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Abstract

The design of embedded control systems is mainly done with model-
based tools such as Matlab/Simulink. Numerical simulation is the central
technique of development and verification of such tools. Floating-point
arithmetic, that is well-known to only provide approximated results, is
omnipresent in this activity. In order to validate the behaviors of nu-
merical simulations using abstract interpretation-based static analysis, we
present, theoretically and with experiments, a new relational abstract do-
main dedicated to floating-point variables. It comes from interval expan-
sion of non-linear functions using slopes and it is able to mimic all the
behaviors of the floating-point arithmetic. It is hence adapted to prove
the absence of run-time errors or to analyze the numerical precision of
embedded control systems.

1 Introduction

Embedded control systems are made of a software and a physical environment
which aim at continuously interact with each other. The design of such systems
is usually realized with the model-based paradigm. Matlab/Simulink1 is one of
the most used tool for this purpose. It offers a convenient way to describe the
software and the physical environment in an unified formalism. In order to ver-
ify that the control law, implemented in the software, fits the specification of the
system, several numerical simulations are made under Matlab/Simulink. Never-
theless, this method is closer to test-based method than formal proof. Moreover,
this verification method is strongly related to the floating-point arithmetic which
provides approximated results.

Our goal is the use of abstract interpretation-based static analysis [1] to vali-
date the design of control embedded software described in Matlab/Simulink. In

1Trademarks of The MathworksTMcompany.
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our previous work [2], we defined an analysis to validate that the behaviors given
by numerical simulations are close to the exact mathematical behaviors. It was
based on an interval abstraction of floating-point numbers which may produce
too coarse results. In this article, our work is focus on a tight representation of
the behaviors of the floating-point arithmetic in order to increase the precision
of the analysis of Matlab/Simulink models.

To emphasize the poor mathematical properties of the floating-point arith-
metic, let us consider the sum of numbers given in Example 1 with a single
precision floating-point arithmetic. The result of this sum is −2.08616257e−6

due to rounding errors, whereas the exact mathematical result is null.

Example 1

0.0007 + (−0.0097) + 0.0738 + (−0.3122) + 0.7102 + (−0.5709) + (−1.0953)

+ 3.3002 + (−2.9619) + (−0.2353) + 2.4214 + (−1.7331) + 0.4121

Example 1 shows that the summation of floating-point numbers is a very ill-
conditioned problem [3, Chap. 6]. Indeed, small perturbations on the elements
to sum produce a floating-point result which could be far from the exact result.
Nevertheless, it is a very common operation in control embedded software. In
particular, it is used in filtering algorithms or in regulation processes, such as for
example in PID regulation. Remark that depending of the case, the rounding
errors may stay insignificant and the behaviors of floating-point arithmetic may
be safe. In consequence, a semantic model of this arithmetic could be used to
prove the behaviors of embedded control software using floating-point numbers.

The definition of abstract numerical domains for floating-point numbers is
usually based on rational or real numbers [4, 5] to cope with the poor mathemat-
ical structure of the floating-point set. In consequence, these domains give an
over-approximation of the floating-point behaviors. This is because they do not
bring information about the kind of numerical instability which appeared during
computations. We underline that our goal is not interested in computing the
rounding errors but the floating-point result. In others words, we want to com-
pute the bounds of floating-point variables without considering the numerical
quality of these bounds.

Our main contribution is the definition of new numerical abstract domain,
called Floating-Point Slopes (FPS), dedicated to the study of floating-point num-
bers. It is based on interval expansion of non-linear function named interval
slopes introduced by Krawczyk and Neumaier [6] and, as we will show in this
article, it is a relational domain. In particular in Proposition 1, we will adapt
the interval slopes to deal with floating-point numbers. Moreover, we are able
to tightly represent the behaviors of floating-point arithmetic with our domain.
Few cases studies will show the practical use of our domain. We can hence prove
properties on programs taking into account the behaviors of the floating-point
arithmetic such that the absence of run-time errors or the quality of numerical
computations.
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Content. In Section 2, we will present the main features of the IEEE754 stan-
dard of floating-point arithmetic and we will also introduce the interval expan-
sions of functions. We will present our abstract domain FPS in Section 3 before
describing experimental results in Section 4. In Section 5, we will reference the
related work before concluding in Section 6.

