
HAL Id: hal-00468851
https://hal.science/hal-00468851v1

Preprint submitted on 31 Mar 2010 (v1), last revised 6 Apr 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-skeleton galleries, Hall-Littlewood polynomials and
the path model

Stéphane Gaussent, Peter Littelmann

To cite this version:
Stéphane Gaussent, Peter Littelmann. One-skeleton galleries, Hall-Littlewood polynomials and the
path model. 2010. �hal-00468851v1�

https://hal.science/hal-00468851v1
https://hal.archives-ouvertes.fr


ONE-SKELETON GALLERIES, HALL-LITTLEWOOD

POLYNOMIALS AND THE PATH MODEL

STÉPHANE GAUSSENT AND PETER LITTELMANN

Abstract. We give a direct geometric interpretation of the path model
using galleries in the 1−skeleton of the Bruhat-Tits building associated
to a semi-simple algebraic group. This interpretation allows us to com-
pute the coefficients of the expansion of the Hall-Littlewood polynomials
in the monomial basis. The formula we obtain is a “geometric compres-
sion” of the one proved by Schwer.

1. Introduction

The aim of the present paper is twofold: we want to give a direct geometric
interpretation of the path model for representations and the associated Weyl
group combinatorics [15], and we want to get a geometric compression for
Schwer’s formula for Hall-Littlewood polynomials [20].

Concerning the connection with the path model, a first step in this direc-
tion was done in [8]. The advantage of the new approach is that galleries in
the one-skeleton of the apartment can directly be identified with piecewise
linear paths running along the one-skeleton, and they can be concatenated.
The goal now is to show that the original approach by Lakshmibai, Musili
and Seshadri [11, 12] towards what later became the path model has an in-
trinsic geometric interpretation in the geometry of the affine Grassmannian,
respectively in the geometry of the associated affine building.

To give a more precise description of both aims, let G be a semisimple
algebraic group defined over C, fix a Borel subgroup B and a maximal torus
T . Let U− be the unipotent radical of the opposite Borel subgroup. Let
O = C[[t]] be the ring of complex formal power series and let K = C((t)) be
the quotient field. For a dominant coweight λ and an arbitrary coweight µ
consider the following intersection in the affine Grassmannian G(K)/G(O):

Zλ,µ = G(O).λ ∩ U−(K).µ.

Let Fq be the finite field with q elements and replace the field of complex
numbers by the algebraic closureK of Fq. Assume that all groups are defined
and split over Fq. Replace K by Kq = Fq((t)) and O by Oq = Fq[[t]]; the
Laurent polynomials Lλ,µ defined by Lλ,µ(q) = |Zq

λ,µ| show up as coefficients

in the Hall-Littlewood polynomial: Pλ =
∑

µ∈X∨

+
q−〈ρ,λ+µ〉Lλ,µmµ.

Based on the description of Zλ,µ in [8], Schwer gives a decomposition
Zq
λ,µ =

⋃
Sδ, where the δ are certain galleries of alcoves in the standard

apartment of the associated affine building. The structure of the Sδ is quite
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2 Stéphane Gaussent and Peter Littelmann

simple and hence |Sδ| is easy to compute, but the decomposition has the
disadvantage that the sum |Zq

λ,µ| =
∑

|Sδ| has many terms.
For G of type An, there are other formulas, for example one can specialize

the Haglund-Haiman-Loehr formula for Macdonald polynomials. By ana-
lyzing the combinatorics involved in the formulas, Lenart [14] has shown
that in type An certain terms in Schwer’s formula can be naturally grouped
together such that the resulting formula coincides with the specialization of
the Haglung-Haiman-Loehr formula, he calls this the compression phenom-
enon.

Our approach to “compression” is geometric and independent of the type
of the group. We replace the desingularization of the Schubert variety Xλ in
[8] by a Bott-Samelson type variety Σ which is a fibred space having as fac-
tors varieties of the form H/Q, where H is a semisimple algebraic group and
Q is a maximal parabolic subgroup. In terms of the affine building, a point
in this variety is a sequence of parahoric subgroups of G(K) reciprocative
contained in each other.

More precisely, in terms of the faces of the building, a point in Σ is a
sequence of closed one-dimensional faces, where successive faces have (at
least) a common zero-dimensional face (i.e. a vertex). So if the sequence is
contained in an apartment, then the point in Σ corresponds to a piecewise
linear path in the apartment joining the origin with a special vertex.

We introduce the notion of a minimal one-skeleton gallery (which always
lies in some apartment) and of a positively folded combinatorial gallery in
the one-skeleton. The points in Σ corresponding to the points in the open
orbit G(O).λ ⊂ Xλ are exactly the minimal galleries. Since Σ is smooth,
by choosing a generic one parameter subgroup of T in the anti-dominant
Weyl chamber, we get a Bia lynicki-Birula decomposition, the centers δ of
the cells Cδ correspond to combinatorial one-skeleton galleries δ (i.e. the
galleries lying in the standard apartment). We show that Cδ ∩ G(O).λ if
and only if δ is positively folded.

The Bia lynicki-Birula decomposition of Σ can be used to define a decom-
position Zλ,µ =

⋃

δ Zλ,µ ∩ Cδ, the indexing set of the strata are positively
folded one-skeleton galleries. To see the geometric compression compared
to the decomposition in [8], consider the the case for G of type An. It is
known that Zλ,µ has at least dimV (λ)µ irreducible components. Now in the
An-case the galleries can be translated into the language of Young tableaux,
and the positively folded galleries ending in µ correspond exactly to the
semi-standard Young tableaux of shape λ and weight µ. In this sense the
new decomposition can be viewed as the optimal geometric decomposition
for type An. The general feature of the new approach is that there are much
less non-LS-galleries (see below) than in the old approach. For example in
the case of type An, all positively folded galleries are LS-galleries.

To investigate the intersection Zλ,µ ∩Cδ we need to unfold the (possibly)
folded gallery δ. As a consequence of the unfolding procedure we present
the formula for the coefficients of the Hall-Littlewood polynomials, the sum-
mands below counting the number of points in the intersection of Zq

λ,µ ∩Cδ

for δ being positively folded:
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Theorem 2.

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)
qℓ(wD0

)

(
∏r

j=1

∑

c∈Γ+

s
j
Vj

(ij ,op)
qt(c)(q − 1)r(c)

)

.

The positively folded one-skeleton galleries having q〈λ+µ,ρ〉 as a leading
term in the counting formula for |Zq

λ,µ ∩ Cδ|, are called LS-galleries; this is
an abbreviation for Lakshmibai-Seshadri galleries. In section 9 we discuss
the special role of the LS-galleries and the connection with the indexing
system by generalized Young tableaux introduced by Lakshmibai, Musili
and Seshadri in a series of papers, see for example [11, 12, 13]. Recall that
these papers were the background for the path model theory started in [15].
An important notion introduced in the theory of standard monomials is the
defining chain ([11, 12], see also section 5), which was a breakthrough on
the way for the definition of standard monomials and generalized Young
tableaux. In the context of the crystal structure of the path theory this
notion again turned up to be an important combinatorial tool to check
whether a concatenation of paths is in the Cartan component or not. Still,
the definition had the air of an ad hoc combinatorial tool. But in the context
of Bia lynicki-Birula cells, the folding of a minimal gallery by the action of
the torus occurs naturally: during the limit process (going to the center of
the cell) the direction (= the sector, see section 5) attached to a minimal
gallery is transformed into the weakly decreasing sequence of Weyl group
elements, the defining chain for the positively folded one-skeleton gallery in
the center of the cell.

The connection between the path model theory and the one-skeleton gal-
leries is summarized in the following corollary. For a fundamental coweight
ω let πωi

: [0, 1] → X∨
R , t 7→ tω be the path which is just the straight

line joining o with ω and let γω be the one-skeleton gallery obtained as the
sequence of edges and vertices lying on the path (see also Example 1).

Corollary 3. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of
fundamental coweights, write λ for this ordered decomposition. Let Pλ be
the associated path model of LS-paths of shape λ defined in [15] having as
starting path the concatenation πωi1

∗ . . . ∗ πωir
. For a path π in the path

model denote by γπ the associated gallery in the one-skeleton of A obtained
as the sequence of edges and vertices lying on the path. The one-skeleton
galleries γπ obtained in this way are precisely the LS-galleries of the same
type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths coincides in this case
with the notion of a defining chain for the associated gallery.

Since the number of the LS-galleries is the coefficient of the leading term
of Lλ,µ, and since Pλ → sλ for q → ∞, we get as an immediate consequence
of Theorem 2 the following character formula. In combination with Corol-
lary 3, this provides a geometric proof of the path character formula, first
conjectured by Lakshmibai (see for example [13]) and proved in [15]:

Corollary 4. CharV (λ) =
∑

δ e
target(δ), where the sum runs over all LS-

galleries of the same type as γλ.
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The article is organized as follows: In section 2 we recall some basic facts
about the affine Grassmannian and Hall-Littlewood polynomials, in section 3
we recall the main facts from building theory needed later. In section 4
we introduce the main object of this article, the one-skeleton galleries of
a fixed type, and its geometric counterpart, the Bott-Samelson variety Σ,
and we give a description of the Bia lynicki-Birula cells. In section 5 we
introduce the notion of a minimal one-skeleton gallery and of a positively
folded combinatorial gallery in the one-skeleton. In section 6 we unfold the
folded galleries locally, in section 7 we do this stepwise for the full gallery and
we prove: a cell Cδ contains minimal galleries if and only if δ is positively
folded. In section 8 we present the formula for the coefficients of the Hall-
Littlewood polynomials. In section 9 we discuss the special role of the LS-
galleries and the connection with the indexing system by generalized Young
tableaux introduced by Lakshmibai, Musili and Seshadri.

2. Schubert varieties in the affine Grassmannian

Let G be a connected complex semisimple algebraic group, we fix a Borel
subgroup B ⊂ G and a maximal torus T ⊂ B. Let O = C[[t]] be the ring of
complex formal power series and let K = C((t)) be the quotient field. Denote
by v : K∗ → Z the standard valuation such that O = {f ∈ K | v(f) ≥ 0}.
As a set, the affine Grassmannian G is the quotient

G = G(K)/G(O).

Note that G(K) and G are ind–schemes and G(O) is a group scheme ([10]).
The G(O)-orbits in G are finite dimensional quasi-projective varieties.

2.1. G(O)-orbits in G. We recall the classification of G(O)-orbits and
the associated G(O)-stable Schubert varieties. Denote by 〈·, ·〉 the non–
degenerate pairing between the character group X := Mor (T,C∗) of T and
its group X∨ := Mor (C∗, T ) of cocharacters. Let Φ ⊂ X be the root system
of the pair (G,T ), and, corresponding to the choice of B, denote Φ+ the set
of positive roots, let ∆ = {α1, . . . , αn} be the set of simple roots, and let ρ
be half the sum of the positive roots.

Let Φ∨ ⊂ X∨ be the dual root system, together with a bijection ∆ →
∆∨, α 7→ α∨. We denote by R∨

+ the submonoide of the coroot lattice R∨

generated by the positive coroots Φ∨
+. We define on X∨ a partial order by

setting λ ≻ ν ⇔ λ− ν ∈ R∨
+. Let X∨

+ be the cone of dominant cocharacters:

X∨
+ := {λ ∈ X∨ | 〈λ, α〉 ≥ 0∀α ∈ Φ+}.

Given λ ∈ X∨, we can view in fact λ as an element of G(K). By abuse of
notation we write also λ for the corresponding class in G.

Let ev : G(O) → G be the evaluation maps at t = 0 and let B = ev−1(B)
be the corresponding Iwahori subgroup. Then

G =
⋃

λ∈X∨

B.λ =
⋃

λ∈X∨

+

G(O).λ

We denote by X(λ) = B.λ the corresponding Schubert variety. Let N =
NG(T ) be the normalizer in G of the fixed maximal torus T , we denote by
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W the Weyl group N/T of G. Note that for λ ∈ X∨
+ we have

G(O).λ = X(w0(λ))

where w0 is the longest element in the Weyl group W . By abuse of notation
we just write Xλ for the variety X(w0(λ)) of dimension 〈2λ, ρ〉.

2.2. Reduction to the simply connected case. Let now p : G′ → G be
an isogeny with G′ being simply connected. The natural map pO : G′(O) →
G(O) is surjective and has the same kernel as p. Let X ′ and X ′∨ be the
character group respectively group of cocharacters of G′ for a maximal torus
T ′ ⊂ G′ such that p(T ′) = T , then p : T ′ → T induces an inclusion X ′∨ →֒
X∨.

The quotient X∨/X ′∨ measures the difference between G and the affine
grassmannian G′ = G′(K)/G′(O). In fact, G′ is connected, and the connected
components of G are indexed by X∨/X ′∨. The natural maps pK : G′(K) →
G(K) and pO : G′(O) → G(O) induce a G′(K)–equivariant inclusion G′ →֒ G,
which is an isomorphism onto the component of G containing the class of
1. Now G′(K) acts via pK on all of G, and each connected component is a
homogeneous space for G′(K), isomorphic to G′(K)/Q for some parahoric
subgroup Q of G′(K) which is conjugate to G(O) by an outer automorphism.

So to study G(O)–orbits on G(K)/G(O) for G semisimple, without loss of
generality we may sometimes for convenience assume that G is simply con-
nected, but we have to investigate more generally G(O)–orbits on G(K)/Q
for all parahoric subgroups Q ⊂ G(K) conjugate to G(O) by an outer auto-
morphism.

2.3. Affine Kac-Moody groups. In the following let G be a simply con-
nected semisimple complex algebraic group. The rotation operation γ : C∗ →
Aut (K), γ(z)

(
f(t)

)
= f(zt) gives rise to group automorphisms γG : C∗ →

Aut (G(K)), we denote L(G(K)) the semidirect product C∗×G(K). The ro-
tation operation on K restricts to an operation of O and hence we have a
natural subgroup L(G(O)) := C∗×G(O) (for this and the following see [10],
Chapter 13).

Let L̂(G) be the affine Kac-Moody group associated to the affine Kac–
Moody algebra

L̂(g) = g⊗K ⊕ Cc⊕ Cd,

where 0 → Cc→ g⊗K⊕Cc→ g⊗K → 0 is the universal central extension
of the loop algebra g ⊗ K and d denotes the scaling element. We have
corresponding exact sequences also on the level of groups, i.e., L̂(G) is a
central extension of L(G(K)):

1 → C∗ → L̂(G)
π

−→L(G(K)) → 1.

Denote PO ⊂ L̂(G) the “parabolic” subgroup π−1(L(G(O))), then

(1) G = G(K)/G(O) = L(G(K))/L(G(O)) = L̂(G)/PO .

Let NK be the subgroup of G(K) generated by N and T (K), let T ⊂ L̂(G)
be the corresponding standard maximal torus (i.e. π(T ) ⊃ C∗×T ) and let
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N be its normalizer in L̂(G). We get two incarnations of the affine Weyl
group:

W a = NK/T = N/T .

