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ABSTRACT

Calibrating consists in predicting Y , a quantitative variable
of interest, using P explaining variables. PLSR-Projection
to Latent Structures Regression (Wold,[1]) is the most pop-
ular method, very powerfull when a calibration dataset is
available. Other methods don’t need a calibration dataset,
they are called direct calibrations. Two of them have been
proposed previously: DC-Direct Calibration (as described in
Martens and Naes, [2]) and SBC-Science Based Calibration
(Marbach([3])). New method called IDC-Improved Direct
Calibration is proposed. As for DC, this approach is based on
an orthogonal projection. IDC projector is obtained by merg-
ing DC projector (consisting only in pure spectra of chemical
compounds), and vectors characterising physical influence
factors (consisting in PCA loadings onto a design dataset).
Indeed, hyperspectral image analysis is a case where calibra-
tion data are not available. Thus, it’s interesting to use direct
calibration methods instead of PLSR. With the prior knowl-
edge of a few reference spectra, and modelling some noise
from the hyperspectral image itself, it’s possible to identify
objects of interest from the background. This method is also
simple and understandable, very quick and easy to compute.

Index Terms— direct calibration, DC, SBC, IDC.

1. INTRODUCTION

Fast analysis methods to control or analyse processes are of
great importance. Spectrometry is often chosen. Indeed, it
has many advantages: very quick, sample preservation, low
cost. Most of predictions are made using PLSR-Projection
to Latent Structures Regression, a supervised method which
needs a calibration dataset. However, the building of the cal-
ibration dataset can be a real problem. Sometimes the cost
of the reference analysis is very expensive, other times it’s
not possible to obtain a calibration dataset. In these cases, it
can be interesting to use alternative unsupervised methods, as
direct calibration approch based on pure spectra knowledge.

∗Thanks to Ralph MARBACH (VTT Electronics, Finland) for his usefull
discussions and advices.

In the litterature, two methods have been proposed. The first
one is called DC-Direct Calibration. Recently, Marbach pro-
posed a new calibration method called SBC-Science based
Calibration. This paper proposes a third method, based on the
two previous ones, called IDC-Improved Direct Calibration.
Firstly a theoretical part is devoted to the presentation of these
three methods. Then experimental results obtained on hyper-
spectral image, identification of wheat leaves using the IDC
method, are presented and discussed.

2. THEORY.

Matrices will be noted with uppercase boldface characters,
vectors with lowercase boldface characters, scalars with light-
face characters. The following notations will be also used:
Y: interest factor
X: matrix (N, P ) containing the values of P explaining vari-
ables measured onto N samples
̂X: good estimation of X: ̂X − X≈O the null matrix
y: column vector (N, 1) containing the values of Y
XG: matrix (NG, P ) obtained onto a dataset different from
X, and containing only information from the influence fac-
tors.
I: identity matrix, (P, P )
ΣDC,ΣSBC,ΣIDC: symmetrical matrices (P, P ) associ-
ated respectively to DC, SBC and IDC.
K: matrix (Q−1, P ) where the lines are ki, the (Q−1) pure
influence factor spectra. {k1...kQ−1} is a base of Eχ

K∗: matrix obtained by merging K and k
P: matrix (A, P ); the lines {p1...pA} are a base of Eφ

R: matrix (A + Q − 1, P ) obtained by merging K and P
Tχ et Tφ: matrices (N, Q − 1) and (N, A) of the concen-
trations or scores onto N samples associated to the vectors
defined respectively by K and P
k: vector (1, P ), pure spectra of the interest factor

Let X , y and ŷ the prediction of y using X. ŷ is cal-
culated with a calibration model using a b-coefficients vector
(P, 1) named ̂b which verifies:

ŷ = X̂b



Calibration methods differ in the way ̂b is estimated.

