the vehicle
journeys (f2, eq. (3)) which could correspond to an environ-
mental objective in so far as we look to limiting the emission
of pollutants, and also in expectation of a hypothetical carbon
tax. The last objective minimizes the likely delays (quality of
service: f3, eq. (4)).

C. Introduction of delay tolerance and time windows

A usual DRT service uses the tolerance of the customers to
accept more or less delays. Making detours allows a vehicle to
group the customers more easily while producing a few delays.
To model these delays, we introduce a coefficient of relaxation
k. applied to the travel duration to define a maximal delivery
time. Let ¢/, _ be the slackened travel duration when &, >

1:t!, = kpt.+_,-. Consequently, the maximal delivery
time h/ _ is defined as follows: h/_ = h,+ +t/,

In the case of VRP, time windows are generally used as
time slots to make delivery easier. In the case of DARP, a
time window facilitates the picking-up when a travel duration
slightly exceeds the picking-up time. With such a mechanism,
it is easier to bring together customers into a same vehicle.
So, a time window at a point T is denoted tw,+ and is
proportional to the theoretical travel duration to the point 7~ :
tw,+ = ky.t.+_,—, where k,, is a coefficient indicating the
percentage of the duration allocated to the time window.

D. Constraints

The flexibility is introduced by using relaxation and time
windows while authorizing delays on the travels. Nevertheless,
for limiting delays and for keeping a good quality of service,
the likely delays must be limited by adding a set of constraints.
Firstly, it is necessary to define what a feasible travel is. We
denote x,y two arbitrary points to be potentially connected
and H, the effective starting time at Point x. Indeed, there
may be some accumulated delays that H, takes into account.
The travel from zx to y is feasible iff:

Hy + 1oy < hy +twy
Hy+tey < hy

ifyeV™*
ifyeV~

Note that H is evaluated after each travel between two
points and depends on the travel durations and whether the
vehicle arrives before or after a theoretical starting time.
Therefore, two cases may arise for determining H, which
corresponds to the effective time at Point y coming from Point

x. L
_ Y

After calculating the effective visiting time, it is possible to
evaluate the delay at a delivery point. A delay d corresponds
to the difference between H and the theoretical arrival time,
thus in a delivery point y, the delay d,, is defined as follows

{ Hy—h, if H,>h,
d, =

if Hy +1py < hy
otherwise.

0 otherwise.

The number of passengers in a vehicle is indicated by
Py (initially, p, = 0). p, is updated whenever customers
are delivered or picked-up. In this latter case, the capacity
constraint must be checked if customers (w,.) are picked-up at
a point 77 p, +w, < Q,

III. EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION
A. Multi-objective Optimization

A general MOP can be defined by a set of n objective
functions (f1, f2,..., fn), a set X of feasible solutions in
the decision space, and a set Z of feasible points in the
objective space. Without loss of generality, we here assume
that each objective function is to be minimized. To each
solution x € X is assigned an objective vector z € Z
on the basis of the vector function f : X — Z with
z = f(x) = (fi(x), fa(x),..., fn(x)) as illustrated by Figure
1. An objective vector z € Z is said to dominate' another
objective vector 2/ € Z iff Vi € {1,2,...,n}, z; < z} and
3j € {1,2,...,n} such as z; < z}. An objective vector
z € Z is said to be non-dominated iff there does not exist
another objective vector 2z’ € Z such that 2z’ dominates z. A
solution z € X is said to be efficient if its mapping in the
objective space results in a non-dominated point. The set of
all efficient solutions is the efficient set, denoted by X . The
set of all non-dominated vectors is the Parefo front, denoted

'We will also say that a decision vector € X dominates a decision vector
x’ € X if f(z) dominates f(z’).



by Zn. A possible approach in MOP solving is to find the
minimal set of efficient solutions, i.e. one solution x € Xg
for each non-dominated vector z € Zy such as f(z) = z.
However, generating the entire efficient set is usually infeasible
due to the complexity of the underlying problem. Therefore,
the overall goal is often to identify a good approximation of
it. EAs are commonly used to this end as they are able to find
multiple and well-spread non-dominated solutions in a single
simulation run [5].

Decision space

Objective space

*1 V1

Fig. 1. Representation of a solution (z1,x2) in the decision space and the
corresponding values in the objective space: (y1,y2,y3) = f(z1,z2).