2 Background

We recall the main features of the IEEE754 standard of floating-point arith-
metic in Section 2.1. Next in Section 2.2, we present some results from interval
analysis, in particular the interval expansion of functions.

2.1 Floating-Point Arithmetic

We briefly present the floating-point arithmetic in this section, more details are
available in [3] and the references therein. The IEEE754 standard [7] defines
the floating-point arithmetic in base 2 which is used in almost every computer2.

Floating-point numbers have the following form: f = s.m.2e. The value s
represents the sign, the value m is the significand represented with p bits and
the value e is the exponent of the floating-point number f which belongs into
the interval [emin, emax] such that emax = −emin + 1. There are two kinds of
numbers in this representation. Normalize numbers, the significand implicitly
starts with a 1 and denormalized numbers implicitly starts with a 0. The later
is used to gain accuracy around zero by slowly degrading the precision.

The standard defines different values of p and emin: p = 24 and emin = −126
for the single precision and p = 53 and emin = −1022 for the double precision.
We call normal range the set of absolute real values in [2emin , (2 − 21−p)2emax ]
and the subnormal range the set of numbers in [0, 2emin [.

The set of floating-point numbers (single or double precision) is represented
by F which is closed under negation. Few special values represent special cases:
the values −∞ and +∞ to represent the negative or the positive overflow; and
the value NaN 3 represents invalid results such that

√
−1.

The standard defines round-off functions which convert exact real numbers
into floating-point numbers. We are mainly concerned by the rounding to the
nearest (noted fl), the rounding towards +∞ and rounding toward −∞. The
round-off functions follow the correct rounding property, i.e. the result of a
floating-point operation is the same that the rounding of the exact mathematical
result. Note that these functions are monotone. We are interested in this article
by computing the range of floating-point variables rounded to the nearest which
is the default mode of rounding in computers.

A property of the round-off function fl is given in Equation (1). It charac-
terizes the overflow, i.e. the rounding result is greater than the biggest element

2It also defines this arithmetic in base 10 but it is not relevant for our purpose.
3NaN stands for Not A Number.
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of F and the case of the generation of 0. This definition only uses positive num-
bers, using the symmetry property of F, we can easily deduce the definition for
the negative part. We denote by σ = 2emin−p+1 the smallest positive subnormal
number and the largest finite floating-point number by Σ = (2− 21−p)2emax .

∀x ∈ F, x > 0, fl(x) =

{

+0 if 0 < x ≤ σ/2

+∞ if x ≥ Σ
(1)

An underflow [3, Sect. 2.3] is detected when the rounding result is less than
2emin, i.e. the result is in the subnormal range.

The errors associated to a correct rounding is defined in Equation (2) and
it is valid for all floating-point numbers x and y except −∞ and +∞ (see [3,
Chap. 2, Sect. 2.2]). We represent the relative rounding error unit by µ. In
single precision, µ = 2−24 and σ = 2−149 and in double precision, µ = 2−53 and
σ = 2−1074. The operation ⋄ is in {+,−,×,÷}. Note that it is also valid for
the square root operation.

fl(x ⋄ y) = (x ⋄ y)(1 + ǫ1) + ǫ2 with |ǫ1| ≤ µ and |ǫ2| ≤ 1

2
σ (2)

If fl(x ⋄ y) is in the normal range or if ⋄ ∈ {+,−} then ǫ2 is equal to zero. If
fl(x ⋄ y) is in the subnormal range then ǫ1 is equal to zero.

Numerical instabilities in programs came from the rounding representation
of values and they also came from two problems due to finite precision:

Absorption If |x| ≤ µ|y| then it happens that fl(x+y) = fl(y). For example, in
single precision, the result of fl(14 − 1−4) is fl(14).The classical solution in
numerical analysis is to sort the sequence of numbers in increasing order.
This solution is not applicable when numbers came from the physical
environment.