2.1. Theory of DC.

In order to avoid confusions, terms 'DC 'and 'Direct Calibra-
tion 'will denote the method presented by Martens and Naes
([2]); otherwise the term 'direct calibration 'will refer to one
of the three existing methods. The assumption of DC is that
all spectra of all chemical compounds in the analysed sam-
ples are known. In accordance with the mixing law derived
from Beer-Lambert, the final spectra is the contribution of all
spectra of the chemical compounds, weighted by their con-
centrations. Assuming that X is a (N, P ) matrix of N spec-
tra, Y a matrix (N, Q) containing the concentrations of the
Q compounds for the N samples, and K∗ a matrix (Q, P ) of
the pure compound spectra, a good estimation of X, noted ̂X,
is given by Equation (1).

̂X = YK∗ (1)

We suppose now that all of the pure spectra are different, and
that we have less compounds than explaining variables, i.e.
Q < P . Thus (K∗K∗′

) is invertible. Then multipling on
the right each member of (1) by K∗′

(K∗K∗′
)−1 leads to the

classical solution:

̂Y = XK∗′
(K∗K∗′

)−1

In the case of quantification of one interest factor Y , the solu-
tion has been demonstrated by Marbach ([3]). From K ∗, the
line corresponding to the spectrum of the interest factor, i.e.k,
is deleted. Thus K is obtained. ΣDC is the (P, P ) orthogonal
projector to K:

ΣDC = I − K′(KK′)−1K

The solution can then be written:

ŷDC = XΣDCk′(kΣDCk′)−1

and:
̂bDC = ΣDCk′(kΣDCk′)−1

2.2. Theory of SBC.

The equation (1) is very theoretical. In practice there is al-
ways noise added to the signal of the interest factor. If we
note E this error, then equation (1) is not true and should be
replaced by:

̂X = YK + E (2)

Marbach supposes that noise is random-distributed aroud he
mean, i.e; E is centered. He proposes a solution to minimise
its influence, increasing signat-to-noise ratio. First, an exper-
imental design is dedicated to the obtention of spectra where
variations are due only to the influence factors -the interest

factor has no effect onto this spectra- The obtained centered-
matrix is called XG. Marbach’s main idea lies in the fact that
variables that have a great variability in XG are the same that
have a great variability in E. The influence of these variables
can be minimized multiplying by XG variance-covariance in-
verse matrix. Let note:

ΣSBC = (X′
GXG)−1

If XG is not invertible, we can also replace XG in previous
equation by XGQ′Q, its projection onto Q the first loadings
of a PCA onto XG. After ΣSBC is determined, multiplica-
tion of each term of equation (2) by ΣSBC is performed. As-
suming that EΣSBC can be approximated to the null matrix
leads to the Marbach solution:

ŷSBC = XΣSBCk′(kΣSBCk′)−1

and:
̂bSBC = ΣSBCk′(kΣSBCk′)−1

2.3. Theory of IDC.

Now, we suppose that we are able to describe correctly both
chemical and physical influence factors. Chemical influence
factors are described by the corresponding pure spectra, in a
K matrix of dimension (Q−1, P ). Physical influence factors
are described by a P matrix, dimension (A, P ), determined
in the same way as Q in the SBC. Then, it exists unknown
matrices Tχ and Tφ that verify:

̂X = yk + TχK + TφP (3)

In order to minimise K and P, an orthogonal projection is
performed, instead of using SBC variance-covariance inverse.
First K and P are merged to obtain R, matrix (Q−1+A, P ).
Then the orthogonal projector ΣIDC is calculated:

ΣIDC = I− R′(RR′)−1R

Thus, terms of equation (3) are multiplied on the right by
ΣIDC. After simplification it gives next equations:

ŷIDC = XΣIDCk′(kΣIDCk′)−1

and:
̂bIDC = ΣIDCk′(kΣIDCk′)−1

3. MATERIAL AND METHODS.

A Hyspex-VNIR 1600 (Norsk Elektro Optikk, Norway) hy-
perspectral system was used to acquire an image in 160
narrow wavebands (400-980 nm, with a 3.6 nm resolution).
Pure spectra were acquired later, using a Zeiss MMS1 spec-
trophotometer with a 310-1150 nm spectral range and a 3.3
nm spectral resolution. A pre-processing was applied on each
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Fig. 1. Pure spectra acquired using a spectrophotometer.
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Fig. 2. Spectra extracted from the hyperspectral image.