So to study G(O)–orbits on G(K)/G(O) for G semisimple, without loss of
generality we may assume that G is simply connected and study PO-orbits
in L̂(G)/Q, where Q is a parabolic subgroup of the affine Kac-Moody group

L̂(G) conjugate to PO by an outer automorphism.

2.4. Hall-Littlewood polynomials. There is a natural action of W on the
group algebra R[X∨] with coefficients in some ring R. For µ ∈ X∨ we denote
the corresponding basis element by xµ. The algebra of symmetric polynomi-
als R[X∨]W is the algebra of invariants under this action. There are several
classical bases known for R[X∨]W , all indexed by dominant coweights. Two
important ones are the monomial symmetric polynomials {mλ}λ∈X∨

+
and

the Schur polynomials {sλ}λ∈X∨

+
. The monomial polynomials are just the

orbit sums mλ =
∑

µ∈Wλ x
µ. The Schur polynomial sλ is the character of

the irreducible representation V (λ) of the Lie algebra g∨ of the Langlands’
dual group G∨ of G.

Specializing the ring of coefficients R to the ring L := Z[q, q−1] of Lau-
rent polynomials we have another basis for L[X∨]W , the Hall-Littlewood
polynomials {Pλ}λ∈X∨

+
. They are defined by

Pλ =
1

Wλ(q−1)

∑

w∈W

w
(
xλ

∏

α∈Φ+

1 − q−1x−α∨

1 − x−α∨

)

where Wλ ⊂ W is the stabilizer of λ and Wλ(t) =
∑

w∈Wλ
tℓ(w). The Hall-

Littlewood polynomials interpolate between the monomial symmetric poly-
nomials and the Schur polynomials because Pλ(1) = mλ and Pλ → sλ for
q → ∞.

We define Laurent polynomials Lλ,µ for λ, µ ∈ X∨
+ by

Pλ =
∑

µ∈X∨

+

q−〈ρ,λ+µ〉Lλ,µmµ.

Since Pλ → sλ for q → ∞, we know that q−〈ρ,λ+µ〉Lλ,µ ∈ Z[q−1].
The Hall-Littlewood polynomials are connected with the geometry of the

affine Grassmannian. Let B− ⊂ G be the opposite Borel subgroup and
denote by U− its unipotent radical. We are interested in the structure of
the irreducible components of the intersection of the following orbits in G:

(2) Zλ,µ := G(O).λ ∩ U−(K).µ ⊂ G, λ ∈ X∨
+, µ ∈ X∨.

For a prime power q let Fq be the finite field with q elements, set Kq := Fq((t))
and Oq := Fq[[t]], and let Zq

λ,µ be defined as above, only K and O being

replaced by Kq and Oq. The Laurent polynomials Lλ,µ have the following
geometric interpretation (see for example [20], section 8):

Theorem.

(3) |Zq
λ,µ| = Lλ,µ(q).
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3. Apartments, chambers and buildings

Instead of studying directly the intersection Zλ,µ in (2), we replace the
Schubert variety Xλ by a desingularization given by an appropriately chosen
Bott-Samelson variety or variety of galleries. In this context the U−(K)-
orbits are replaced by Bia lynicki-Birula cells associated to a generic anti-
dominant coweight. To describe the choice of the desingularization and get
hold of the combinatorial tools to calculate |Zq

λ,µ|, we need to recall some

notation from the theory of buildings. As references we suggest [3], [4], [19]
and/or [23].

3.1. Apartment. The apartment associated to the root and coroot datum
is the real vector space A = X∨⊗ZR together with the hyperplane arrange-
ment defined by the set {(α, n) | α ∈ Φ, n ∈ Z} of affine roots. In terms
of affine Kac-Moody algebras, a couple (α, n) corresponds to the real affine
root α+ nδ, where δ denotes the smallest positive imaginary root.

For an affine root (α, n) we write sα,n : x 7→ x −
(
〈α, x〉 + n

)
α∨ for the

affine reflection and Hα,n = {x ∈ A | 〈α, x〉 + n = 0} for the corresponding
affine hyperplane of fixed points, and we write

H
+
α,n = {x ∈ A | 〈α, x〉 + n > 0} ;

for the corresponding closed half-space.

3.2. Chambers, alcoves, faces and sectors.

Definition 1. The irreducible components of A−
⋃

α∈Φ+ Hα,0 are called open
(spherical) chambers, the closure is called a closed chamber or Weyl chamber,
or just chamber. The irreducible components of A −

⋃

(α,n)∈Φ+×Z Hα,n are

called open alcoves, the closure is called a closed alcove or just an alcove.

The Weyl group W and the affine Weyl group W a can be realized in
this context as follows: W is the finite subgroup of GL(A) generated by
the reflections sα,0, α ∈ Φ, the affine Weyl group W a is the group of affine
transformations of A generated by the affine reflections sα,n, (α, n) ∈ Φ×Z.
The dominant Weyl chamber

C+ := {x ∈ A | ∀α ∈ Φ+ : 〈α, x〉 > 0} =
⋂

α∈Φ+

H
+
α,0

is a fundamental domain for the action of W on A and the fundamental
alcove

∆f = {ν ∈ A | ∀α ∈ Φ+ : 0 ≤ 〈β, x〉 ≤ 1} =
⋂

α∈Φ+

H
+
α,0 ∩

⋂

α∈Φ,n>0

H
+
α,n

is a fundamental domain for the action of W a on A.

Definition 2. By a face F we mean a subset of A obtained as the inter-
section of closed affine halfspaces and affine hyperplanes, the intersection
running over all pairs (β,m), β ∈ Φ+, m ∈ Z. By the corresponding open
face F o we mean the subset of F obtained when replacing the closed affine
halfspaces in the definition of F by the corresponding open affine halfspaces.
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We call the affine span 〈F o〉aff = 〈F 〉aff the support of the (open) face,
the dimension of the face is the dimension of its support. A wall of an
alcove is the support of a codimension one face. In general, instead of the
term hyperplane we use often the term wall, which is more common in the
language of buildings.

For any subset Ω and any face F contained in an apartment A of a
building, we say that a wall H separates Ω and F if Ω is contained in a
closed half space defined by H and F o is a subset of the opposite open half
space.

We call a face of dimension one in A an edge and a face of dimension zero
a vertex. For a vertex ν let Φν ⊂ Φ be the subrootsystem consisting of all
roots α such that ν ∈ H(α,n) for some integer n. A vertex ν is called a special
vertex if Φν = Φ. The special vertices are precisely the coweights for G of
adjoint type.

By a sector s with vertex ν ∈ A we mean a closed chamber translated by
ν, i.e., there exists a closed chamber C such that

(4) s := {λ ∈ A | λ = ν + z for some z ∈ C}.

By abuse of notation we write −s for the sector

(5) −s = ν − C = {µ ∈ A | µ = ν − x for some x ∈ C}.

For a sector s with vertex ν and an element µ ∈ A let s(µ) be the sector
obtained from s by translating the sector by µ− ν: If s is as in (4), then

(6)
s(µ) = {λ ∈ A | λ = (µ− ν) + z for some z ∈ s}.

= {λ ∈ A | λ = µ+ z for some z ∈ C}

If µ ∈ s, then obviously s(µ) ⊂ s ⊂ s(−µ).

3.3. Faces, parahoric and parabolic subgroups. The faces in A are
in bijection with parabolic subgroups of the affine Kac-Moody group L̂(G)
containing T and parahoric subgroups in G(K) containing T .

To a root vector Xα ∈ LieG, one associates the one-parameter subgroup
Uα = {xα(f) = exp(Xα⊗f) | f ∈ K} of G(K) (resp. of L̂(G)). If f = atn for
some a ∈ C and n ∈ N, then, for a fixed n, the set Uα+nδ = {xα(atn) | a ∈ C}
is a one-parameter subgroup associated to the real affine root α+ nδ.

Definition 3. Given a face F , let P̂F be the unique parabolic subgroup of
L̂(G) containing T and all root subgroups Uα+nδ such that F ⊂ H

+
α,n.

Given a face F , let UF be the subgroup of G(K) generated by all elements
of the form xα(f), where f ∈ K∗ is such that v(f) ≥ n and F ⊂ H

+
α,n. Let

PF be the unique parahoric subgroup of G(K) containing T and UF .

For example, if F is a face of the fundamental alcove, then B ⊂ PF .
Indeed, the fundamental alcove itself corresponds to the Iwahori subgroup
B ⊂ G(K) respectively the fixed Borel subgroup B̂ of L̂(G). The origin cor-
responds to the parahoric subgroup G(O) ⊂ G(K) respectively the parabolic

subgroup PO ⊂ L̂(G).
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3.4. The affine building. Let O = C[[t]] be the ring of complex formal
power series and let K = C((t)) be the quotient field. Let N = NG(T ) be
the normalizer in G of the fixed maximal torus T ⊂ G, then the Weyl group
W of G is isomorphic to N/T . For a real number r let Uβ,r ⊂ Uβ(K) be the
unipotent subgroup

Uβ,r = {1} ∪
{

xβ(f) | f ∈ K∗, v(f) ≥ r
}

.

For a non-empty subset Ω ⊂ A let ℓβ(Ω) = − infx∈Ω β(x). We attach to Ω
a subgroup of G(K) by setting

(7) UΩ := 〈Uβ,ℓβ(Ω) | β ∈ Φ〉.

Let N(K) be the subgroup of G(K) generated by N and T (K). To define
the affine building J a, let ∼ be the relation on G(K) × A defined by:

(g, x) ∼ (h, y) if ∃n ∈ N(K) such that nx = y and g−1hn ∈ Ux.

Definition 4. The affine building J a := G(K)×A/ ∼ associated to G is the
quotient of G(K) × A by “∼”. The building J a comes naturally equipped
with a G(K)–action g · (h, y) := (gh, y) for g ∈ G(K) and (h, y) ∈ J a.

The map A → J a, x 7→ (1, x) is injective and N(K)−equivariant, we will
identify in the following A with its image in J a. More generally, a subset A
of J a is called an apartment if it is of the form gA for some g ∈ G(K). We
extend in the same way the notion of a face F , a sector s, a chamber C and
the notion of a parahoric subgroup PF associated to a face.

We denote by r−∞ : J a → A the retraction centered at −∞. It is a
chamber complex map and the fibers of r−∞ are the U−(K)−orbits in J a

(see [8] Definition 8 and Proposition 1, or [4] Sections 6,7).
Moreover, the action of G(K) is such that xα(atn) fixes the halfspace H+α,n.

3.5. Residue building. Let V be a vertex in J a. Let J a
V be the set of

all faces F in J a such that F ⊃ V . Following Bruhat and Tits in Remark
4.6.35 of [5], one endows J a

V with the complex simplicial structure given by
the relation F ⊂ F ′, for two faces containing V . Further, let HV be the
connected reductive subgroup of G with root system ΦV . Then, Theorem
4.6.33 of loc. cit. shows that the structure of a spherical building on the set
of all parabolic subgroups of HV is isomorphic to the one on J a

V .
This isomorphism restricts to any apartment and implies that if A is an

apartment in J a, then the set AV of all faces F ⊃ V contained in A is an
apartment in J a

V . The simplicial structure on AV is the one associated to
the Coxeter complex given by the spherical group W v

V . The latter is the
subgroup of W generated by the reflections along Ker(α), for all α ∈ ΦV .

Notation. The set J a
V , endowed with this structure, is called the residue

building of J a at V . The group HV acts transitively on the set of pairs
(CV ⊂ AV ) of a chamber in an apartment in J a

V .

For any face F of J a containing V , we denote the associated face in J a
V

by FV . Given a sector s = V + C in A with vertex V , one associates the
chamber sV of AV in the following way: let ∆ ⊃ V be the unique alcove
in A such that ∆o ∩ so 6= ∅, then sV := ∆V . By abuse of notation, −sV
will denote the chamber associated to (V −C). Let C±

V denote the positive
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(resp. negative) chamber in AV associated to V + C±. The stabilizers of
C±
V in HV are opposite Borel subgroups, denoted by B±

V .
Let now V ⊂ F be a one-dimensional face containing a vertex in J a. Let

PV ⊃ PF be the parahoric subgroups associated to V and F , then PV /PF

is isomorphic to a Grassmannian HV /QF where QF ⊃ BV is the maximal
parabolic subgroup in HV associated to the simple root αF defined by the
type of FV .

4. One-skeleton galleries

Roughly speaking, a one-skeleton gallery is a sequence of edges in J a, two
subsequent ones having a common vertex. If the gallery stays in the apart-
ment A, then we call it a combinatorial one-skeleton gallery. We will see
that the set of one-skeleton galleries of fixed type inherits in a natural way
the structure of a Bott-Samelson variety Σ and provides the desired desingu-
larization of the Schubert variety Xλ (see Proposition 2). The combinatorial
one-skeleton galleries correspond precisely to the centers of Bia lynicki-Birula
cells (Section 4.3) for the smooth variety Σ.

4.1. Combinatorial one-skeleton galleries.

Definition 5. We call a sequence γ = (V0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂
Er ⊃ Vr+1) of faces in A a combinatorial one-skeleton gallery if

• the faces Vi, i = 0, . . . , r + 1, are vertices in A;
• the vertex V0 (the source of the gallery) and the vertex Vr+1 (the
target of the gallery) are special vertices;

• the faces Ei, i = 0, . . . , r, are edges in A.

If γ′ = (V ′
0 ⊂ E′

0 ⊃ · · · ⊂ E′
t ⊃ V ′

t+1) is another one-skeleton gallery such
that V ′

0 = Vr+1, then one can concatenate the two galleries to get a new one:

γ ∗ γ′ = (V0 ⊂ E0 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1 = V ′
0 ⊂ E′

0 ⊃ · · · ⊂ E′
t ⊃ V ′

t+1).

By abuse of notation we often write γ ∗ γ′ even if V ′
0 6= Vr+1. In this case,

we mean the concatenation of γ with the displaced gallery γ′ + (Vr+1 − V ′
0).

This construction makes sense since, by assumption, V ′
0 and Vr+1 are special

vertices.

Example 1. Suppose G is simple, of adjoint type and ω is a fundamental
coweight. Let R≥0ω ⊂ A be the extremal ray of the dominant Weyl chamber
C+ spanned by ω. Set V0 = o and let E0 be the unique face of dimension
one in the intersection of R≥0ω with the fundamental alcove. If the second
vertex V1 of E0 is different from ω, then let subsequently Ei be the unique
dimension one face in R≥0ω (different from Ei−1) having Vi as a common
vertex with Ei−1. We obtain a one-skeleton gallery

γω = (V0 = o ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ ω = Vr+1)

joining o with ω. We refer to these kind of galleries as fundamental galleries,
the faces Ej of such a gallery are called fundamental faces (although, they
might not be contained in the fundamental alcove).
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Example 2. Let λ be an arbitrary dominant coweight. We call a one-
skeleton gallery γ = (V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) a dominant combinatorial
gallery joining o and λ along the coweight lattice if γ = γωi1

∗γωi2
∗ · · · ∗γωir

is a concatenation of fundamental galleries such that
∑s

j=1 ωij = λ.