Cancellation It appears in the subtraction fl(x− y) if (|x − y|) ≤ µ(|x| + |y|)
then the relative errors can be arbitrary big. Indeed, the rounding errors
take usually place in the least significant digits of floating-point numbers.
These errors may become preponderant in the result of a subtraction when
the most significant digits of two closed numbers cancelled each others. In
numerical analysis, subtraction of numbers coming from long computa-
tions are avoided to limit this phenomena. We cannot apply this solution
in embedded control systems where some results are used at different in-
stants of time.

2.2 Interval Arithmetic

In this section, we introduce interval arithmetics and in particular, the interval
expansion of functions which is an element of our abstract domain FPS.

2.2.1 Standard Interval Arithmetic.

The interval arithmetic [8] has been defined in order to avoid the problem of
approximated results coming from the floating-point arithmetic. It had also
been used as the first numerical abstract domain in [1].
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When dealing with floating-point intervals the bounds have to be rounded
to outward as in [5, Sect. 3]. In Example 2, we give the result of the interval
evaluation in single precision of a sum of floating-point numbers. The exact
mathematical result is 11101 while the floating-point result is 11100 due to an
absorption phenomena. The floating-point result and the mathematical result
are in the result interval but we cannot longer distinguish them.

Example 2 Using the interval domain for floating-point arithmetic [5, Sect. 3]

the result of the sum defined by
∑10

i=1
1e1 +

∑10

i=1
1e2 +

∑10

i=1
1e3 +

∑1000

i=1
1e−3

is [11100, 11101.953].

A source of over-approximation is known in the interval arithmetic as the
dependency problem which is also known in static analysis as the non-relational
aspect. For example, ifX is an interval then the expressionX−X 6= 0 in general.
This problem is addressed by considering interval expansions of functions.

Notations. Interval values are noted [a, b] where a is the lower bound and b
is the upper bound of the interval. We denote by [f] the interval extension of a
function f obtained by substitution of all the arithmetic operations with their
equivalent in interval. The center of an intervalX is represented by mid([a, b]) =
a+ 0.5× (b− a).

2.2.2 Extended Interval Arithmetic.

We are interested in the computation of the image of an interval X by a rational
function f : Rn → R. In order to reduce the over-approximations in the interval
arithmetic, few interval expansions have been developed. The first one is based
on the Mean-Value Theorem and it is expressed as:

f(X) ⊆ f(z) + [f′](X)(X − z) ∀z ∈ X . (3)

The first-order approximation of the range of a function f can be defined thanks
a bound of its first order derivative f′ over X . We can then approximate f(X)
by a couple (f(z), [f′](X)) that are the value of f in the point z and the interval
extension of [f′] evaluated over X .

A second interval expansion has been defined by Krawczyk and Neumaier [6]
using the notion of slopes. They reduced the approximation of the derivative
form with slopes. It is defined by the relation:

f(X) ⊆ f(z) + [Fz](X)(X − z)

with [Fz ](X) =

{

f(x)− f(z)

x− z
: x ∈ X ∧ z 6= x

}

.
(4)

We can then represent f(X) by a couple (f(z), [Fz](X)) that are the value of f
in the point z and the interval extension of the slope [Fz](X) of f over X from
z respectively.

Note that the value z is chosen, in general, as the centers of the interval
variables taking place in the function f for the both interval expansions.
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An interesting feature is that we can inductively compute the derivative or
the slope of a function by using automatic differentiation techniques [9]. It is
a semantic-based method to compute derivatives. In this context, we call inde-
pendent variables some input variables of a program with respect to derivatives
are computed. We call dependent variables output variables whose derivatives
are desired. A derivative object represents derivative information, such as a vec-
tor of partial derivatives like (∂e/∂x1, . . . , ∂e/∂xn) of some expression e with
respect to a vector x of independent variables. The main idea of automatic
differentiation is that every complicated function f, i.e. a program, is composed
by simplest elements, i.e. program instructions. Knowing the derivatives of
these elements with respect to some independent variables then following the
differential calculus rules we can compute the derivatives or the slopes of f.
Furthermore, using interval arithmetic in the differential calculus rules, we can
guarantee the result.