data. The image spectra were normalized: each spectrum
was divided by its raw signal at 800 nm. Zeiss raw spectra
were replaced by a linear extrapolation of their correspond-
ing values in the camera range (160 wavebands). No other
pre-processing was achieved. So, signal intensities remain
spectral units for respectively the camera and the spectropho-
tometer. All data were processed with Matlab software.
To determine pure spectra, 12 spectra were acquired onto
4 samples using the Zeiss spectrophotometer: fresh wheat
leaves, wet and dry soil, and a white ceramic. The mean of
fresh leaves spectra is considered as the interest compound
spectrum k, whereas the means of white ceramic, wet and dry
soil, are considered as pure spectra of the previously-known
influence factors, giving matrix K. Other influence factors
spectra were extracted from the image itself. They concern
variabilities in the background composition that hadn’t been
taken into account by the pure spectra: i.e. pebbles and pot.

Fig. 3. NDVI image.

Fig. 4. IDC image.

Then the 7 first PCA loadings onto the matrix containing
these spectra were kept, yielding P. A grey-scale image was
then computed, the maximum and minimum values are re-
spectively affected to white and black levels.
To compare the results obtained with IDC to existing meth-
ods, the NDVI- Normalised Difference Vegetation Index
(Rouse,([4])) was calculated. This index used with pre-
determined channels on satellite sensors is well-known for
its ability to separate vegetation from background. In our
application, the red channel was estimated by the signal at
650 nm, the NIR one by the signal at 850 nm. As for IDC,
NDVI grey scale image was computed.

4. RESULTS AND DISCUSSION.

Figures (1) and (2) show the raw spectra shapes in both ac-
quisitions. We can note strong differences among them, de-



pending mainly from the light source, the sun for the image,
an artificial light for the pure spectra. To correct this source
of variability, an usual approch is to transform raw signal into
reflectance. In our example, both white reference and peb-
ble spectra could have been used to perform this correction.
However, as these spectra were introduced into IDC model, a
correction is automatically performed by orthogonal projec-
tion.
Obtained grey scale images (NDVI and IDC results) are given
respectively in Figures (3) and (4). In both case, a good
discrimination between leaves and background is obtained.
NDVI appears very powerfull. Indeed, leaves and soil spec-
tra are greatly different one from the other. However, some
differences between NDVI and IDC predictions can be ob-
served. Thus, on one hand, leaf prediction using IDC appears
more homogeneous in some regions, see white-edge windows
in Figure (4). In these regions, we suppose that leaves have
moved during data acquisition, due to the wind, and the re-
sulting spectra are a mix of leaf and background spectra. On
the other hand, NDVI highest values are obtained by spec-
tral perturbations on leaves spectra, see white-edge windows
in Figure (3), whereas these perturbations have totaly disap-
peared in IDC image. To conclude, IDC appears to be more
robust to varying data acquisition conditions than NDVI.

5. CONCLUSION.

IDC is a direct calibration method suitable for quantification
of an interest compound in complex matrices. Contrary to
PLSR, it takes advantage of external chemical and physical
information. Pure spectra are known information which is di-
rectly computed into the model. More unknown informations

as structured noise are first modelled, then condensed us-
ing a PCA. The corresponding loadings are computed into the
model. IDC and SBC theories are close one to the other, but
matrix inversion isn’t a problem with IDC, contrary to SBC
where choices have to be done. It’s easier to take into account
a new influence factor with IDC than with SBC. Also IDC is
very easy to understand and to compute, it needs only a PCA
routine.
IDC was applied first in classical spectrometry, but its prop-
erties and the previous example show that this method has
potential applications in hyperspectral image analysis. Its in-
terest should increase with the complexity of the image, in
particular when each pixel spectra is a mix of interest and in-
fuence factor spectra.
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