Example 3. If we have fixed an enumeration ω1, . . . , ωn of the fundamental
coweights and λ =

∑
aiωi, then we write γλ for the gallery γa1ω1

∗· · · ∗γanωn

joining o and λ

Example 4. Let λ be again an arbitrary dominant coweight. We call a one-
skeleton gallery γ = (V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) a dominant combinatorial
gallery joining o and λ if the source is o, the target is λ and all the faces Ej

are displaced fundamental faces.

Definition 6. Let Sa be the set of affine roots (α, n) such that ∆f ∩H(α,n) is
a face of codimension one. Given a face F of the fundamental alcove ∆f , we
call Sa(F ) := {(α, n) ∈ Sa | F ⊂ H(α,n)} the type of F . Given an arbitrary

face F ⊂ A, there exists a unique face F f of the fundamental alcove which
is W a-conjugate to F . We set Sa(F ) := Sa(F f ) and call this the type of F .

Definition 7. Given a combinatorial one-skeleton gallery γ = (V0 ⊂ E0 ⊃
V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1), we call the sequence

tγ := (Sa(V0) ⊃ Sa(E0) ⊂ Sa(V1) ⊃ . . . ⊂ Sa(Vr) ⊃ Sa(Er) ⊂ Sa(Vr+1))

the gallery of types or the type of γ. We denote by Γ(tγ , V0) the set of all
combinatorial galleries starting in V0 and having tγ as type.

Notation. Because a face F is always contained in an apartment A = gA,
the notion of a one-skeleton gallery, of the type of a face and the type of a
gallery extends to the whole building J a.

Let WVi
⊂W a be the Weyl group of PVi

, i.e., WVi
is the stabilizer of the

vertex Vi, and let WEi
⊂ W a be the Weyl group of PEi

, i.e., WEi
is the

stabilizer of the edge Ei.

Lemma 1. Let γ = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) be a
combinatorial one-skeleton gallery. The set Γ(tγ , V0) can be identified with
sequences of Weyl group classes in

∏r
i=0WVi

/WEi
via the map

(w0, . . . , wr) 7→ (V0 ⊂ w0(E0) ⊃ w0(V1) ⊂ w0w1(E1) ⊃ · · ·
· · · ⊂ w0 · · ·wr(Er) ⊃ w0 · · ·wr(Vr+1)).

In particular, the set Γ(tγ , V0) is finite.

Proof. Let γ′ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ E′
1 ⊃ V ′

2 ⊃ . . .) be a one-skeleton
gallery in Γ(tγ , V0). Since the type of E0 and E′

0 are the same, the two have
to be conjugate by the finite reflection group WV0

generated by all affine
reflections sα,n such that V0 ⊂ Hα,n. Proceeding by induction, we see that
the map defined above is a bijection. Therefore

(8) |Γ(tγ , V0)| =

r∑

i=1

|WVi
/WEi

|,

in particular, the set Γ(tγ , V0) is finite. �
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4.2. Variety of galleries and Bott-Samelson varieties. We assume in
this section that G is of adjoint type. Fix a combinatorial one-skeleton
gallery γ = (V0 = o ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1), we can associate
to the gallery a sequence of parahoric subgroups:

G(O) ⊃ P
E

f
0

⊂ P
V

f
1

⊃ . . . ⊂ P
V

f
r
⊃ P

E
f
r
⊂ P

V
f
r+1

.

We use now this correspondence to identify one-skeleton galleries with points
in (generalized) Bott-Samelson varieties.

Definition 8. The variety Σ(tγ) of galleries of type tγ starting in V0 = o is
the closed subvariety of

G(K)/G(O) ×G(K)/P
E

f
0

× . . .×G(K)/P
E

f
r
×G(K)/P

V
f
r+1

given by all sequences of parahoric subgroups of shape

G(O) ⊃ Q0 ⊂ R1 ⊃ Q1 ⊂ · · · ⊃ Qr ⊂ Rr+1,

where Ri is conjugate to P
V

f
i

for i = 1, . . . , r+ 1 and Qi is conjugate to P
E

f
i

for i = 0, . . . , r.

The action of the group G(K) on J a naturally extends to an action of
G(K) on the set of galleries. The action of G(K) is type preserving, the
variety of galleries of fixed type Σ(tγ) starting in V0 is stable under the
action of G(O). Because of the bijection of parahoric subgroups with faces
of J a, the set of all points of the variety Σ(tγ) is in bijection with the
one-skeleton galleries in J a

g = (V0 = o ⊂ E′
0 ⊃ V ′

1 ⊂ E′
1 ⊃ · · · ⊂ E′

r ⊃ V ′
r+1)

having type tγ . The combinatorial galleries correspond to sequences of sub-
groups conjugated to the P

E
f
i

’s and P
V

f
i

’s by elements in W a, these are

precisely the T -fixed points in Σ(tγ). Given a sequence of parahoric sub-
groups

G(O) ⊃ P
E

f
0

⊂ P
V

f
1

⊃ P
E

f
0

⊂ · · · ⊃ P
E

f
r
⊂ P

V
f
r+1

,

one defines the fibred product

G(O) ×P
E
f
0

P
V

f
1

×P
E
f
1

. . .×P
E
f
r−1

P
V

f
r
/P

E
f
r

as the quotient of P
V

f
0

× P
V

f
1

× · · · × P
V

f
r

by P
E

f
0

× P
E

f
1

× · · · × P
E

f
r

given

by the action :

(p0, p1, ..., pr) · (q0, q1, ..., qr) = (q0p0, p
−1
0 q1p1, ..., p

−1
r−1qrpr).

This fibred product is a smooth projective complex variety. Its points are
denoted by [g0, . . . , gr]. The following proposition is proved in [6] in the case
of varieties of galleries in the spherical building associated to a semi-simple
group. The proof extends naturally to our setting.

Proposition 1. As a variety, Σ(tγ) is isomorphic to the fibred product via
the map

[g0, . . . , gr] 7→ (PV0
⊃ g0PE0

g−1
0 ⊂ g0PV1

g−1
0 ⊃ g0g1PE1

g−1
1 g−1

0 ⊂ · · ·
· · · ⊂ g0 · · · grPVr+1

g−1
r · · · g−1

0 ).
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Given a dominant coweight λ, let γλ = (o ⊂ E0 ⊃ . . . ⊂ Er ⊃ λ) be a
corresponding one-skeleton gallery as in Example 4. In this case, the variety
of galleries of type tγλ starting in o is called the Bott-Samelson variety
associated to the gallery γλ and is denoted by:

Σ(γλ) := G(O) ×P
E
f
0

P
V

f
1

×P
E
f
1

. . . P
V

f
r−1

×P
E
f
r−1

P
V

f
r
/P

E
f
r
.

The set of all combinatorial galleries in the Bott-Samelson variety is denoted
by Γ(γλ). For instance, the gallery γλ corresponds to [1, w1, ..., wr], where
wj is the minimal representative of the longest element in W

V
f
j

/W
E

f
j

.

Example 5. If ω is a minuscule fundamental coweight, then γω = (o ⊂
E0 ⊃ ω) and Σ(γω) = G(O)/PE0

is just a homogeneous space, isomorphic

to the orbit G(O).ω = G(O).ω = Xω.

In general, the connection between Xλ and Σ(γλ) is given by the following
proposition:

Proposition 2. As before, denote by λf also the point in G = G(K)/G(O)
corresponding to the vertex of the fundamental alcove of the same type as λ.
The canonical product map

π : Σ(γλ) := G(O) ×PE0
PV1

×P
E
f
1

. . . P
V

f
r
/P

E
f
r

→ G

[g0, g1, . . . , gr] 7→ g0g1 · · · grλ
f

has as image the Schubert variety Xλ. The induced map π : Σ(γλ) → Xλ

defines a desingularization of the variety Xλ.

The proof of this proposition is similar to the proof in the classical case and
is based on the fact that the gallery γλ is minimal. The notion of minimality
in our context is defined and discussed in Section 5.

4.3. Cells. Let η : C∗ → T be a generic anti-dominant coweight. Then the
set of η-fixed-points in Σ(γλ) is finite and is in bijection with the set of all
combinatorial galleries of the same type as γλ. For such a fixed γ denote by
Cγ the corresponding Bia lynicki-Birula cell, i.e. the set of points such that
limt→0 η(t).x = γ.

For a face F in J a, limt→0 η(t).F = r−∞(F ), and for a face F in A,
r−1
−∞(F ) = U−(K).F . Therefore, we want to determine as precisely as pos-

sible the group Stab−(F ) = StabU−(K)(F ) and the set Stab−(V )/Stab−(F )
when F and V are faces of the Coxeter complex such that V ⊂ F .

Bruhat and Tits (see (7.1.1) in [4]) associate to a face F of the Coxeter
complex the function fF : α 7→ infk∈Z{α(F ) + k ≥ 0}. If α ∈ Φ, then fF (α)
is the smallest integer n such that F lies in the closed half-space H+

α,n. The
function fF is convex and positively homogeneous of degree 1; in particular,
fF (iα+jβ) 6 ifF (α)+jfF (β) for all roots α, β ∈ Φ and all positive integers
i, j.

When F and V are two faces of A such that V ⊂ F , then we denote by
Φa
−(V, F ) the set of all affine roots β ∈ Φ−×Z such that V ⊂ Hβ and F 6⊂ H+

β ;

in other words, (α, n) ∈ Φa
−(V, F ) if and only if α ∈ Φ−, n = fV (α) and

n+1 = fF (α). We denote by Stab−(V, F ) the subgroup of U−(K) generated
by the elements of the form xβ(a) with β ∈ Φa

−(V, F ) and a ∈ C. We plot an
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example to help the understanding of all these definitions. In the following
picture, α is a positive root.

H−α,−2 H−α,−1 H−α,0 H−α,1 H−α,2

H
+
−α,1

fV (−α) = 1

fF (−α) = 2

s
0

- α

sV �
�
�F

The following proposition is proved in [1], Proposition 19.

Proposition 3. (1) The stabilizer Stab−(F ) of a face F of the Coxeter
complex is generated by the elements xα(p), where α ∈ Φ− and p ∈ K
satisfy val(p) > fF (α).

(2) Let F and V be two faces of the Coxeter complex such that V ⊂ F .
Then Stab−(V, F ) is a set of representatives for the right cosets of
Stab−(F ) in Stab−(V ). For any total order on the set Φa

−(V, F ), the
map

(aβ)β∈Φa

−
(V,F ) 7→

∏

β∈Φa

−
(V,F )

xβ(aβ)

is a bijection from CΦa

−
(V,F ) onto Stab−(V, F ).

In J a
V , FV corresponds to a spherical face of dimension one given by an

element wF ∈ WV /WF such that F = wFφ
−
F , where φ−F is the face having

the same type as FV contained in C−
V . Let D = projF (C−

V ) be the closest

chamber to C−
V containing FV , then wF = w(C−

V ,D).

Proposition 4. The walls Hβ, for β ∈ Φa
−(V, F ), viewed as walls in AV ,

are the walls crossed by any minimal gallery of chambers between C−
V and

D.

Proof. By definition, Φa
−(V, F ) = {β ∈ Φ− × Z | V ⊂ Hβ, F 6⊂ H+

β }.

So, for any β in this set, the wall Hβ separates C−
V from FV . Moreover,

F 6⊂ H+
β implies that it separates also C−

V from D. Hence, Hβ is crossed by

any minimal gallery of chambers between C−
V and D. �

Therefore, Stab−(V, F ) can be identified with U−
V (wF ), where the latter

is defined as B−
V wFP

−
F /P

−
F = U−

V (wF )wFP
−
F /P

−
F .

Let

δ = [δ0, δ1, ..., δr ] = (0 = V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) ∈ Γ(γλ)
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and set

Stab−(δ) = Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er).

Proposition 5. The map

f : (v0, v1, . . . , vr) 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δr−1

−1
vr δ0 · · · δr

]

from Stab−(δ) to Σ(γλ) is injective and its image is Cδ (here x means that
we take a coset representative of x in G(K)). Therefore, Cδ is isomorphic

to CΦa
−
(V0,E0) × · · · × CΦa

−
(Vr ,Er).

Proof. The proof is similar to the one of Proposition 22 in [1], we write it

down again, mainly for the comfort of the reader. Set ˜Stab−(δ) =

Stab−(V0) ×
Stab−(E0)

Stab−(V1) ×
Stab−(E1)

· · · ×
Stab−(Er−1)

Stab−(Vr)/Stab−(Er).

Using the inclusions

Stab−(Ej) ⊆ δ0 · · · δj PE
f
j

δ0 · · · δj
−1

(for 0 6 j 6 r),

Stab−(V0) ⊆ G(O)δ0
−1
,

Stab−(Vj) ⊆ δ0 · · · δj−1 PV
f
j

δ0 · · · δj
−1

(for 1 6 j 6 r),

standard arguments imply that the map

f : [v0, v1, . . . , vr] 7→
[
v0 δ0 , δ0

−1
v1 δ0δ1 , δ0δ1

−1
v2 δ0δ1δ2 , . . . , δ0 · · · δr−1

−1
vr δ0 · · · δr

]

from ˜Stab−(δ) to Σ̂(γλ) is well-defined.
The proof of Proposition 6 in [8] says that an element d = [g0, g1, . . . , gr]

in the Bott-Samelson variety belongs to the cell Cδ if and only if there exists
u0, u1, . . . , ur ∈ U

−(K) such that

g0g1 · · · gjE
f
j = ujEj and uj−1Vj = ujVj

for each j. Setting v0 = u0 and vj = u−1
j−1uj for 1 6 j 6 r, the conditions

above can be rewritten

g0g1 · · · gjPE
f
j

= v0v1 · · · vj δ0δ1 · · · δj PE
f
j

and vj ∈ Stab−(Vj),

which shows that f([v0, v1, . . . , vr]) = d. Therefore the image of f contains
the cell Cδ. The reverse inclusion can be established similarly.

The map f is injective. Indeed suppose that two elements v = [v0, v1, . . . , vr]

and v′ = [v′0, v
′
1, . . . , v

′
r] in ˜Stab−(δ) have the same image. Then

v0v1 · · · vj δ0δ1 · · · δj PE
f
j

= v′0v
′
1 · · · v

′
j δ0δ1 · · · δj PE

f
j

for each j ∈ {0, . . . , r}. This means geometrically that

v0v1 · · · vj δ0δ1 · · · δj E
f
j = v′0v

′
1 · · · v

′
j δ0δ1 · · · δj E

f
j ;

in other words, v0v1 · · · vj and v′0v
′
1 · · · v

′
j are equal in U−(K)/Stab−(Ej).