We give in Table 1 the rules to compute derivatives or slopes with respect to
the structure of arithmetic expressions. We assume that we know the numbers
of independent variables in the programs and we denote by n this number. The
variable X represents the vector of independent variables with respect to the
derivatives are computed. We denote by δi the interval vector of length n, having
all its coordinates equal to [0, 0] except the ith element equals to [1, 1]. So, we
consider that all the independent variables are assigned to a unique position i
in X and it is initially assigned with a derivative object equal to δi. Following
Table 1 where g and h represent variables with derivative object, a constant
value c has a derivative object equal to zero (the interval vector 0 has all its
coordinates equal to [0, 0]). For addition and subtraction, the result is the vector
addition or the vector subtraction of the derivative objects. For multiplication
and division, it is more complicated but the rules came from the standard rules
of the composition of derivatives, e.g. (u× v)′ = u′ × v+ u× v′. A proof of the
computation rules4 for slopes can be found in [6, Sect. 2]. Note also that we can
applied automatic differentiation for other functions, such as the square root,
using the rule of function composition, (f ◦ g)′(x) = f ′(g(x))g′(x). In Section 3,
we will also define the square root for our FPS domain.

Table 1: Automatic differentiation rules for derivatives and slopes

Function Derivative arithmetic Slope arithmetic

c ∈ R 0 0

g+ h [g′](X) + [h′](X) [Gz](X) + [Hz ](X)
g− h [g′](X)− [h′](X) [Gz](X) − [Hz ](X)
g× h [g′](X)× h(X) + g(X) × [h′](X) [Gz ](X)× h(X) + g(z) × [Hz ](X)

g

h

[g′](X)× h(X) − [h′](X)× g(X)

h2(X)

[Gz](X) − [Hz ](X)× g(z)
h(z)

h(X)

These interval expansions of functions, using either (f(z), [f′](X)) the deriva-
tive form or (f(z), [fz](X)) the slope form, define a straightforward semantics

4In [6, Sect. 2], the authors went also into detail of the complexity of these operations.
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of arithmetic expressions which can be used to compute bounds of variables.

Remark 1 The difference in over-approximated result between the derivative
form and the slope form resides in the rules of multiplication and division. In
the derivative form, we need to evaluate the two operands while we only need to
evaluate one of them in the slope form.

Example 3 shows that we can encode, in interval slopes, the list of variables
contributing in an arithmetic expression. In particular, the vector composing
the interval slope of the variable t represents the influence of the variables a, b
and c in the value of t. Moreover by computing interval slopes, we build step by
step the set of variables related to arithmetic expressions through a program.
Interval slopes represent hence relations between the input variables and the
result of arithmetic expressions, more generally the program output.

Example 3 Lets t = a+b×c, we want to compute the interval slope [Tz](X) of
t. We denote by X = (a, b, c) the set of independent variables. We suppose that
the interval slope expansions of a, b and c are (za, [A

z](X) = δ1), (zb, [B
z](X) =

δ2), and (zc, [C
z](X) = δ3) and that the interval value associated to c is Xc

i.e. Xc = zc + [Cz](X)(X − z).

[Tz](X) = [Az](X) + zb[C
z ](X) + [Bz](X) (zc + [Cz](X)(X − z))

= ([1, 1], 0, 0) + zb × (0, 0, [1, 1]) + (0, [1, 1], 0) ×Xc

= ([1, 1], [1, 1]×Xc, zb × [1, 1])

= ([1, 1], Xc, [zb, zb])

3 Floating-Point Slopes

We present in this section, our new abstract domain FPS. In Section 3.1, we
adapt the computation rules of interval slopes to take into account floating-
point arithmetic. Next in Section 3.2, we define the lattice structure of the
FPS domain. And in Section 3.3, we define an abstract semantics of arithmetic
expressions over FPS values taking into account the behaviors of floating-point
arithmetic.

3.1 Floating-Point Version of Interval Slopes

The definition of interval slope expansion in Section 2.2 manipulates real num-
bers. In case of floating-point numbers, we have to take into account the round-
off function and then the rounding-errors.