B. Evolutionary Multi-objective Algorithms

1) NSGA-II: [11] is probably the most widely used multi-
objective resolution method. At each NSGA-II generation,
solutions from the current population are ranked into several
classes. Individuals mapping to vectors from the first front
all belong to the best efficient set; individuals mapping to
vectors from the second front all belong to the second best
efficient set; and so on. Two values are then assigned to the
population members. The first one corresponds to the rank the
corresponding solution belongs to, and represents the quality
of the solution in terms of convergence. The second one,
the crowding distance, consists in estimating the density of
solutions surrounding a particular point of the objective space,
and represents the quality of the solution in terms of diversity.
A solution is said to be better than another one if it has a best
rank value, or in case of equality, if it has the best crowding
distance. The selection strategy is a deterministic tournament
between two random solutions. At the replacement step, only
the best individuals survive, with respect to a predefined
population size. Furthermore, note that, in addition to the
original NSGA-II, we add an external population, the so-called
archive, in order to store the whole set of potentially efficient
solutions found during the search.

2) IBEA: [13] is a more recent method that is a good illus-
tration of the new trend dealing with indicator-based search,
and started to become popular in recent years. The main idea
of IBEA is to introduce a total order between solutions by
means of a binary quality indicator. Its fitness assignment
scheme is based on a pairwise comparison of solutions from
the current population with regards to an arbitrary indicator I.
To each individual x is assigned a fitness value F'(x) measur-
ing the ’loss in quality’ if = was removed from the current

population P, ie. F(z) = Zw,ep\{x}(fefl(“’l’x)/“), where
k > 0 is a user-defined scaling factor. Different indicators can
be used for such a purpose, and we choose to use the binary
additive e-indicator (I ) as defined in [13]. L4 (x,2’) gives
the minimum value by which a solution z € X has to or
can be translated in the objective space to weakly dominate
another solution 2’ € X. Selection for reproduction consists
of a binary tournament between randomly chosen individuals.
Selection for replacement consists in iteratively removing the
worst solution from the current population until the required
population size is reached; fitness information of the remaining
individuals is updated each time there is a deletion. Similarly,
we added an archive to store non-dominated solutions in order
to prevent their loss during the stochastic search process.

3) SPEA2: [12] is an extension of SPEA, where an im-
proved fitness assignment strategy is proposed. It intrinsically
handles an internal archive of fixed size that is used during
the selection step to create offspring solutions. At a given
iteration of SPEA2, to each population and archive member
x is assigned a strength value S(x) representing the number
of solutions it dominates. Then, the fitness value F(x) of
solution x is calculated by summing the strength values of
all individuals solution x currently dominates. Additionally,
a diversity preservation strategy, based on a nearest neighbor
technique, is incorporated. The selection step consists of a
binary tournament with replacement applied on the internal
archive only. At last, given that the SPEA2 archive has a
fixed size storage capacity, a bounding mechanism, based on
fitness and diversity information, is used when the size of
the non-dominated set is too high. On the contrary, when the
size of the non-dominated set is too small, some dominated
solutions are allowed to be incorporated. As well, we added
an external archive to store the whole set of non-dominated
solutions found during the search.

IV. APPLICATION TO THE DARPTW
A. Solution encoding and initialization

1) Representation: The main idea of the representation is
to simplify the reading of the vehicle routes. So, we use a
two-dimensional representation (not a matrix but a vector of
vectors) in which a gene corresponds to a single vehicle route
(one vector). The sequence of data literally indicates the order
of the points traversed by a vehicle. In order to ensure the
points precedence, a cell indicates a request identifier and not
the point itself in such a way that we can retrieve the associated
point by counting the number of times the corresponding
request identifier is encountered. If a request r appears for
the first time, it is necessarily the pick-up point r*, otherwise
it is the delivery point . Given that there are two points per
request, a gene has necessarily an even number of cells.

The examples of Figures 2(b,c,d) are solutions to a
DARPTW instance (Fig. 2(a)). For each solution, the associ-
ated encoding is depicted. Each gene ¢ is a vector translating
the route of vehicle v;. The order of the cell values indicates
the sequence of the points visited by a vehicle, such as in the



example 2(b), where the sequence (A, B, A,C, B,C) is the
counterpart of the path (A*, BT, A~ C*t B~ ,C™).

@

(b) One vector
vy ABACBC

(c) Three vectors (d) Two vectors

v1 AA vy BBCC
v2 BB vy A A
’U‘;CC

Fig. 2. Examples of solution encoding: (a) Initial problem with three
customers A, B, C, (b) a solution with one vehicle (one vector), (c) a solution
with three vehicles (three vectors), (d) a solution with two vehicles (two
vectors).