Since this holds for each j, the two elements v and v′ are equal in ˜Stab−(δ).
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We conclude that f induces a bijection from ˜Stab−(δ) onto Cδ. It then re-
mains to observe that the map (v0, v1, . . . , vr) 7→ [v0, v1, . . . , vr] from Stab−(δ)

to ˜Stab−(δ) is bijective. This follows from Proposition 3 part 2: indeed for

each [a0, a1, . . . , ar] ∈ ˜Stab−(δ), the element (v0, v1, . . . , vr) ∈ Stab−(δ) such
that [v0, v1, . . . , vr] = [a0, a1, . . . , ar] is uniquely determined by the condition
that for all j ∈ {0, 1, . . . , r},

vj ∈
(
(v0 · · · vj−1)

−1(a0 · · · aj)Stab−(Ej)
)
∩ Stab−(Vj , Ej).

�

5. Minimal one-skeleton galleries

To study the intersection Zλ,µ := G(O).λ ∩ U−(K).µ (see (2)) using the
language of galleries, we need to characterize which galleries in Σ(γλ) map
onto the dense orbit G(O).λ in Xλ (see Corollary 1). This will be done
by introducing the notion of a minimal gallery. These galleries replace the
minimal galleries of alcoves used in [8].

5.1. Minimality relative to an equivalence class of sectors. A sector
s in the affine building is a sector in some apartment. Two sectors are called
equivalent if the intersection of the two is again a sector. Recall that for
two given sectors s1, s2, there exists an apartment A and subsectors s′1 ⊂ s1,
s′2 ⊂ s2 such that s′1, s

′
2 ⊂ A. The set of equivalence classes of sectors is in

bijection with the set of Weyl chambers in A. Given a sector s, we denote
such an equivalence class by s.

Definition 9. A one-skeleton gallery

γ = (V0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1)

is called minimal if there exists an equivalence class of sectors sγ and rep-
resentatives s0, . . . , sr ∈ sγ such that for all i = 0, . . . , r: Vi is the vertex for
the sector si and Vi ⊂ Ei ⊂ si.

The sequence s(γ) = (s0, . . . , sr) is called a chain of sectors associated to
γ. The class sγ is not necessarily uniquely determined by γ.

Example 6. The galleries described in Examples 1,2, 3 and 4 are minimal
galleries such that sγ = C+.

Remark 1. 1) With a little extra effort, one can see that this definition is an
“instance” of Definition 5.24 of [6], where Contou-Carrère defines generalized
minimal galleries in a Coxeter complex.

2) Thinking in geometric terms one might be inclined to demand that
“minimality” should be a local property, i.e. to be verified at each vertex
of the gallery. This is not sufficient, see below. Propositions 6 and 7 show
that the more rigid definition above is the right definition for our purpose.

Example 7. Consider the apartment of type A2, we use the notation γω1
, γω2

as in Example 2 for the fundamental weights. For an element w of the Weyl
group set γw(ωi) := w(γωi

), i = 1, 2.
The galleries γ1 = γs1(ω1) ∗ γs1s2(ω2) and γ2 = γs1s2(ω2) ∗ γs2s1(ω1) are

minimal with sγ1 = s1s2(C
+) and sγ2 = s1s2s1(C

+). But the gallery γ :=
γs1(ω1) ∗ γs1s2(ω2) ∗ γs2s1(ω1) is not minimal in the sense above.
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The natural action of G(K) on J a induces a natural action on one-skeleton
galleries: Let γ be a one-skeleton gallery and g ∈ G(K), then we set

g.γ = (g.V0 ⊂ g.E0 ⊃ g.V1 ⊂ g.E1 ⊃ · · · ⊃ g.Vr ⊂ g.Er ⊃ g.Vr+1)

It follows immediately that the property of being minimal is preserved by
the action. Let o be the origin in A.

Proposition 6. Let γ be a minimal one-skeleton gallery in the building
J a starting in V0 = o and let s(γ) = (s0, . . . , sr) be an associated chain of
sectors.

a) γ is contained in s0.
b) For all i = 0, . . . , r + 1: (Vi ⊂ Ei ⊃ Vi+1 ⊂ · · · ⊃ Vr+1) ⊂ s0(Vi).

In particular, one may choose as associated chain of sectors s(γ) =
(s0, s0(V1), . . . , s0(Vr)).

c) There exists a unique gallery γ′ in the orbit G(O).γ such that γ′ is
contained in the dominant Weyl chamber C+ in A and the chain of
sectors associated to γ can be chosen to be all in the class of C+.

Proof. The sectors si, si+1, 0 ≤ i ≤ r − 1, are in the same equivalence class,
so there exists a subsector s′i contained in both sectors. A sector is the
closure of the convex hull of its vertex and any subsector, and hence si is
the closure of the convex hull of Vi and s′i, and si+1 is the closure of the
convex hull of Vi+1 and s′i. Since si ⊃ Ei ⊃ Vi+1 it follows that si+1 is a
subsector of si, in fact, si+1 = si(Vi+1). By induction we conclude:

(9) s0 ⊂ s0(V1) = s1 ⊂ s0(V2) = s1(V2) = s2 ⊂ . . . ⊂ s0(Vr) = . . . = sr.

Now Ej ⊂ sj for all j = 0, . . . , r, so (Vi ⊂ Ei ⊃ Vi+1 ⊂ · · · ⊃ Vr+1) ⊂ s0(Vi),
which finishes the proof of a) and b).

Since G(O) acts transitively on the set of sectors having o as vertex, there
exists g ∈ G(O) such that g.s0 = C+. It follows: γ′ = g.γ is completely
contained in C+. It remains to prove the uniqueness.

Suppose now g′.γ = (V ′
0 ⊂ E′

0 . . .) and g′′.γ = (V ′′
0 ⊂ E′′

0 . . .) are contained
in the dominant Weyl chamber and hence in A. The action of G(O) preserves
types, so both galleries have the same gallery of types. Obviously we have
V ′
0 = V ′′

0 = o and E′
0 = E′′

0 since both are faces of the same type of the
fundamental alcove. It follows: V ′

1 = V ′′
1 . Since g′.s1 = g′.(s0(V1)) =

C+(V ′
1) = C+(V ′′

1 ) = g′′.(s0(V1)) = g′′.s1, E′
1 ⊃ V ′

1 and E′′
1 ⊃ V ′

1 are faces of
the same type of the same sector C+(V ′

1), so necessarily E′
1 = E′′

1 . Repeating
the argument shows γ = γ′. �

Remark 2. In part b) above one can replace s0 by −s0 (see (5) for the
notation), but one has to replace the “tail” of the gallery by the “head”:
For all i = 0, . . . , r + 1: (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vi) ⊂ −s0(Vi).

5.2. Orbits. The following proposition gives us a precise dictionary between
the language of minimal one-skeleton galleries and orbits of G(O) in the
affine Grassmannian G(K)/G(O).

Proposition 7. Let γ be a minimal one-skeleton gallery in J a starting in o

and ending in λ = Vr+1 in the dominant Weyl chamber C+ in A. The target
λ = Vr+1 is a special point and hence is a coweight, by abuse of notation
we also write λ for the corresponding point in G(K)/G(O). The following
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natural map between the G(O)-orbit of the gallery γ and the G(O)-orbit of
λ in G is bijective:

G(O).γ −→ G(O).λ ⊂ G(K)/G(O), g.γ 7→ g.λ.

Proof. The map π defined in Proposition 2 is G(O)−equivariant and, as a
desingularization of X(λ), it must be an isomorphism over an open subset

of X(λ) = G(O).λ. So it restricts to a bijection G(O).γ ≃ G(O).λ. �

Summarizing we have proved:

Corollary 1. (1) Let γ be a minimal one-skeleton gallery starting in
o, then the G(O)-orbit of γ contains a unique element completely
contained in the dominant Weyl chamber.

(2) Let γ, γ′ be two minimal one-skeleton galleries starting in o.The two
galleries are conjugate under the action of G(O) if and only if they
have the same galleries of type.

(3) Let γ = (V0 ⊂ E0 ⊃ V1 ⊂ E1 ⊃ · · · ⊃ Vr ⊂ Er ⊃ Vr+1) be a minimal
one-skeleton gallery contained in the dominant Weyl chamber and let
λ = Vr+1 ∈ X+ be the target. The projection G(O).γ 7→ G(O).λ ⊂
G(K)/G(O) is a bijection.

5.3. Positively folded one-skeleton galleries. Consider a vertex V of a
gallery together with the two edges E and F . To simplify the notation, we
call such a sequence (V0 ⊂ E ⊃ V ⊂ F ⊃ V1) of vertices and edges a two
step gallery. Note that none of the vertices needs to be a special vertex, and
we often omit V0 and V1. A two step gallery is called minimal if there exists
a sector s with vertex V0 such that E ⊂ s and F ⊂ s(V ). An equivalent
condition is the following: there exists a sector s′ with vertex V such that
E ⊂ s and F ⊂ −s′.

Definition 10. We say that a two step gallery (E ⊃ V ⊂ F ′) ⊂ A is
obtained from (E ⊃ V ⊂ F ) ⊂ A by a positive folding if there exists an
affine root (β, n) such that

V ∈ Hβ,n, F ′ = sβ,n(F ) and Hβ,n separates F and C−(V ) from F ′.

A two step gallery (E ⊃ V ⊂ F ) in A is called positively folded if either
the gallery is a minimal, or if there exist faces F0, . . . , Fs containing V such
that:

• (E ⊃ V ⊂ F0) is minimal and Fs = F ,
• ∀j = 1, . . . , s: (E ⊃ V ⊂ Fj) is obtained from (E ⊃ V ⊂ Fj−1) by a

positive folding.

In the residue building at a vertex V we say that (EV , FV ) is a minimal
pair if there exists two opposite sectors s and −s with vertex V such that E ⊂
s and F ⊂ −s. We use this notion to get the following equivalent definition
for a positively folded two-step gallery, which uses more the language of the
residue building:

Definition 11. The two-step gallery (E ⊃ V ⊂ F ) in A is called positively
folded if there exists

• faces F0,V , . . . , Fs,V such that (EV , F0,V ) is a minimal pair, and
Fs,V = FV ,
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• for all j = 1, . . . , s there exists an affine root (βj , nj) such that
βj ∈ ΦV , V ∈ Hβj ,nj

, sβj ,nj
(Fj−1,V ) = Fj,V and Hβj ,nj

separates C−
V

and Fj−1,V from Fj,V .

Remarks 3. 1) Note that two faces EV and F ′
V could be opposite in J a

V

(i.e. there exists two opposite chambers D and −D such that EV ⊂ D and
F ′
V ⊂ −D) without being a minimal pair. This can be seen in a root system

of type B2.
2) Note that neither the face F0 nor the sequence of reflections are unique

in Definition 10 and Definition 11. Below is an example for a root system of
type B2. The dot in the middle is the vertex V . The fact that (E ⊃ V ⊂ F )
is positively folded can be seen using one of the two faces F0 and some
reflections with respect to the drawn walls.
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Since the equivalence classes of sectors are in bijection with the Weyl
chambers, we can endow the set of equivalence classes with the Bruhat
order: s ≥ s′ iff s = τ(C+), s = κ(C+) and τ ≥ κ. Minimal galleries γ
are characterized by the property that one can find an associated chain of
sectors s(γ) = (s0, . . . sr) such that we have for the classes: s0 = . . . = sr

We are going to weaken this condition for the combinatorial positively
folded one-skeleton galleries:

Definition 12. For a dominant coweight λ, let γλ be a minimal one-skeleton
gallery contained in C+, starting in o and ending in λ. A combinatorial one-
skeleton gallery of type tγλ :

γ = (V0 = o ⊂ E0 ⊃ . . . ⊂ Er ⊃ Vr+1) ⊂ A

is called globally positively folded or just positively folded if

i) the gallery is locally positively folded, i.e. the two-step galleries
(Ei−1 ⊃ Vi ⊂ Ei) are positively folded for all i = 1, . . . , r;

ii) there exists a chain of sectors s(γ) = (s0, . . . sr) such that for all
i = 0, . . . , r: Vi is the vertex of si and Ei ⊂ si, and s0 ≥ . . . ≥ sr.

The sequence of sectors respectively the sequence of Weyl group elements
def (γ) = (τ0, . . . , τr) (where τi(C

+) = si) is called a defining chain for γ.

Remark 4. A defining chain for a gallery is not necessarily unique. If
τ0 = . . . = τr, then the gallery is obviously minimal. Note that the gallery γ
in Example 7 is locally minimal and hence locally positively folded, i.e. the
two-step galleries (E0 ⊃ V1 ⊂ E1) and (E1 ⊃ V2 ⊂ E2) are positively folded,
but the gallery is not globally positively folded.



20 Stéphane Gaussent and Peter Littelmann

5.4. Local and global properties in special cases. By Remark 4 and
Example 7 we see that minimality and being positively folded are in general
not local properties. In this section we will show now that there are many
interesting cases where actually local minimality implies global minimality
and locally positively folded implies globally positively folded.

Fix a dominant coweight λ and let γλ be a concatenation of the galleries
γω associated to the fundamental coweights as in Example 3. More pre-
cisely, recall that we fixed a total order on the set of fundamental coweights:
ω1, ..., ωn, and if λ =

∑
aiωi, the associated minimal gallery γλ is the con-

catenation of the correspondingly displayed galleries, see Example 3:

γλ = γω1
∗ · · · ∗ γω1

︸ ︷︷ ︸

a1times

∗ · · · ∗ γωn ∗ · · · ∗ γωn
︸ ︷︷ ︸

antimes

= (0 = V c
0 ⊂ Ec

0 ⊃ V c
1 ⊂ Ec

1 ⊃ · · · ⊃ V c
r ⊂ Ec

r ⊃ V c
r+1 = λ) ,

where the V c
j ’s and the Ec

j ’s are vertices and faces of the dominant Weyl
chamber.

The support suppλ of λ is the set of nodes Ni of the Dynkin diagram
such that ai 6= 0. In the following we make a special assumption on the
enumeration of the nodes:

(∗) If Ni ∈ suppλ, then none of the nodes {Nj | j < i} is connected in
the Dynkin diagram with one of the nodes {Nj | j > i}.

If the Dynkin diagram has no branches, i.e. the root system of G is of type
A, B, C, F4 or G2, then the Bourbaki enumeration of the nodes satisfies the
property (∗) for all dominant coweights. If G is of type D or E and suppλ is
contained in a subdiagram of type A, then it is easy to see that one can find
an enumeration satisfying the condition (∗).

Proposition 8. Suppose the enumeration of the nodes of the Dynkin dia-
gram of G satisfies the condition (∗) for suppλ. Let γ ⊂ A be a combinatorial
one-skeleton gallery of the same type as γλ. If γ is locally positively folded,
then γ is globally positively folded.

Remark 5. A locally positively folded combinatorial one-skeleton can be
viewed as the gallery version of a weakly standard Young tableau defined
by Lakshmibai, Musili and Seshadri in [11], §12. The proof below is an
adaption of their proof that in special cases (like the ones above) weakly
standard Young tableaux are standard Young tableaux.