We show in Proposition 1 that the range of a rational function f of floating-
point numbers can be soundly over-approximated by a floating-point slope. The
function f must respect the correct rounding. In other words, the result of an
operation over set of floating-point numbers is over-approximated by the result
of the same operation over floating-point slopes by adding a small quantity
depending on the relative rounding error unit µ and the absolute error σ.
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Remark 2 As the floating-point version of slopes is based on µ and σ, we can
represent the floating-point behaviors depending of the hardware. For example
extended precision5 is represented using the values µ = 2−64 and σ = 2−16446.
Furthermore following [10], we can compute the result of a double rounding6

with µ = (211 + 2)2−64 and σ = (211 + 1)2−1086.

Proposition 1 Let f : D ⊆ R
n → R be an arithmetic operation of the form

g ⋄ h with ⋄ ∈ {+,−,×,÷} or
√
g, i.e. f respects the correct rounding. For all

X ⊆ D and z ∈ D, we have:

fl
(

f(X)
)

⊆ f(z)
(

1 + [−µ, µ]
)

+
[

−σ

2
,
σ

2

]

+ [Fz](X)(X − z)
(

1 + [−µ, µ]
)

.

Proof 1

fl
(

f(X)
)

= {f(x)(1 + εx) + ε̄x : x ∈ X} by Eq. (2)

= f(X) + f(X){εx : x ∈ X}+ {ε̄x : x ∈ X}
⊆
(

f(z) + [Fz](X)(X − z)
)

+ {ε̄x : x ∈ X} by Eq. (4)

+
(

f(z) + [Fz](X)(X − z)
)

{εx : x ∈ X}
⊆ f(z)

(

1 + {εx : x ∈ X}
)

+ {ε̄x : x ∈ X}
+ [Fz](X)(X − z)

(

1 + {εx : x ∈ X}
)

⊆ f(z)
(

1 + [−µ, µ]
)

+
[

−σ

2
,
σ

2

]

|εx| ≤ µ by Eq. (2)

+ [Fz](X)(X − z)
(

1 + [−µ, µ]
)

|ε̄x| ≤ 1

2
σ by Eq. (2)

Proposition 1 shows that we can compute the floating-point range of a func-
tion f, respecting the correct rounding, using interval slopes expansion. This
expansion is represented by the couple:

(

[f] (z)
(

1 + [−µ, µ]
)

+
[

−σ

2
,
σ

2

]

, [Fz](X)
(

1 + [−µ, µ]
)

)

.

The first element is a small interval rounding to outward around f(z) for which
we have to take into account the possible rounding errors. The second element
is the interval slopes which have to take into account of relative errors. Note
that this adaptation adds a very little overhead of computations in regards to
the definition of interval slopes by Krawczyk and Neumaier.

3.2 Lattice Structure

In this section, we define the lattice structure of the set of floating-point slopes.
In particular, this structure is based on the complete lattice of intervals denoted
in the following by 〈I,⊑I,⊥I,⊤I,⊔I,⊓I〉. We denote by S the set of slopes. An

5In some hardware, e.g. Intel x87, floating-point numbers may be encoded with 80 bits in
registers, i.e. the significand is 64 bits long.

6It may happen on hardware using extended precision. Results of computations are
rounded in registers and then with a less precision in memory.
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element s of S is represented by a couple (m,S) where m is a floating-point
interval and S is a vector of floating-point intervals.

The abstraction function αS is defined in Equation (5). It is applied on all
the dependent variables of analyzed programs. We denote by X the vector of
independent variables. An interval of floating-point numbers [a, b]i associated
to the ith input is abstracted by a couple (m,S). The value m represents the
center of [a, b] i.e. m = mid([a, b]). The value S represents the interval slope
associated to the ith independent variable, i.e. S = δi. Note that we consider
single value a has the interval [a, a].

αS([a, b]i) = (mid([a, b]), δi) (5)

For example, the interval A = [3, 8]2 representing the second independent vari-
able of the program, is abstracted by αS(A) = (5.5, δ2) where the value 5.5 is
the center of the interval [3, 8].