2) Population initialization: The population is composed
of N feasible solutions. To be sure of their feasibility we
assign one request per vehicle, so that |A| = |R|. Hence,
the DARP instance (Fig. 2(a)) requires three vehicles and
the population P = {S;} could be initialized as follows:

S1 So S3 S4
V1 AA CcC AA BB
Vo CcC AA BB A A
vs | BB | BB | cC | cC

B. Evaluation

The evaluation function f = (f1, f2, f3) applied to a solu-
tion S computes three values corresponding to the respective
objectives:

e fi =min|Al;

o fo=min}_ _,t,, that is the minimization of the sum

of each vehicle route duration ¢,,.

e fs = min})  _,d,, that is the minimization of the

amount of each vehicle delay d,,.

If a solution is not feasible and marked as wrong, its score
is penalized in such a way that the solution is unlikely to be
kept in the next population.

C. Crossover

The crossover aims at producing new individuals (offspring)
from two individuals of the current population (parents). Let
P, P, be two parents in the population and Cy,C5 two
solutions built from Py, P,. C; (resp. C5) is the copy of P;
(resp. P») with elements from Py (resp. P).

After creating C', the next step consists in randomly choos-
ing a gene of P» at position A (vector vy). vy contains the
values that will be reassigned to C;. But, in order to avoid
duplicated data, the values of C; matching those of v, are
removed. Then, the data of vy can be inserted in Gene \ of
C1 at a random position.

In the example of Figure 3, Vector v; of P» is randomly
chosen and the values (C C) have to be assigned to the

counterpart vector of C'1. These values are randomly inserted
into Vector v; of C7 and removed from Vector v,. If the
solutions to be crossed do not have the same size, i.e. the
vector to be filled does not exist, a new vector is created before
filling it. Producing C> follows the same process by inverting
P1 and P2.

Copying P; and choosing v1 Assigning (C C) to vy
Cl = P; 1 P 2 Cl

V1 BAAB CcC - BACACB
V2 CCDD ADDA DD
U3 BB

Fig. 3. Example of crossover of two solutions Pp, P for producing a new
individual C.

D. Mutation

The mutation generally aims at bringing diversity into a
population and prevents the population to converge towards
local optima. Our operator mixes two mechanisms, each one
used in half cases:

« an analogy to the well-known 2-OPT exchange operator
which reverses a sequence of values (random size) of
a randomly chosen gene (Fig. 4(a)). For example a
sequence (C A C B) becomes (B C A C);

« a shifting of a random customer from a vector to another
(Fig. 4(b)), the pair values are randomly inserted in the
host vector.

(a) Analogy to the 2-OPT operator

C1 C1
"BACACB = "BABCAC

DD DD

(b) Shifting of one customer

Ch (o}

BACACB = ACAC

DD BDBD

Fig. 4. Example of mutation of chromosome C into chromosomes C'] and
C//
1

V. EXPERIMENTAL RESULTS
A. Benchmark Test Instances

Two sets of instances are used to evaluate our modeling
on existing algorithms. Each instance has 100 trips and is
built on geographically realistic data [10]. All picking-up
or delivery locations are geolocalized stops and the shortest
duration matrix M is built using a GIS?.

The first set, denoted 'Rnd100’, is composed of 10 randomly
generated instances, whereas the instances of the second set,
named ’Gravitl00’, are generated by a geographical model of
flows. The ’gravity model’ [14], as well as other interaction
models, allows to quantify people flows in a geographical
space according to a calibration based on inhabitant densities,
the time dimension, the transport facilities and attractive areas
(malls, business parks...)

2Geographical Information System



Set ’Rnd100’ has instances with an almost homogeneous
distribution of customers while set 'Gravit/00’ has instances
with a non-homogeneous distribution representing flows be-
tween 8:00am and 9:00am. This effect results from the ex-
istence of attractive areas which draw most flows instead of
less attractive areas such as residential downtowns which are
rather emission areas.

The algorithms the most suited to real-life applications can
be highlighted by using realistic instances. Indeed, optimizing
transport applications need efficient and robust algorithms.