Example 8. Suppose G is of type An. The fundamental weights are of the
form ωi = ǫ1 + . . . + ǫi, we use the Bourbaki enumeration. The associated
gallery is γωi

= (o ⊂ E ⊃ ωi), where E = {tωi | t ∈ [0, 1]}. The galleries
of the same type as γωi

are the galleries γτ(ωi) = (o ⊂ E′ ⊃ ωi), where
E′ = {tσ(ωi) | t ∈ [0, 1]} and σ ∈ W/Wωi

. Let λ be a dominant weight.
A gallery δ = δ1 ∗ · · · ∗ δr of the same type as γλ can be identified with a
Young tableau of shape λ as follows: let ǫk1 + . . .+ ǫkj be the target of δℓ, we
associate to δℓ the column Cδℓ of j boxes, filled with the numbers k1, . . . , kj
(decreasing from top to bottom). The Young tableau associated to δ is the
tableau Yδ = (Cδr , . . . , Cδ1) obtained by putting the columns next to each
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other, but in reverse order. For example, the Young tableau associated to
γǫ3 ∗ γǫ1+ǫ3 ∗ γǫ2+ǫ4 is

2 1 3
4 3

.

One can show that in this way the galleries of the same type as γλ can be
identified with Young tableaux of shape λ with entries strictly decreasing in
the columns, and the positively folded galleries are identified with the semi-
standard tableaux, i.e., the entries are strictly decreasing in the columns
and weakly increasing in the rows.

Proof. Let γ be a combinatorial one-skeleton gallery of the same type as γλ,
say

γ = (V0 = o ⊂ E0 ⊃ . . . ⊂ Er ⊃ Vr+1) ⊂ A.

The gallery γ is a concatenation γ = γ1 ∗ . . . ∗ γN of combinatorial one-
skeleton galleries, each being of the same type as γω for some fundamental
weight ω corresponding to one of the nodes in the support of λ. By abuse
of notation we say that an edge Ei is of weight type ωEi

if Ei occurs in the
concatenation within a one-skeleton gallery of the same type as γωEi

, and we

say that Ei is of weight class κi ∈ W/WωEi
if the ray R≥0κi(ωEi

) coincides
with the ray starting in Vi and passing through Vi+1, up to a displacement
by Vi. The gallery γ is hence completely described by the sequence of Weyl
group classes (κ0, . . . , κr). Further, given a sector s with vertex Vi, then
Ei ⊂ s only if s = τ(C+) for an element τ ∈W such that τ ≡ κi mod WωEi

.

It follows that to give a sequence of sectors (s0, . . . , sr) such that si has
vertex Vi and Ei ⊂ s is equivalent to give a sequence of Weyl group elements
(τ0, . . . , τr) such that τi ≡ κi mod WωEi

for i = 0, . . . , r. The gallery is glob-
ally positively folded if and only if one can choose the Weyl group elements
such that in addition τ0 ≥ . . . ≥ τr.

As a first step, we show that the local minimality implies for all i =
0, . . . , r − 1 the existence of pairs (σi, ηi+1) ∈ W ×W such that σi ≥ ηi+1,
σi ≡ κi mod WωEi

and ηi+1 ≡ κi+1 mod WωEi+1
. For the positively folded

two-step gallery (Ei ⊃ Vi+1 ⊂ Ei+1) let (Ei ⊃ Vi+1 ⊂ F0) be a corresponding
minimal gallery with sector t0, i.e., t0 has vertex Vi, Ei ⊂ t0 and F0 ⊂ t′0 =
t0(Vi+1). If F0 = Ei+1, then set t1 = t′0. If F0 6= Ei+1, then let (β, n) be the
affine root such that F1 = sβ,n(F0) is obtained by a positive folding. Since
Hβ,n separates F0 and C−(V ) from F1, it separates also t′0 and C−(V ) from
t′1 = sβ,n(t′0), so t0 ≥ t′1. By repeating the argument if Ei+1 6= F1, we obtain
successively the sector t1 with vertex Vi+1 such that Ei+1 ⊂ t1 and t0 ≥ t1.
Let σi, ηi+1 ∈ W be such that σi(C

+) = t0 and ηi+1(C+) = t1, so σi ≥ ηi+1

and σi ≡ κi mod WωEi
, ηi+1 ≡ κi+1 mod WωEi+1

.

We start now to define the sequence of Weyl group elements τ0, . . . , τr by
choosing for τ0 ∈W the maximal representative of the class κ0.

Suppose we have already defined τ0, . . . , τi ∈ W such that τ0 ≥ . . . ≥ τi
and τj ≡ κj mod WωEj

for j = 0, . . . , i. Let k0 be such that the node

Nk0 corresponds to the fundamental weight ωEi
, let I be the set of nodes

I = {Nℓ | ℓ < k0} and set J = {Nℓ | ℓ > k0}. Denote by WI , WJ and WI∪J

the subgroups of W generated by the sα associated to the simple roots
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corresponding to the nodes in I, J and I ∪J respectively. The condition (∗)
implies that the elements in WI commute with the elements in WJ .

By abuse of notation we write τ̄j not only for the class of τj in W/WωEi
=

W/WI∪J , but also for the minimal representative of this class in W . So we
can write τj = τ̄jxjyj, where xj ∈WI and yj ∈WJ . Recall that xjyj = yjxj
by condition (∗).

Since τ̄jxj is a minimal representative in W of the class (τj mod WJ),
the inequalities τ0 ≥ . . . ≥ τi imply the inequalities τ̄0x0 ≥ . . . ≥ τ̄ixi. Let
now y be the maximal element in WJ . Since y and the y0, . . . , yi fix the
fundamental weight ωℓ for ℓ < k0, we can assume without loss of generality
yj = y for all j = 0, . . . , i, because if one replaces the yj by y, then one still
has the desired properties:

τ0 = τ̄0x0y ≥ τ1 = τ̄1x1y ≥ . . . ≥ τi = τ̄ixiy, and τj ≡ κj mod W/WωEj

for all j = 0, . . . , i.
To extend the sequence and define τi+1, we consider now the pair σi ≥ ηi+1

defined at the beginning. Recall that σi ≡ κi = τ̄i mod WωEi
, ηi+1 ≡

κi+1 mod WωEi+1
. We can write σi = τ̄ipiqi and ηi+1 = η̄i+1ri+1ti+1, where

pi, ri+1 ∈ WI , qi, ti+1 ∈ WJ and η̄i+1 denotes the class of ηi+1 in W/WI∪J

as well as the minimal representative of the class in W .
Set τi+1 = η̄i+1ti+1, then τi+1 ≡ κi+1 mod WωEi+1

because ri+1 fixes

ωEi+1
. Further, τi = τ̄ixiy ≥ τi+1 = η̄i+1ti+1 because

(σi mod WωEi
) = κi = τ̄i ≥ (ηi+1 mod WωEi

) = η̄i+1

and, by construction, y ≥ ti+1. Proceeding by induction gives the desired
defining chain. �

6. Local minimality

The language of the building theory allows us to translate the study of
the intersection Zλ,µ := G(O).λ ∩ U−(K).µ into a problem of studying in-
tersections of subsets of a Bott-Samelson variety Σ(γλ):

Zλ,µ = G(O).λ ∩ U−(K).µ =
⋃

δ∈Γ(tγλ ,o)

target(δ)=µ

{minimal galleries} ∩ Cδ.

Here Cδ denotes the Bia lynicki-Birula cell associated to the combinatorial
gallery δ, which, in terms of building theory, is the same as the fiber over δ
of the retraction r−∞.

To describe more precisely the intersection of the set of minimal galleries
with such a cell, we need to “unfold” δ, i.e. we need to construct minimal
galleries that retract onto δ. As a first step we will, in this section, describe
how to unfold two step galleries. An important tool will be the galleries of
residue chambers.

6.1. Positively folded galleries of chambers. Let E and F be one di-
mensional faces in J a containing a vertex V , let also s be a sector with vertex
V containing E. Let wsV = w(C−

V , sV ) be the element in W v
V that sends

C−
V to sV . Among the residue chambers containing FV denote by D the one

closest to C−
V . Fix a reduced decomposition of wF = w(C−

V ,D) = si1 · · · sir
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in W v
V and let i = (i1, ..., ir) be the type of the decomposition. We denote

by αij the simple root in ΦV corresponding to sij . For any root α ∈ ΦV ,
xα(·) denotes the one-parameter additive subgroup of HV associated to α,
let Uα denote its image in HV .

We consider now galleries of residue chambers c = (C−
V , C1, ..., Cr) in the

apartment AV starting at C−
V and of type i. The set of these galleries is in

bijection with the set Γ(i) = {1, si1}×· · ·×{1, sir} via the map (c1, ..., cr) 7→
(C−

V , c1C
−
V , ..., c1 · · · crC

−
V ). Let βj = c1 · · · cj(αij ), then βj is the root cor-

responding to the common wall Hj = Hβj
of Cj−1 = c1 · · · cj−1C

−
V and

Cj = c1 · · · cjC
−
V . In the following, we shall identify a sequence (c1, ..., cr)

and the corresponding gallery.

Definition 13. A gallery c = (c1, ..., cr) ∈ Γ(i) is said to be positively
folded with respect to sV if cj = 1 implies w−1

sV
βj < 0. We denote the set of

positively folded galleries by Γ+
sV

(i).

If sV = C+
V , a gallery c = (c1, ..., cr) is positively folded with respect to

C+
V if, and only if, the associated subexpression (id, c1, c1c2, ..., c1 · · · cr) is

distinguished, see Deodhar [7], Definition 2.3.

Proposition 9. A gallery c = (C−
V , C1, ..., Cr) ∈ Γ(i) is positively folded

with respect to sV if, and only if, Cj = Cj−1 implies that the wall Hj = Hβj

separates sV from Cj = Cj−1.

Proof. We have the following equivalences:
(Hj separates sV from Cj = Cj−1) ⇐⇒ (w−1

sV
Hj separates C−

V from w−1
sV
Cj =

w−1
sV
Cj−1) ⇐⇒ (w−1

sV
βj is a negative root). �

The set of all galleries of chambers starting at C−
V of type i in the building

J a
V has a structure of a smooth projective algebraic variety, which we denote

by BS(i). (In fact, it is a Bott-Samelson variety.) To a gallery of chambers
c = (c1, ..., cr) = (C−

V , C1, ..., Cr) in Γ(i), one can associate an open subset
OsV (c) and a cell CsV (c) in the variety BS(i). They are defined in the
following way: for any j ∈ {1, ..., r}, and any aj ∈ C, set oj = xcj(αij

)(aj)cj ,

then OsV (c) = {(C−
V = C ′

0, C
′
1, ..., C

′
r) | ∀j : C ′

j = o1 · · · ojC
−
V }; further, set

gj =

{
cj if w−1

sV
βj > 0

xcj(αij
)(aj)cj if w−1

sV
βj < 0.

then CsV (c) = {(C−
V = C ′

0, C
′
1, ..., C

′
r) | ∀j : C ′

j = g1 · · · gjC
−}. The minimal

galleries in CsV (c) are those such that for any j: C ′
j−1 6= C ′

j , i.e. cj 6= 1

if w−1
sV
βj > 0, and aj 6= 0 if cj = 1 and w−1

sV
βj < 0. We denote the set of

minimal galleries by Cm
sV

(c).

Lemma 2. The set Cm
sV

(c) is empty if the gallery c is not positively folded
with respect to sV . If c is positively folded with respect to sV , then Cm

sV
(c) is

isomorphic to:

Cm
sV

(c) ≃ Ct(c) × (C∗)r(c)

where

t(c) = ♯{j | cj = sij and w−1
sV
βj < 0}, r(c) = ♯{j | cj = 1 and w−1

sV
βj < 0}.
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Proposition 10. The cell CsV (c) identifies with r−1
sV

(c), where rsV : J a
V →

AV is the retraction centered at sV .

Proof. For any chamber C ′, the retraction can be defined as rsV (C ′) =
lims→0 s

θC ′, where θ is a regular coweight contained in sV . To simplify, we
take θ = wsV (−ρ∨). Further, the retraction applies componentwise to the
galleries, whence rsV (g) = (C−

V , rsV (C ′
1), ..., rsV (C ′

r)). For any j, rsV (C ′
j) =

lims→0 s
wsV

(−ρ∨)g1 · · · gjC
−
V = lims→0 g

′
1 · · · g

′
jC

−
V , where

g′j =

{

cj if w−1
sV
βj > 0

xcj(αij
)(s

〈cj(αij
), cj−1···c1wsV

(−ρ∨)〉
aj)cj if w−1

sV
βj < 0.

But 〈cj(αij ), cj−1 · · · c1wsV (−ρ∨)〉 = 〈w−1
sV
βj ,−ρ

∨〉. Therefore, CsV (c) ⊂

r−1
CsV

(c). One sees in the same way that CsV (c) ⊃ r−1
CsV

(c) �

Remark 6. The cells define a Bia lynicki-Birula decomposition of the variety
of all galleries of chambers BS(i). In fact, BS(i) =

∐

c∈Γ(i) CsV (c).

Theorem 1. Let (E ⊃ V ⊂ F ) be a two step one-skeleton gallery in A.
There exists a minimal gallery (E ⊃ V ⊂ E′) in J a such that E′ has the
same type as F and r−∞(E′) = F if, and only if, (E ⊃ V ⊂ F ) is positively
folded.

We divide the proof of Theorem 1 into several steps. Choose a chamber
D containing FV and let w be an element that sends C−

V to D.

Lemma 3. Suppose there exists a minimal one-skeleton gallery (E ⊃ V ⊂
E′) such that r−∞(E′) = F . Let s be a sector in A with vertex V containing
E such that E′ ⊂ −s, in any apartment containing s and E′. Then one can
find a minimal gallery of residue chambers m′ of type i = (i1, ..., ir) between
C−
V and E′

V such that

i) w = si1 · · · sir is a reduced decomposition,
ii) c = rsV (m′) ⊂ AV is a positively folded gallery of residue chambers

with respect to sV ,
iii) (EV , F

′
V = rsV (E′

V )) is a minimal pair and F ′
V is of the same type

as FV .

Proof. The fact that E′ has the same type as F is a consequence of
r−∞(E′) = F . Transferred to the setting of the residue building, the re-
traction r−∞ identifies with the retraction centered at C−

V of J a
V onto AV ,

so rC−

V
(E′

V ) = FV . Since this retraction preserves the distances from C−
V ,

any minimal gallery m′ = (C−
V , C

′
1, ..., C

′
r) of residue chambers in J a

V from

C−
V to E′

V (in any apartment containing those two) retracts onto a minimal

gallery from C−
V to FV , say of type i = (i1, ..., ir). Further, one can choose

C ′
r such that rC−

V
(C ′

r) = D. Since the gallery is minimal, it follows that

i = (i1, ..., ir) corresponds to a reduced decomposition of the element w.
Consider the variety of galleries BS(i). The gallery m′ belongs to the

cell CsV (c), where c = rsV (m′) = (C−
V , C1, ..., Cr). Let us suppose that

Cj = Cj−1. Let us moreover assume (without loss of generality) that the
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gallery m′ is already retracted until the index j − 1, meaning that m′ =
(C−

V , C1, ..., Cj−1,Dj , ...,Dr), where (Cj−1,Dj , ...,Dr) is a minimal gallery
retracting onto (Cj−1, Cj, ..., Cr). Suppose that Hj does not separate sV
from Cj = Cj−1. The chambers Cj−1 and Dj have to be distinct by the
assumption on the minimality, so Cj = rsV (Dj) and sV can not be on the
same side of Hj, contradicting the assumption Cj = Cj−1 are not separated
from sV by Hj. It follows that the gallery of chambers c is positively folded,
i.e., c ∈ Γ+

sV
(i).