We assume that the values of independent variables are kept in a separate
interval vector VX for the concretization. The concretization function γS is
defined in Equation (6). From the abstract value (m,S), we represent the
set of floating-point numbers by an approximation over slopes. The notation
mid(VX) stands for the component-wise application of the function mid on all
the components of the vector VX .

γS(m,S) = m+ S × (VX − mid(VX)) (6)

We define a partial order, the join and the meet operations between elements
of S. All these operations are defined as a component-wise application of the
associated operations of the interval domain. We denote by ⊑̇I the component-
wise application of the interval order. We can define a partial order ⊑S between
elements of S in the following manner:

∀(mg, Sg), (mh, Sh) ∈ S,

(mg, Sg) ⊑S (mh, Sh) ⇔ mg ⊑I mh ∧ (∀x ∈ Sg, y ∈ Sh, x ⊑̇I y) . (7)

The join operation ⊔S over floating-point slopes is defined in Equation (8). We
denote by ⊔̇I the component-wise application of the operation ⊔I.

∀(mg, Sg), (mh, Sh) ∈ S,
(

mg, Sg

)

⊔S

(

mh, Sh

)

=
(

m,S
)

with m = mg ⊔I mh and S = Sg ⊔̇I Sh . (8)

The meet operation ⊓S over floating-point slopes is defined in Equation (9). We
denote by ⊓̇I the component-wise application of the operation ⊓I.

∀(mg, Sg), (mh, Sh) ∈ S,
(

mg, Sg

)

⊓S

(

mh, Sh

)

=
(

m,S
)

with

m = mg ⊓I mh and S = Sg ⊓̇I Sh . (9)

Proposition 2 states that the set S with the order ⊑S is a complete lattice.
We consider that ⊥S is the least element and that ⊤S is the upper element of S.
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Proposition 2 The tuple 〈S,⊑S,⊥S,⊤S,⊔S,⊓S〉 is a complete lattice.

Proof 2 The set S is defined as the finite product of the partial ordered set
(I,⊑I) where the order is component-wisely defined. The product of complete
lattices is a complete lattice.

3.3 Semantics of Arithmetic Operations

In this section, we define the semantics of arithmetic operations over elements of
floating-point slopes domain. Moreover, we define this semantics to mimic the
behaviors of the floating-point arithmetic. We begin by defining some auxilary
functions.

We can detect overflow and genration of zero result by using the function Φ
defined in Equation (10). We have two kinds or rules: the total rule when we
are certain that a zero or an overflow occur and the partial rule when a part
of the set described by a floating-point slope generates a zero or an overflow.
For an element (m,S) ∈ S and following the concrete value γS(m,S), we can
determine if (m,S) represents an overflow or a zero. We represent hence the
finite precision of the floating-point arithmetic. We denote by p

∞
and by m∞

the interval vectors with all their components equal to [+∞,+∞] and [−∞,−∞]
respectively. We recall that σ is the smallest denormalized and Σ is the largest
floating-point numbers.

Φ(m,S) =















































































































(0,0) if γS(z, S) ⊑I [−σ
2
, σ
2
]

(m̃, 0 ⊔̇I S) if γS(m,S) ⊓I ]− σ
2
, σ
2
[ 6= ∅

and m̃ =

{

0 if m ⊑I ]− σ
2
, σ
2
[

[0, 0] ⊓I m otherwise

(+∞,p
∞
) if γS(m,S) ⊑I ]Σ,+∞]

(m̃,p
∞

⊔̇I S) if γS(m,S) ⊓I ]Σ,+∞] 6= ∅

and m̃ =

{

+∞ if m ⊑I ]Σ,+∞]

[+∞,+∞] ⊓I m otherwise

(−∞,m∞) if γS(m,S) ⊑I [−∞,−Σ[

(m̃,m∞ ⊔̇I S) if γS(m,S) ⊓I [−∞,−Σ[ 6= ∅

and m̃ =

{

−∞ if m ⊑I [−∞,−Σ[

[−∞,−∞] ⊓I m otherwise

(m,S) otherwise

(10)

Equation (10) is an adaptation to deal with FPS values of the rule defined in
Equation (1).