B. Parameter Setting and Performance Assessment

The population of 100 individuals evolves over 10,000
generations. A set of 20 runs per instance has been performed
for each EA by using the ParadisEO-MOEO framework [15].
In order to evaluate the quality of the approximations for every
instance we solved, we follow the protocol proposed in [16].
For a given instance, let Z%! denote the union of the outputs
we obtained during all our experiments. We first compute
a reference set Zj, containing all the non-dominated points
of Z4. Second, we define z™" = (" ... z™"n) and
ZMAT = (Zmar | ZMaT) where zM™ (resp. z®”) denotes
the lower (resp. upper) bound of the k*" objective for all the
points contained in Z%. In order to give a roughly equal
range to the objective functions, values are normalized with
respect to 2™ and 2™, Then, to measure the quality of an
output set A in comparison to Z},, we compute the difference
between these two sets by using the unary hypervolume
metric [17], 2™%* being the reference point. The hypervolume
difference indicator (I;) computes the portion of the objective
space that is dominated by Z3; and not by A. Furthermore,
we also consider the additive e-indicator proposed in [17]. The
unary additive e-indicator (I} ) gives the minimum factor by
which an approximation A has to be translated in the objective
space to dominate the reference set Zjy. Note that both Iy;-
and I, -values are to be minimized.

Thus, for each test instance, we obtain 20 I}, measures and
20 I.4+ measures corresponding to the 20 simulation runs per
algorithm. Once all these values are computed, we perform a
statistical analysis for a pairwise comparison of methods. To
this end, we use the Wilcoxon signed rank test. For a given
test instance, and with respect to a p-value of 0.05 and to
the metric under consideration, this statistical test reveals if
the sample of approximation sets obtained by a given search
method is significantly better than the one of another search
method, or if there is no significant difference between both
of them.

C. Results and Discussion

Table II details a statistical comparison of each algorithm
vs each other (symbols <, >, = resp. indicate that the
algorithm of a specific column is significantly ’better’, *worse’
or ’equivalent’ than the one of a specific row). The obtained
results confirm that NSGA-II and IBEA are globally equivalent
according to I, but that NSGA-II is always better (or at least
equivalent) than IBEA according to I! +. SPEA2 is always

outperformed by the other methods. Thus, it appears that
NSGA-II is better than both IBEA and SPEA2 for optimizing
randomly generated instances of DARPTW.

Table III is the counterpart for the realistic instances.
Contrary to Table II, IBEA is shown to be the best algorithm
with respect to both I;; and I!, metrics (except for instance
Gravitl00-4). These unambiguous results indicate that IBEA
is the most efficient (or at least equivalent) algorithm for opti-
mizing realistic DARPTW instances while comparing pairwise
algorithms. If we focus on the comparison of the two other
algorithms, we see that SPEA2 is always better than NSGA-
II with respect to I;;, while they are almost equivalent with
respect to I, .

The main differences between the two kinds of instances are
the densities of customers on the territory. Given the level of
homogeneity of the distribution of the requests, the algorithms
differently cope with the clustering effects. Hence, it seems
that IBEA which uses a selection by indicator, appears to be
more robust to the clustering effects due to the heterogeneous
distribution of the customers.

VI. CONCLUSION AND PERSPECTIVES

This paper is devoted to solve a DARPTW applied to
a Demand Responsive Transport service. After having for-
malised the general problem, an original evolutionary multi-
objective approach was presented. Thanks to the Pareto-
dominance principles, our approach is able to build a set
of distinct non-dominated solutions which are provided to
the decision maker in order to support and help his final
choice. To fit the evolutionary algorithms to be compared, an
original representation and variation operators were proposed
and developed.

The candidate algorithms are: NSGA-II, IBEA and SPEA2.
They were performed on two sets of transport instances. The
first set is composed of random instances and the second of
realistic instances. Such instances allow to assess the algorithm
efficiency to cope with real-life applications.

The analysis of the results underline the more or less
adapted behavior of the algorithms. It results of this compara-
tive study that NSGA-II generally seems to be more efficient
than IBEA for the random instances and SPEA2 is always
outperformed by its counterparts. However, if we focus on the
realistic instances, the results bring to light that IBEA is the
best algorithm for solving realistic DARPTW.

Given that the algorithms are sensitive to the distribution of
customers and flows, a preemptive and relevant work would
be to integrate the geographical dimension. Indeed, the better
results obtained by IBEA on the realistic instances invite us
to take this dimension into account. Therefore, a lot of com-
plementary analysis will have to be done in order to improve
our understanding of the algorithm sensitivity. These analysis
concern the inhabitants densities and the distribution of the
stops. Indeed, the experiments on realistic instances seem to
indicate the algorithm sensitivity to a specific topology. Then,
it is necessary to evaluate the algorithms behavior according
to the problem structures. Besides, an uncertainty integration



[18] in the method will help us to develop dynamic [19] and
multiobjective DARPTW services at the same time.
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STATISTICAL COMPARISON FOR RANDOMLY GENERATED INSTANCES.
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TABLE III
STATISTICAL COMPARISON FOR REALISTIC INSTANCES.
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