Let r∞,s be the retraction from ∞, but now with respect to the sector s.
On the level of the residue building, the retraction r∞,s identifies with the
retraction centered at sV of J a

V onto AV . So if we set r∞,s(E
′) = F ′, then

F ′
V = rsV (E′

V ) and we get a minimal pair (EV , F
′
V ) in J a

V .
The face E′

V is contained in the opposite of sV in any apartment con-
taining EV and E′

V , and rsV preserves the distance from sV . It follows
that F ′

V = rsV (E′
V ) is contained in −sV , and hence we get a minimal pair

(EV , F
′
V ) in J a

V . Since the type of E′
V and FV are the same and the type of

E′
V and F ′

V are the same, this finishes the proof of the lemma. �

Lemma 4. If there exists a minimal one-skeleton gallery (E ⊃ V ⊂ E′)
such that r−∞(E′) = F , then the one-skeleton gallery (E ⊃ V ⊂ F ) is
positively folded.

Proof. Let c = rsV (m′) ⊂ AV be the positively folded gallery of residue
chambers with respect to sV described in Lemma 3. By construction, un-
folding c gives a minimal gallery from C−

V to FV . We will see that this
unfolding procedure shows that (E ⊃ V ⊂ F ) is positively folded.

The procedure works as follows: Let {j1 < · · · < jk} ⊂ {1, ..., r} be the
indices where c is folded. Then we unfold the gallery of chambers starting
with the fold at the wall Hj1 , the resulting gallery will then still have a fold
at sHj1

(Hj2), we unfold the gallery at this wall etc. The face F ′
V will be

reflected each time and we get

FV = sHj1
· · · sHjk−1

sHjk
(sHj1

· · · sHjk−1
)−1 · · · sHj1

sHj2
sHj1

sHj1
F ′
V

= τk · · · τ1F
′
V ,

where τl = sHj1
· · · sHjl−1

sHjl
(sHj1

· · · sHjl−1
)−1. To see that (E ⊃ V ⊂ F )

is positively folded, it remains to prove that each time the face is reflected
away from C−

V .
First recall that c is positively folded, so for each folding step we have the

chambers Cjk = Cjk−1 and sV lie within different half-spaces with respect
to the wall Hjk . Further, since F ′

V ⊂ −sV , the chambers Cjk = Cjk−1 and
the face F ′

V lie within the same half-space. We use the suggestive notation

F ′
V , Cjk = Cjk−1 |Hjk

sV ⊃ EV ,

for this situation.
The gallery of chambers c starts at C−

V and is folded for the first time at

the hyperplane Hj1. It follows that the chambers C−
V and Cj1 = Cj1−1, and

hence also F ′
V , are within the same half-space with respect to Hj1 :

C−
V , Cjk = Cjk−1, F

′
V |Hjk

sV ⊃ EV .
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Thus, after the first unfolding, we have:

C−
V , C1, ..., Cj1−1 |Hj1

τ1(Cj1), τ1(F
′
V ) ,

meaning that the chambers C−
V , C1, ..., Cj1−1 are separated from τ1(Cj1) and

from τ1(F ′
V ) by the wall Hj1 (note that the face F ′

V = τ1(F
′
V ) may be

contained in the wall Hj1). In particular, either F ′
V is fixed by the reflection

or is reflected away from C−
V . The gallery

c1 = (C−
V , C1, ..., Cj1−1, τ1(Cj1), ..., τ1(Cj2−1), τ1(Cj2), ..., τ1(Cr))

is now minimal up to the index j2 − 1. Moreover, we know that

F ′
V , Cj2−1 = Cj2 |Hj2

sV ⊃ EV ,

applying τ1, we get

τ1(F
′
V ), τ1Cj2−1 = τ1Cj2 |τ1Hj2

τ1EV .

The gallery of chambers c1 is folded for the first time at the hyperplane
τ1Hi2 , so C−

V and τ1Cj2−1 = τ1Cj2 , and hence also τ1(F
′
V ) are on the same

side of τ1Hi2 . Therefore, when we unfold with respect to τ1Hi2 , this wall
separates C−

V and τ1(F ′
V ) from τ2τ1(F

′
V ). This procedure can be iterated

to show that at each step the image of F ′
V is folded away from C−

V , which
proves that (E ⊃ V ⊂ F ) is positively folded. �

Proof of Theorem 1: “⇒”. Lemmata 3 and 4 show the existence of a
minimal one-skeleton gallery (E ⊃ V ⊂ E′) such that r−∞(E′) = F implies
that the one-skeleton gallery (E ⊃ V ⊂ F ) is positively folded. �

Let (E ⊃ V ⊂ F ) be a positively folded one-skeleton gallery. Let s ⊂ A

be a sector with vertex V containing E. Choose a chamber D containing
FV and let wD be the element that sends C−

V to D. Let i = (i1, ..., ir) be
the type of a reduced decomposition of wD = si1 · · · sir in W v

V .

Lemma 5. For w ≤ wD let F ′
V be the a face of w(C−

V ) of the same type as

FV . Then there exists a gallery of chambers c = (C−
V , C1, ..., Cr) of type i,

positively folded with respect to −w(C−
V ), such that F ′

V ⊂ Cr.

Proof. Let m be a minimal gallery of type i = (i1, ..., ir) between C−
V

and D ⊃ FV . By the subword property, there exists a folded gallery d =
(C−

V ,D1, ...,Dr) of type i in AV such that Dr ⊃ F ′
V .

Suppose the gallery is not positively folded with respect to −w(C−
V ). Let

j be the smallest index such that −w(C−
V ) and Dj = Dj+1 are on the same

side of the wall Hij of type ij .

The last chamber Dr contains F ′
V ⊂ w(C−

V ), and w(C−
V ) lies within the

other half-space defined by Hij . It follows that the gallery d has to meet
Hij for some index larger than j. Let jmax = maxk{Hik = Hij , k > j} or
set jmax = r if Hij ⊃ F ′

V .

Consider the new gallery of type i, d′ = (C−
V ,D

′
1, ...,D

′
r) defined by :

D′
k =







Dk if k 6 j
sHij

(Dk) if j + 1 6 k 6 jmax

Dk if k > jmax .
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This gallery still has the property that the last chamber contains F ′
V : D′

r ⊃
F ′
V , and the gallery is now positively folded with respect to −w(C−

V ) till
the index ij . By repeating the procedure if necessary, one obtains a gallery
c = (C−

V , C1, ..., Cr) ∈ Γ+
−w(C−

V
)
(i) such that F ′

V ⊂ Cr. �

Lemma 6. Let F ′
V be the face of −sV of the same type as FV . Then there

exists a face E′
V of the same type as FV such that (EV , E

′
V ) is a minimal

pair in J a
V and rC−

V
(E′

V ) = FV .

Proof. Because (E ⊃ V ⊂ F ) is positively folded and s ⊃ E, the chamber
−sV is closer to C−

V than D. Therefore w = w(C−
V ,−sV ) ≤ wD. So we can

apply Lemma 5 to get a gallery of chambers c = (C−
V , C1, ..., Cr) of type i

such that c is positively folded with respect to sV and FV ⊂ Cr.
According to the preceding section (see Lemma 2 and before), there exist

a minimal gallery m = (C−
V , C

′
1, ..., C

′
r) in the cell CsV (c), and the chambers

C ′
j can be described as C ′

j = g1 · · · gjC
−
V where gj = cj or xcj(αij

)(aj)cj , and

cj 6= 1 if w−1
sV
βj > 0, and aj 6= 0 if cj = 1 and w−1

sV
βj < 0.

Let E′
V be the face of the same type as F ′

V contained in C ′
r. First, we note

that the minimality of the gallery m = (C−
V , C

′
1, ..., C

′
r) and the fact that

r
C−

V
(m) = c ensures that r

C−

V
(E′

V ) = FV . Second, we are going to prove

that sV and E′
V are contained in the apartment gAV , with g = g1 · · · gr,

and, in this apartment, E′
V is contained in the chamber opposite sV .

The proof is by an inductive procedure. We show that, for all j ∈
{1, ..., r}, sV and g1 · · · gjC

−
V are in the apartment g1 · · · gjAV . We write

in the following just Hj for the common wall Hβj
of Cj−1 and Cj of type ij.

By assumption, c is a positively folded gallery with respect to sV , so there
are three possible relative position for sV , C−

V and C1 with respect to H1:

1) sV and C−
V are on the same side of H1 and C1 not, then C ′

1 = g1C
−
V =

x−αi1
(a1)si1C

−
V = x−αi1

(a1)C1. But x−αi1
(a1) pointwise stabilizes the half-

space bounded by H1 containing C−
V , hence x−αi1

(a1)(sV ) = sV and C ′
1 are

in the apartment g1AV ;
2) sV and C−

V = C1 are separated by H1, then C ′
1 = g1C

−
V = xαi1

(a1)C−
V

but xαi1
(a1) pointwise stabilizes the halfspace bounded by H1 not containing

C−
V , hence sV and C ′

1 are in the apartment g1AV ;

3) sV and C1 are on the same side of H1 and C−
V not, then wsV has a

reduced decomposition that starts with si1 , wsV = si1u, so w−1
sV

(−αi1) > 0,

whence g1 = c1 = si1 and sV and C ′
1 = si1C

−
V are in the apartment g1AV .

By induction we assume now that the chambers sV and g1 · · · gj−1C
−
V are in

the apartment Aj−1 = g1 · · · gj−1AV . Again, we have three possible relative
positions for sV , Cj−1 and Cj:

1) sV and Cj−1 are on the same side of Hj and Cj not, then sV and C ′
j−1

are on the same side of g1 · · · gj−1Hj in Aj−1, and

C ′
j = g1 · · · gj−1x−αij

(aj)sijC
−
V

= g1 · · · gj−1x−αij
(aj)sij (g1 · · · gj−1)

−1C ′
j−1

= g1 · · · gj−1x−αij
(aj)(g1 · · · gj−1)

−1g1 · · · gj−1sij(g1 · · · gj−1)
−1C ′

j−1,
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where g1 · · · gj−1sij(g1 · · · gj−1)
−1C ′

j−1 is the chamber adjacent to C ′
j along

g1 · · · gj−1Hj in Aj−1. Moreover, g1 · · · gj−1x−αij
(aj)(g1 · · · gj−1)

−1 point-

wise stabilizes the halfspace bounded by g1 · · · gj−1Hj containing C ′
j−1 and

sV . So sV and C ′
j are in the apartment g1 · · · gjAV .

2) Cj−1 = Cj and sV are separated by Hj, then C ′
j−1 and sV are separated

by g1 · · · gj−1Hj in Aj−1, and sV and the chamber

g1 · · · gj−1sij (g1 · · · gj−1)
−1C ′

j−1

are on the same side of this wall. Moreover, for aj 6= 0

C ′
j = g1 · · · gj−1xαij

(aj)C
−
V = g1 · · · gj−1xαij

(aj)(g1 · · · gj−1)
−1C ′

j−1

is a chamber adjacent to C ′
j−1 along g1 · · · gj−1Hj = g1 · · · gj−1xαij

(aj)Hj in

g1 · · · gjAV . The root-subgroup g1 · · · gj−1xαij
(aj)(g1 · · · gj−1)

−1 pointwise

stabilizes the halfspace bounded by g1 · · · gj−1Hj and containing the cham-
ber g1 · · · gj−1sij(g1 · · · gj−1)

−1C ′
j−1. So sV and C ′

j are in the apartment
g1 · · · gjAV .

3) sV and Cj are on the same side of Hj and Cj−1 not, then w−1
sV
βj > 0

and so C ′
j = g1 · · · gj−1sijC

−
V . Whence sV and C ′

j are in the apartment
g1 · · · gjAV .

Therefore sV and E′
V are contained in the apartment gAV = g1 · · · grAV ,

and in this apartment E′
V is the image of the face F ′

V contained in −sV .

More precisely, E′
V = gφ−V = bw−sV φ

−
V = bF ′

V , where φ−V is the face having

the type of F ′
V contained in C−

V , F ′
V = w−sV φ

−
V and b ∈ BsV = StabHV

(sV ).
This element is obtained as follows:

(10)

g = g1 · · · gr
= xc1(αi1

)(a1)c1 · · · xcr(αir )
(ar)cr

= xβ1
(±a1) · · · xβr

(±ar)c1 · · · cr
= xβ1

(±a1) · · · xβr
(±ar)w−sV .

As EV and F ′
V are in opposite chambers in AV , so are EV and E′

V in gAV .
Let E′ ⊂ J a be the one dimensional face such that V ⊂ E′ and E′

V is the
associated face in the residue building J a

V . Let r∞,s be the retraction from
∞, but now with respect to the sector s. On the level of the residue building,
the retraction r∞,s identifies with the retraction rsV centered at sV of J a

V

onto AV . Since E′
V retracts with respect to rsV onto F ′

V in AV , E′ retracts
with respect to r∞,s onto F ′ in A. The retraction is distance preserving
with respect to s, so the fact that E and F ′ are in opposite sectors implies
that the same holds for E and E′. In other words, (EV , E

′
V ) is a minimal

pair. �

Proof of Theorem 1: “⇐”. Since (E ⊃ V ⊂ F ) is positively folded, there
exists a sector s ⊃ E with vertex V and a face F ′ ⊃ V of the same type
as F such that F ′ ⊂ −s. Therefore, we can apply Lemmata 5 and 6 to get
a minimal pair (EV , E

′
V ), with r

C−

V
(E′

V ) = FV , in other words a minimal

gallery (E ⊃ V ⊂ E′), with r−∞(E′) = F . The fact that E′ has the same
type as F is a consequence of r−∞(E′) = F . �

Given a two-step gallery (E ⊃ V ⊂ F ) in J a, denote by Min(E,F )
the set of all faces E′ ⊃ V such that r−∞(E′) = F and (E ⊃ V ⊂ E′)
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is minimal. This set can be identified with the set of all faces E′
V such

that rC−

V
(E′

V ) = FV and (E′
V , EV ) is a minimal pair. We assume now that

(E ⊃ V ⊂ F ) is positively folded, we want to give this set an algebraic
structure as an open subset of a union of cells in a Bott-Samelson variety.

We use the same notation as in section 6.1. Let s be a sector containing
E and let wsV = w(C−

V , sV ) be the element in W v
V that sends C−

V to sV . Let

D be the chamber containing FV the closest to C−
V . Since (E ⊃ V ⊂ F ) is

positively folded, w−sV = w(C−
V ,−sV ) ≤ wD = w(C−

V ,D). Fix a reduced
decomposition of wD = si1 · · · sir inW v

V and denote its type by i = (i1, ..., ir).
We denote by Γ+

sV
(i, op) the set of all galleries c = (C−

V , C1, ..., Cr) of
residue chambers of type i which are positively folded with respect to sV
and have the property that the face F ′

V of the same type as FV contained
in Cr forms a minimal pair with EV in AV .