An interesting feature is that interval slopes can be used to encode the
results of floating-point operations. In particular, we can mimic the absorption
phenomena by setting to zero the interval slope of the absorbed operand. We
define the function ρ for this purpose. It will be used to represent the absorption
phenomena. The reduction of an abstract value g = (mg, Sg) in regards to
the abstract value h = (mh, Sh), which is denoted by ρ(g | h), is defined in
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Equation (11).

ρ(g | h) =































(0, 0) if γS
(

mg, Sg

)

⊑I µγS
(

mh, Sh

)

(

m̃g,0 ⊔̇I Sg

)

if γS
(

mg, Sg

)

⊓I µγS
(

mh, Sh

)

6= ∅

and m̃g =

{

0 if mg ⊑I µγS
(

mh, Sh

)

[0, 0] ⊓I mg otherwise
(

mg, Sg

)

otherwise

(11)

Equation (11) models the absorption phenomena by explicitly setting to zero
the values of a slope. As mentioned in Section 2.2, a slope shows which variables
influence the computation of an arithmetic expression. An absorption phenom-
ena induces that an operand does not influence the result of an addition or a
subtraction any more.

Using the function Φ and the function ρ, we inductively define on the
structure of arithmetic expressions the abstract semantics J.K♯

S
of floating-point

slopes in Figure 1. We denote by θ♯ an abstract environment which asso-
ciates to each program variable a floating-point slope. For each arithmetic
operation, we component-wisely combine the elements of the abstract operands
JgK

♯
S
(θ♯) = (mg, Sg) and JhK

♯
S
(θ♯) = (mh, Sh). The first element is obtained

using the interval arithmetic with outward rounding. The second element is
computed using the definition of the slope arithmetic defined in Table 1. Note
that we also define the semantics of the square root operation. We take into
account of the possible rounding errors in the result (m,S) following Proposi-
tion 1. In case of addition and subtraction, according to the Equation (2), we
do not consider absolute error σ

2
which is always null. Moreover, in case of addi-

tion or subtraction, we handle the absorption phenomena using the function ρ,
defined in Equation (11). Finally, we check if a zero or an overflow is generated
by applying the function Φ defined in Equation (10).

Remark 3 The functions Φ and ρ make the arithmetic operations on floating-
point slopes non associative and non distributive as in floating-point arithmetic.

3.4 Note on the Acceleration of Convergence

In order to enforce the convergence of the fixed-point computation, we can define
a widening operation ∇S over floating-point slopes values. An advantage of our
domain is that we can straightforwardly use the widening operations defined for
the interval domain denoted by ∇I. We define the operator ∇S in Equation (12)

using the widening operator between intervals. The notation ∇̇I represents the
component-wise application of ∇I between the components of the interval slopes
vector.

∀(mg, Sg), (mh, Sh) ∈ S,
(

mg, Sg

)

∇S

(

mh, Sh

)

=
(

m,S
)

with m = mg ∇I mh and S = Sg ∇̇I Sh (12)

As FPS is based on the interval domain, we can benefit of all the widening of
intervals such as the widening with thresholds defined in [5, Sect. 7].
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Jg ± hK♯
S
(θ♯) = Φ

(

(m̃g ± m̃h)(1 + [−µ, µ]),
(

S̃g ± S̃h

)

(1 + [−µ, µ])
)

with (m̃g, S̃g) = ρ(g | h) and (m̃h, S̃h) = ρ(h | g)
Jg × hK♯

S
(θ♯) = Φ

(

m,
(

Sg × γS(mh, Sh) +mg × Sh

)

(1 + [−µ, µ])
)

with m = (mg ×mh)(1 + [−µ, µ]) +
[σ

2
,
σ

2

]

r g

h

z♯

S

(θ♯) = Φ

(

m,
Sg − Sh

mg

mh

γS(mh, Sh)
(1 + [−µ, µ])

)

with 0 6∈ γS(mh, Sh)

with m =
mg

mh

(1 + [−µ, µ]) +
[σ

2
,
σ

2

]

J√gK♯
S
(θ♯) = Φ

(

m,

(

Sg

√
mg +

√

γS(mg, Sg)

)

(1 + [−µ, µ])

)

with m = (
√
mg)(1 + [−µ, µ]) + [−σ

2
,
σ

2
]

and
√
mg ⊓I [−∞, 0] = ∅

and γS(mg, Sg) ⊓I [−∞, 0] = ∅

Figure 1: Abstract semantics of arithmetic expressions on floating-point slopes

4 Case Studies

In this section, we present experimental results of the static analysis of numerical
programs using our floating-point slope domain. We based our examples on
Matlab/Simulink models which are block-diagrams. We present as examples a
second order linear filter and the computation of a square root with a Newton
method.