Proposition 11. The set Min(E,F ) is in bijection with the disjoint union
∐

c∈Γ+
sV

(i,op) C
m
sV

(c), where Cm
sV

(c) is the set of all minimal galleries in the

cell CsV (c) ⊂ BS(i).

Proof. First recall that Min(E,F ) identifies with the set of all faces
E′

V such that (EV , E
′
V ) is a minimal pair and rC−

V
(E′

V ) = FV . Next, the

proof of Lemma 6 asserts that to a minimal gallery m′ ∈ CsV (c) corresponds
such a unique face E′

V = g(m′). It is the face of the same type as FV

contained in the last chamber of m′. Lemma 3 shows that this mapping g is
surjective. Suppose now that m′,n′ ∈ CsV (c) are two minimal galleries such
that E′

V = g(m′) = g(n′). Since D is the closest chamber to C−
V containing

FV the last chambers of m′ and of n′ have to be the same. Since they have
the same type and the same origin, m′ = n′. �

7. From local properties to global properties

In Theorem 1 we have shown that one can obtain a minimal two step
gallery by “unfolding” a combinatorial two step gallery (E ⊃ V ⊂ F ) only
if the latter is positively folded. This provides a procedure to unfold a
locally positively folded combinatorial one-skeleton gallery inductively to
get a locally minimal one-skeleton gallery. The aim of this section is to
show that if one starts with a globally positively folded gallery, then this
unfolding algorithm produces automatically globally minimal one-skeleton
galleries. More precisely:

Proposition 12. Let δ = [δ0, δ1, ..., δr ] = (V0 ⊂ E0 ⊃ · · · ⊂ Er ⊃ Vr+1) ∈
Γ(γλ). The intersection {minimal galleries} ∩ Cδ is non-empty if, and only
if, δ is positively folded.

Proof. Let γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1) be a minimal one-

skeleton gallery in the cell Cδ. Since γ starts at V0 = o, we may replace γ by
uγ for some u ∈ U−(O) if necessary and assume that E′

0 = E0 and V ′
1 = V1

are in A. Let s′(γ) = (s0, s
′
1, ..., s

′
r) be the sequence of representatives of

the same equivalence class of sectors such that V ′
i is the vertex of s′i and

E′
i ⊂ s′i. The sequence starts with a sector tipped at 0 whose image by

r−∞ is the chamber τ0(C
+), for some τ0 ∈ W . We know that (E0 ⊃ V1 ⊂

E′
1) is minimal and such that r−∞(E′

1) = E1, hence Lemma 4 shows that
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(E0 ⊃ V1 ⊂ E1) is positively folded. This means that there exists a face
V1 ⊂ E′′

1 ⊂ A such that (E0 ⊃ V1 ⊂ E′′
1 ) is minimal and (E0 ⊃ V1 ⊂ E1)

is obtained from (E0 ⊃ V1 ⊂ E′′
1 ) by a positive folding, see Lemma 3 and

Lemma 4 and the proofs. Now in the proof one may choose for the minimal
gallery of residue chambers as last chamber the residue chamber associated
to s0(V1) = s1. But E′′

1 is contained in τ0(C
+)(V1) (see Lemma 3 and

its proof) and the sector s1 retracts onto a sector of A tipped at V1 and
containing E1. Therefore r−∞(s1) = τ1(C+)(V1), with τ0 ≥ τ1.

We want to repeat this argument to prove the claim in an inductive proce-
dure. To do so, recall from Proposition 5, that γ corresponds to a sequence

(v0, v1, ..., vr) ∈ Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er)

and that E′
j = v0v1 · · · vjδ0δ1 · · · δjE

f
j = v0v1 · · · vjEj . The gallery γ can be

retracted step by step, that means that we consider the sequence:

γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1),

γ0 = (V0 ⊂ E0 ⊃ V1 ⊂ v1E1 · · · ⊂ (v1 · · · vr)Er ⊃ (v1 · · · vr)Vr+1),
...

γj−1 = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Ej−1 ⊃ Vj ⊂ vjEj ⊃ · · ·
· · · ⊂ (vj · · · vr)Er ⊃ (vj · · · vr)Vr+1)

...
γr = δ = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊃ Vr ⊂ Er ⊃ Vr+1).

Now, at each step, (Ej−1 ⊃ Vj ⊂ vjEj) is minimal because it is obtained
from a minimal two-step gallery by applying elements of G(K). So, we can
repeat the previous arguments to show that δ is globally positively folded.

Reciprocally, we show that if δ is positively folded then one can, induc-
tively, built a minimal gallery that retracts onto it. Indeed, we start applying
Theorem 1 at the vertex Vr. So we get a gallery

δr = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er−1 ⊃ Vr ⊂ E′
r ⊃ V ′

r+1),

where (Er−1 ⊃ Vr ⊂ E′
r) is minimal in an apartment Ar, r−∞(E′

r) = Er and
a sequence of sectors (s0, s1, ..., sr) such that s0 ≥ s1 ≥ · · · ≥ sr−1 = sr. We
apply the theorem again at the vertex Vr−1. So we get a gallery

δr−1 = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er−2 ⊃ Vr−1 ⊂ E′
r−1 ⊃ V ′

r ),

where (Er−2 ⊃ Vr−1 ⊂ E′
r−1) is minimal in an apartment Ar−1, r−∞(E′

r−1) =
Er−1 and a sequence of sectors (s0, s1, ..., sr−1) such that s0 ≥ s1 ≥ · · · ≥
sr−2 = sr−1. Now, since (Er−1 ⊃ Vr ⊂ E′

r) is positively folded in A, there
exists a face F ′

r of the same type as Er such that (Er−1 ⊃ Vr ⊂ F ′
r) is mini-

mal in A. Since E′
r−1 = ur−1Er−1, we can take Ar−1 = ur−1A and the image

of (Er−1 ⊃ Vr ⊂ F ′
r) in Ar−1 is still minimal. So we complete the gallery

δr−1 with it to get a one-skeleton gallery which is minimal after the index
r− 1 and contained in the sector sr−2 = sr−1 = sr of Ar−1. Hence, iterating
this procedure, we obtain a minimal one-skeleton gallery that retracts onto
δ. �
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8. A formula for Lλ,µ

For a dominant coweight λ let γλ be a dominant combinatorial gallery
joining o and λ (see Example 4). The investigation of the intersection Zλ,µ

can be transferred to the Bott-Samelson variety Σ(γλ):

Zλ,µ = G(O).λ ∩ U−(K).µ =
⋃

δ∈Γ(tγλ ,o)

target(δ)=µ

{minimal galleries} ∩ Cδ.

Proposition 12 states that the intersection {minimal galleries} ∩ Cδ is non-
empty if and only if δ is positively folded. We want to describe the intersec-
tion more precisely.

Recall that for a two step gallery (E ⊃ V ⊂ F ) the set Min(E,F )
identifies with the set of all faces E′

V such that (EV , E
′
V ) is a minimal pair

and rC−

V
(E′

V ) = FV .

Let δ = (o = V0 ⊂ E0 ⊃ · · · ⊃ Vr ⊂ Er ⊃ µ) be a positively folded
combinatorial gallery and let B− ⊂ G be the opposite Borel subgroup.
Denote by D0 the chamber in A which contains E0 and is the closest to C−,
and let wD0

∈W be the element such that wD0
(C−) = D0.

Proposition 13. The set of all minimal one-skeleton galleries in the cell
Cδ identifies with the product

B−wD0
Q−

E0
/Q−

E0
×

r∏

j=1

Min(Ej−1, Ej) .

Proof. If γ = (V0 ⊂ E′
0 ⊃ V ′

1 ⊂ · · · ⊃ V ′
r ⊂ E′

r ⊃ V ′
r+1) is a minimal gallery

of Cδ, then E′
0 identifies with an element of the orbit B−wD0

Q−
E0
/Q−

E0
.

Further, to γ ∈ Cδ corresponds a sequence (v0, v1, ..., vr) in

Stab−(δ) = Stab−(V0, E0) × Stab−(V1, E1) × · · · × Stab−(Vr, Er).

In the proof of Proposition 12, we have seen that h(γ) = (E′
0, v1E1, ..., vrEr)

belongs to B−wD0
Q−

E0
/Q−

E0
×

∏r
j=1Min(Ej−1, Ej), and we have also seen

that h is surjective. The fact that h is injective is a consequence of Propo-
sition 3. �

Let Fq be the finite field with q elements and replace the field of complex
numbers by the algebraic closure K of Fq. Assume that all groups are
defined and split over Fq. We replace now K by Kq = Fq((t)), the field of
Laurent series, and O by Oq = Fq[[t]]. For a given positively folded gallery
δ = [δ0, δ1, ..., δr ] = (V0 ⊂ E0 ⊃ V1 ⊂ · · · ⊂ Er ⊃ Vr+1) we want to count the
number of points (over Fq) of the intersection

{minimal galleries} ∩Cδ .

For convenience, we first fix (and recall) some notation: ∀j = 0, 1, ..., r, let

• Dj be the closest chamber to C−
Vj

containing (Ej)Vj
;

• sj ⊃ Ej be a sector with vertex Vj such that there exists a face
F ′
j ⊂ −sj containing Vj of the same type as Ej ;

• ij = ((ij)1, ..., (ij)rj) be a reduced decomposition of w(C−
Vj
,Dj).
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We denote by Γ+

s
j
Vj

(ij , op) the set of all galleries c = (C−
Vj
, C1, ..., Crj ) of

residue chambers of type ij which are positively folded with respect to s
j
Vj

and have the property that the face (F ′
j)Vj

of the same type as (Ej)Vj
con-

tained in Crj forms a minimal pair with (Ej−1)Vj
in AVj

.
The exponents in the formula are, first, the length ℓ(wD0

) and, second,
for each c = (c1, ..., crj ) ∈ Γ+

s
j
Vj

(ij , op), the nonnegative integers t(c) and

r(c) defined in Lemma 2: t(c) = ♯{k | ck = s(ij)k and w−1

s
j
Vj

βk < 0} and

r(c) = ♯{j | ck = 1 and w−1

s
j
Vj

βk < 0}. Combining Lemma 2, Theorem 1 and

Propositions 11 – 13, we obtain the following formula:

Theorem 2.

Lλ,µ(q) =
∑

δ∈Γ+(γλ,µ)

qℓ(wD0
)

( r∏

j=1

∑

c∈Γ+

s
j
Vj

(ij ,op)

qt(c)(q − 1)r(c)
)

.

Remarks 7. 1) According to a result of Katz (Theorem 6.1.12) in [9]), the
value Lλ,µ(1) gives the Euler-Poincaré characteristic of the variety G(O).λ∩
U−(K).µ. Now a summand above is nonzero if and only if the gallery is
minimal. It is easy to see that a gallery is minimal if and only if the gallery
has as a target an extremal weight. Thus, we recover a result of Ngô and
Polo [18], saying that this characteristic is 1 if µ is in the orbit Wλ, and it
is 0 otherwise.

2) The second sum in the formula comes from the decomposition of the
set Min(Ej−1, Ej) obtained in Proposition 11. It is possible to consider
another decomposition of this set involving less pieces; that would give a
another formula with even more “compression”.

Example 9. Let us consider an example in type A2. Let λ = 2ω1+ω2 where
ωi are the fundamental coweights. There are three possibilities for µ ≤ λ
in the fundamental Weyl chamber: µ = λ, µ = 2ω2 and µ = ω1. If µ = λ,
then one finds Lλ,λ(q) = q2q2q2. In the second case, Lλ,2ω2

(q) = q(q−1)qq2.
Finally, if µ = ω1, there are two one-skeleton galleries starting in o and
ending in ω1. Let us explain the computation in the case of the gallery
(o ⊂ E1 ⊃ V1 ⊂ E2 ⊃ V2 ⊂ E3 ⊃ ω1) plotted in the picture below.

At the vertex o, ℓ(wD0
) = 1, therefore we get a q. At the vertex V1, there

is only one gallery c of residue chambers positively folded with respect to
s1, starting in C−

V1
and ending in a chamber containing an opposite to E1.

This gallery c has a positively (with respect to s1) folding on one wall and
crosses positively another, so we have t(c) = 1 and r(c) = 1, whence we
get (q − 1)q. At the vertex V2, the gallery (E2 ⊃ V2 ⊂ E3) is minimal.
The gallery of residue chambers has only two terms and positively (with
respect to another sector) crosses the vertical wall, therefore, we get q. One
computes in an analogous way the number of minimal one-skeleton galleries
retracting on the second gallery ending in ω1 and one gets q(q−1)q2. Finally,
Lλ,ω1

(q) = q(q − 1)qq + q(q − 1)q2 = 2(q − 1)q3.
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9. Dimension of rmin
−∞(δ), LS-galleries and Young tableaux

Given a dominant coweight λ, let γλ be a combinatorial one-skeleton
gallery as in Example 4. Let δ = (V0 = o ⊂ E0 ⊃ . . . ⊃ Vr+1) be a
positively folded combinatorial one-skeleton gallery of the same type as γλ.
By Proposition 12 we known that the intersection of the set of minimal
galleries G(O).γλ with the cell Cδ is a dense subset of Cδ, so

dim rmin
−∞(δ) = dim ({minimal galleries} ∩ Cδ) = dim(Cδ).

The dimension of the cell can be computed by Proposition 5 using com-
binatorial properties of the gallery: given an affine root (α, n), α > 0, a
vertex V ∈ Hα,n and an edge E in A, then we say that (V,E) crosses the
wall (or hyperplane) Hα,n in the positive (negative) direction if F 6⊂ H−

α,n

(respectively F 6⊂ H+
α,n).

Remark 8. Using the terminology of section 4.3, an equivalent formulation
is to say that a wall crossing is positive if (−α,−n) ∈ Φa

−(V, F ).

For the gallery δ denote by ♯+δ the number of positive wall crossings, by
♯−δ the number of negative wall crossings and by ♯±δ the number of all wall
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crossings:

♯+δ =
∑r

i=0(♯positive wall crossings of (Vi, Ei))
♯−δ =

∑r
i=0(♯negative wall crossings of (Vi, Ei))

♯±δ = ♯+δ + ♯−δ.

For the last number we have ♯±δ = ♯+γλ = 〈λ, 2ρ〉 because it depends only
on the type of the gallery. Together with Remark 8 and Proposition 5 we
get:

Lemma 7. ♯+δ = dim(Cδ).

An upper bound for ♯+δ can be determined using the target of the gallery:

Proposition 14. Let µ be the target of δ, then ♯+δ ≤ 〈λ+ µ, ρ〉.