We first give a quick view of Matlab/Simulink models. In a Matlab/Simulink
block-diagram, each node represents an operation and each wire represents a
value which evolve during time. We consider few operations such that arith-
metic operations, gain operation that is multiplication by a constant, conditional
statement (called switch in Simulink), and unit delay block represented by 1

z

which acts as a memory. We can hence write discrete-time models thanks to
finite difference equations, see [2] for further details.

4.0.1 Linear filter.

We applied the floating-point slope domain on a second order linear filter. It is
defined by the following recurrence equation:

yn = xn + 0.7xn−1 + xn−2 + 1.2yn−1 − 0.7yn−2 .

The Simulink block-diagrams of this filter is given in Figure 2(a). The input
belongs into the interval [0.71, 1.35] and its output is given in Figure 2(b). The
gray area represents all the possible trajectories of the output corresponding of
the set of inputs. We can hence bound the output by the interval [0.7099, 9.8269].
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4.0.2 Newton method.

We applied our domain on a Newton algorithm which computes the square root.
The square root of a number a is computed using the iterative sequence defined
by:

xn+1 =
xn

2
+

a

2xn
.

We unfold the loop and the results are computed in five iterations. The Simulink
model is given in Figure 3(a) and in Figure 3(b), we give the Simulink model
associated to one iteration of the algorithm.

For the interval input [4, 8] with the initial value equals to 2, we have the
result [1.8547, 3.0442].

5 Related Work

Numerical domains have been intensively studied. A large part of numerical
domains concern the polyhedral representation of sets. For example, we have
the domain of polyhedron [11] and the variants [12, 13, 14, 15, 16, 17, 18, 19, 20].
We also have the numerical domains based on affine relations between variables
[21, 22] or the domain of linear congruences [23]. In general, all these domains
are based on arithmetic with ”good” properties such that rational numbers or
real numbers. A notable exception is the floating-point version of the octagon
domain [5] and the floating-point version of the domain of polyhedron [24].
These domains give a sound over-approximation of the floating-point behaviors
but they are not empowered to model the behaviors of floating-point arithmetic
as we do.

Our FPS domain is more general than numerical abstract domains made for
a special purpose. For example, we have the domain for linear filters [25] or for
the numerical precision [26] which provide excellent results. Nevertheless as we
showed in Section 4, we can handle a large variety of algorithms without loosing
too much precision.

6 Conclusion

We have presented a new relational abstract numerical domain called FPS dedi-
cated to floating-point variables. It is based on Krawczyk and Neumaier’s work
[6] on interval expansion of rational function using interval slopes. This domain
is able to mimic the behaviors of the floating-point arithmetic such that the
absorption phenomena. We have also presented experimental results showing
the practical use of this domain in various contexts.

We want to pursue the work on the FPS domain by model more closely the
behaviors of floating point arithmetic, for example by taking into account the
hardware instructions [27, Sect. 3].

As an other future work, we want to apply FPS domain for the analyses of
the numerical precision by combining the FPS domain and domains defined in
[28, 29]. An interesting direction should be to make an analysis of the numerical
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precision by comparing results of the FPS domain and results coming from
the other numerical domain which bound the exact mathematical behaviors
such that [24]. We can hence avoid to manipulate complex abstract values to
represent rounding errors such as in [26, 29].
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(a) Block-Diagram of the linear filter.

(b) Temporal evolution of the output.

Figure 2: Second order linear filter
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(a) Main model.

(b) Content of a subsystem.

Figure 3: Simulink model of the square root computation
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