Proof. Since Pλ → sλ we know that q−〈ρ,λ+µ〉Lλ,µ ∈ Z[q−1], so the power
of the leading term in Lλ,µ is less or equal to 〈ρ, λ+ µ〉. By the formula in
Theorem 2, the maximal power of the contribution coming from a positively
folded gallery δ occurs with coefficient +1. The maximal power of the term
coming from δ is dim(Cδ), which proves the claim. �

Definition 14. We call a positively folded combinatorial one-skeleton gallery
δ of the same type as γλ a LS-gallery if ♯+δ = 〈λ + µ, ρ〉, where µ is the
target of δ.

We want now to discuss some examples and the connection with the work
of Lakshmibai, Musili and Seshadri. Recall that the theory of a path model
for a representation is a generalization of the original idea of Lakshmibai,
Musili and Seshadri (see for example [11], [12], [13]) to index a basis of
fundamental representation by sequences of Weyl group elements satisfying
certain combinatorial conditions. Monomials of these basis elements then
form a generating system for the other irreducible representations (respec-
tively the corresponding dual Weyl modules in positive characteristic), and
the aim was to show that special monomials, the standard monomials =
monomials having a defining chain, form in fact a basis. This program was
successfully realized in many cases, for example for all representations of
the classical groups but also in many other cases (see ibidem). The path
model theory provided a new approach and made it possible to prove the
conjecture for the character in full generality for Kac-Moody algebras [15],
the construction of an associated standard monomial theory is discussed in
[17].

To describe the connection with LS-galleries in the one-skeleton, one of
the first steps is the reduction to the case of a fundamental weight.

Lemma 8. (1) All minimal combinatorial one-skeleton galleries are LS-
galleries.

(2) If ω is a minuscule coweight, then all combinatorial galleries of the
same type as γω are LS-galleries.

(3) Suppose δ1, . . . , δr are positively folded combinatorial galleries of the
same type as γλ1

, . . . , γλr
respectively. Suppose the concatenation

δ = δ1 ∗ . . . ∗ δr is positively folded. Then δ is an LS-gallery if and
only if each of the δj , j = 1, . . . , r, is a LS-gallery.
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Proof. If δ is a minimal gallery with target µ, then 〈µ, 2ρ〉 = ♯+δ − ♯−δ, so

♯+δ =
1

2
(♯+δ − ♯−δ + ♯±δ) =

1

2
〈λ+ µ, 2ρ〉 = 〈λ+ µ, ρ〉.

If ω is a minuscule coweight, then all combinatorial galleries of the same
type as γω have no folds and hence are minimal, which proves the claim by
(1).

Let δ = δ1 ∗ . . . ∗ δr be a concatenation of positively folded galleries
as in (3). If δ has target µ and δi has target µi, then ♯+δ =

∑r
j=1 ♯

+δj
and 〈λ + µ, ρ〉 =

∑r
j=1〈λj + µj, ρ〉. So by Proposition 14 we have equality

♯+δ = 〈λ+ µ, ρ〉 if and only if ♯+δj = 〈λj + µj, ρ〉 for all j = 1, . . . , r. �

In the following let γλ be as in Example 2, we want to characterize the LS-
galleries of the same type as γλ. The Lemma above reduces the consideration
to the case where λ = ω is a fundamental weight.

Let δ0 = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ . . . ⊃ Vr = µ0) be a positively
folded gallery of the same type as γω, and let j be such that δ0 has no folds
at the vertices Vi for i > j (note: we do not ask j to be minimal with this
property). Let β be a positive root and suppose there exists an m ∈ Z such
that Vj ∈ Hβ,m. Denote by δ the gallery

(11) δ = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ sβ,m(Ej) ⊃ . . . ⊃ sβ,m(Vr) = µ)

Given the one-dimensional face Ej let νEj
be the rational weight Vj+1 − Vj.

Since Ej is of type ω, there exists a unique element τEj
∈W/Wω such that

the two rays RτEj
(ω) and RνEj

coincide.

Definition 15. We say that δ is obtained from δ0 by a positive fold if
sβτEj

< τEj
in the Bruhat order on W/Wω. We say that δ is obtained from

δ0 by an LS–fold if in addition ℓ(sβτEj
) = ℓ(τEj

)− 1 for the length function
ℓ on W/Wω

By definition, if δ is obtained from δ0 by a positive fold, then δ is also
positively folded. Obviously every positively folded gallery can be obtained
from a minimal gallery by a sequence of such positive folds.

To be able to characterize the LS-galleries of the same type as γω, we
divide this folding algorithm into the smallest possible steps. Since we can
only fold with respect to the roots in the local root system ΦVj

, we consider
first the Weyl group WVj

of ΦVj
. There exists a unique ray Rν0 contained

in the dominant Weyl chamber with respect to ΦVj
and a unique element

t ∈WVj
/(WVj

)ν0 such that t(ν0) = νEj
.

Definition 16. We say that the fold by sβ,m is minimal for the local root
system ΦVj

if ℓ(sβt) = ℓ(t) − 1 for the length function ℓ on WVj
/(WVj

)ν0 .

If the fold is not minimal, then one can find positive roots β1, . . . , βq in
ΦVj

such that t > sβ1
t > . . . > sβq

· · · sβ1
t = sβt in the Bruhat ordering on

WVj
/(WVj

)ν0 , and in each step the length decreases by one. For each root
βi let mi be such that Vj ∈ Hβi,mi

, then the sequence of folds by the affine
reflections sβ1,m1

, . . . , sβq,mq
are all positive and, by the choice, minimal.

Summarizing we have:
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Lemma 9. A positively folded gallery of the same type as γω is obtained
from a minimal gallery by a sequence of positive folds such that each fold is
minimal for the local root system associated to the corresponding vertex.

We want to compare ♯+δ and ♯+δ0, where δ is obtained from δ0 by a fold
as in (11), but now assume that the positive fold is minimal.

Proposition 15. ♯+δ ≤ ♯+δ0 + 〈µ − µ0, ρ〉. Further, δ is an LS-gallery if
and only if δ0 is an LS-gallery and the new fold is an LS-fold.

Since the condition of being folded by a sequence of LS-folds is equivalent
to the condition for LS-paths, we get as an immediate consequence:

Corollary 2. For a fundamental coweight ω let πω : [0, 1] → X∨
R be the path

t 7→ tω and let π be an LS-path of shape ω as in [15]. As associated gallery
γπ in the one-skeleton of A take the sequence of edges and vertices lying on
the path. This map π 7→ γπ describes a bijection between the LS-paths of
shape ω and the LS-galleries of the same type as γω.

Proof of the proposition. For δ0 = (o = V0 ⊂ E0 ⊃ . . . ⊃ Vr = µ0) let j be
such that δ = (o = V0 ⊂ E0 ⊃ . . . ⊂ Vj ⊂ sβ,m(Ej) ⊃ . . . ⊃ sβ,m(Vr) = µ).

Denote by ♯+j δ0 the number of positive crossings associated to the vertices

Vk for k > j. Since the two galleries coincide till Vj , we have ♯+δ − ♯+δ0 =
♯+j δ − ♯+j δ0.

Let ν0 be the rational weight µ0 − Vj and set ν = µ− Vj . There exists a
rational number 0 < r ≤ 1 and elements κ, τ ∈W/Wω such that ν0 = rτ(ω),
ν = rκ(ω), r〈κ(ω), β〉 ∈ Z, and sβτ = κ. Note that

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = 〈µ− µ0, ρ〉
= 〈r(κ(ω) − τ(ω)), ρ〉
= r

2(
∑

γ>0〈κ(ω), γ〉 −
∑

γ>0〈τ(ω), γ〉).

We need the following simple lemma, which we state without proof.

Lemma 10. Let ψ be a root system with Weyl group W (Ψ) and let ν be
a dominant weight. Fix sβτ ∈ W (Ψ)/W (Ψ)ν and let β be a positive root
such that sβτ < τ . We divide the set of positive roots into Ψ+ = A ∪ B,
where A = {γ > 0 | sβ(γ) > 0} and B = {γ > 0 | sβ(γ) < 0}. Consider the
following sets:

A+
τ = {γ ∈ A | 〈τ(ν), γ〉 ≥ 0} A0

τ = {γ ∈ A |, 〈τ(ν), γ〉 = 0}

B+
τ = {γ ∈ B | 〈τ(ν), γ〉 ≥ 0} B0

τ = {γ ∈ B | 〈τ(ν), γ〉 = 0},

and similarly we define the sets A−
τ and B−

τ .
Then sβ(A±

τ ) = A±
sβτ

, sβ(A0
τ ) = A0

sβτ
, −sβ(B+

τ ) = B−
sβτ

, −sβ(B−
τ ) =

B+
sβτ

and −sβ(B0
τ ) = B0

sβτ
. Further, B+

τ ∪{β} ⊂ B+
sβτ

, and one has equality

if and only if ℓ(τ) = ℓ(sβτ) + 1 for the length function ℓ on W (Ψ)/W (Ψ)ν .

Using the notation and the results of Lemma 10, this sums reduces to

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = r(
∑

γ∈B+
κ

〈κ(ω), γ〉 −
∑

γ∈B+
τ

〈τ(ω), γ〉),
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since 〈κ(ω), γ〉 = 〈sβκ(ω), sβ(γ)〉 = 〈τ(ω), sβ(γ)〉. Again by Lemma 10, we
can divide B+

κ into B+
τ ∪ {β} ∪ Rest and get:

〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉 = r(
∑

γ∈B+
τ
〈κ(ω) − τ(ω), γ〉 + 〈κ(ω), β〉

+
∑

γ∈Rest〈κ(ω), γ〉)

=
∑

γ∈B+
τ
r〈κ(ω), β〉〈β, γ〉 + r〈κ(ω), β〉

+
∑

γ∈Rest r〈κ(ω), γ〉.

We want to compare this sum to ♯+j δ − ♯+j δ0. If γ is a positive root, then

(Vk, Ek) crosses some wall Hγ,p positively for some k > j only if 〈τ(ω), γ〉 >
0, and if γ ∈ ΦVj

, then the number of such crossings is r〈τ(ω), γ〉. If γ 6∈ ΦVj
,

then the number of such crossings is ⌊r〈τ(ω), γ〉⌋, the largest integer smaller
or equal to r〈τ(ω), γ〉. So again with the notation as in Lemma 10 and the
decomposition B+

κ = B+
τ ∪ {β} ∪Rest:

♯+j δ − ♯+j δ0 =
∑

γ∈A+
κ∪B+

κ
⌊r〈κ(ω), γ〉⌋ −

∑

γ∈A+
τ ∪B+

τ
⌊r〈τ(ω), γ〉⌋

=
∑

γ∈B+
κ
⌊r〈κ(ω), γ〉⌋ −

∑

γ∈B+
τ
⌊r〈τ(ω), γ〉⌋

=
∑

γ∈B+
τ

(⌊r〈κ(ω), γ〉⌋ − ⌊r〈τ(ω), γ〉⌋) + ⌊r〈κ(ω), β〉⌋

+
∑

γ∈Rest⌊r〈κ(ω), γ〉⌋

=
∑

γ∈B+
τ

(⌊r〈κ(ω), γ〉⌋ − ⌊r〈κ(ω), γ〉 − r〈κ(ω), β〉〈β, γ〉⌋)

+⌊r〈κ(ω), β〉⌋ +
∑

γ∈Rest⌊r〈κ(ω), γ〉⌋

Since r〈κ(ω), γ〉 is an integer by assumption, we obtain:

♯+j δ − ♯+j δ0 =
∑

γ∈B+
τ

r〈κ(ω), β〉〈β, γ〉 + r〈κ(ω), β〉 +
∑

γ∈Rest

⌊r〈κ(ω), γ〉⌋

As a consequence we see:

(〈µ − µ0, ρ〉) − (♯+δ − ♯+δ0) = (〈ω + µ, ρ〉 − 〈ω + µ0, ρ〉) − (♯+j δ − ♯+j δ0)

=
∑

γ∈Rest(r〈κ(ω), γ〉 − ⌊r〈κ(ω), γ〉⌋),

which proves the inequality in the proposition. We have equality if and
only if the right hand term above is zero. The target µ is a special point, so
r〈κ(ω), γ)〉 is an integer if an only if γ ∈ ΦVj

. Since the folding is minimal by
assumption, the intersection Rest ∩ ΦVj

= ∅. But this implies that we have
equality if and only if Rest = ∅, i.e., the fold is an LS-fold by Lemma 10. In
particular, δ is an LS-gallery if and only if δ0 is an LS-gallery and the new
fold is an LS-fold. �

Summarizing the results above, we have the following connection between
the path model of a representation and the one-skeleton galleries:

Corollary 3. Write a dominant coweight λ = ωi1 + . . . + ωir as a sum of
fundamental coweights, write λ for this ordered decomposition. Let Pλ be the
associated path model of LS-paths of shape λ defined in [15]. The associated
one-skeleton galleries (same procedure as in Corollary 2) are precisely the
LS-galleries of the same type as γωi1

∗ . . . ∗ γωir
.

In fact, the notion of a defining chain for LS-paths introduced by Lak-
shmibai, Musili and Seshadri coincides in this case with the notion of a
defining chain for the associated gallery. As an immediate consequence of
Theorem 2 and Proposition 14 we get the following character formula. In
combination with Corollary 3, this provides a geometric proof of the path
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character formula, first conjectured by Lakshmibai (see for example [13])
and proved in [15]:

Corollary 4. CharV (λ) =
∑

δ e
target(δ), where the sum runs over all LS-

galleries of the same type as γλ.

Proof. The formula in Theorem 2 and the results above show that the highest
power of q in the Laurent polynomial Lλ,µ is 〈λ+µ, ρ〉, and the coefficient of
the highest power is the number of LS-galleries having µ as a target. Since
Pλ → sλ for q → ∞, this proves the character formula. �

Let us now consider some of the special cases discussed in section 5.4,
these cases occur already in [11]. The question why for some enumeration
of the fundamental weights the combinatorics for tableaux becomes sud-
denly much easier than for other enumerations seems to have a geometric
answer: because for special orderings locally minimal and globally minimal
are equivalent conditions for one-skeleton galleries.

Example 10. Suppose G is of type An, we use the notation as in Example 8.
In this case we have seen that the positively folded galleries are in bijection
with generalized semi-standard Young tableaux. In fact, by Lemma 8, all
positively folded galleries are automatically LS-galleries.

Example 11. Suppose G is of type Bn, Cn, then one can define generalized
Young tableaux for these groups, this was already observed by Lakshmibai,
Musili and Seshadri, see [11], and see [16] for a numerical description. For the
enumeration of the fundamental weights choose the Bourbaki enumeration,
so condition (∗) in section 5.4 is satisfied. The generalized tableaux can
be identified with the LS-galleries in the same way as in the case An. But
since not all fundamental weights are minuscule, the set of semi-standard
Young tableaux does not cover all positively folded galleries of the same type
as γλ. Using Proposition 8, it is easy to adapt the notion of the tableaux
accordingly so that also in these cases the set of positively folded galleries can
be translated into the combinatorial language of generalized Young tableaux.
Details and applications using Theorem 2 will be published in a forthcoming
paper.
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