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Approximate equivalence between guided modes in a

low-contrast photonic bandgap fiber and Maxwell TM

modes of a high-contrast 2D photonic structure

Olivier Legrand, Laurent Labonté, and Christian Vanneste

Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622,

Université de Nice Sophia-Antipolis, 06108 Nice, France

We present a formal analogy between the eigenvalue problem for guided

scalar modes in a low contrast photonic bandgap fiber and quasi-stationary

TM modes of a 2D photonic structure. Using this analogy, we numerically

study the confinement losses of disordered microstructured fibers through

the leakage rate of a open 2D system with high refractive index inclusions.

Our results show that for large values of the disorder, the confinement losses

increase. However, they also suggest that losses might be improved in strongly

disordered fibers by exploring ranges of physical parameters where Anderson

localization sets in. c© 2010 Optical Society of America

OCIS codes: 060.5295, 290.4210.

1. Introduction

The equivalence between the guided modes of a microstructured fiber and the TM modes of

a two-dimensional (2D) structure shows that a low index contrast in the fiber corresponds

to a high contrast in the 2D structure. Moreover the guided modes of a microstructured

fiber experience confinement losses due to transverse leakage. Hence, even in the absence of

material absorption, the guided field decays slowly as a function of time. In order to obtain

a full equivalence between the lossy fiber and the 2D structure, the latter must also suffer

leakage through the boundaries. In other words, the 2D structure must be open instead of

being a closed cavity. If the leakage through the boundaries is weak and can be considered

as a small perturbation of the closed system, one can decompose the field over a basis of

quasi-modes, which are very close to the stationary modes of the closed 2D cavity, but slowly

decay in time. Their eigenvalues (or energies) are complex instead of being real numbers for

a closed system, the small imaginary part describing the exponential decay of the mode as

a function of time.
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Using this equivalence, we have studied the modes of an open disordered 2D structure in

order to get the confinement loss of a microstructured fiber as a function of the position

disorder of the high index inclusions. We observe that some realizations of the disorder

display leakage rates smaller than the leakage rate of the periodic system in agreement with

recent results by V. Pureur et al.1 However, this noticeable effect is only observed for small

amounts of disorder. When we increase the disorder at amounts larger than those studied

previously, the average leaking rate eventually increases with the disorder. This result is

compared with the predictions of Anderson localization theory for disordered systems.

2. Equivalence between the modes of a fiber and TM modes of a 2D structure

Let us first consider the calculation of quasi-stationary TM modes in an open 2D structure

composed of circular scatterers with high refractive index Nscat embedded in a host material

of index unity (vacuum). Such a system is equivalent to an array of parallel cylinders with

the electric field aligned with the axis of the cylinders. In the following, we consider a finite

size triangular arrangement of rods from which the central rod is removed, corresponding to

the geometry of commonly used low-contrast photonic bandgap fibers.2 Due to the existence

of Mie resonances, frequency gaps are likely to occur whose size and position are very little

dependent on the arrangement (whether periodic or not) of the cylinders.3, 4 In the presence

of a defect, as for instance removing a rod from the structure, sharp peaks are generally

observed inside such bandgaps. These peaks are associated to quasi-modes which are spatially

localized. Hence, the vacancy introduced by removing the central rod can be considered as a

defect of the 2D structure. Therefore, one can expect the existence of long-lived quasi-modes

located at the vacancy location, which are the 2D equivalent of the modes guided in the fiber

core of the low-contrast photonic bandgap fiber.

At the frequency Ωp = cKp of a quasi-mode p, the component Ψ of the electric field

perpendicular to the plane of a 2D cavity can be written as Ψp = Φp(~r)e
iΩpt satisfying the

2D Helmholtz equation

(∆ +N2(~r)K2
p )Φp = 0 (1)

It is worth noting that our 2D system is formally equivalent to the problem of a quantum

particle with positive energy above a structured potential consisting of negative circular

potential wells embedded in a zero potential. This is easily seen by re-writing Eq. (1) in the

form of the stationary Schrödinger equation

[

−∆+ (1−N2(~r))K2
p

]

Φp(~r) = K2
p Φp(~r) . (2)

where N(~r) = 1 in the vacuum and N(~r) = Nscat inside the scatterers. Therefore, the

potential well of depth Vscat = (1 − N2
scat)K

2
p associated to a dielectric scatterer should not
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be viewed as a confining well but rather as a resonant scattering potential well since Nscat > 1

and since the real part of the eigenvalue K2
p is positive (see Fig. 1).

Let us now consider the guided modes in low-contrast photonic bandgap fibers consisting

of high-index (n1) rods in a low-index (n0) cladding. At a given frequency ν defining a

vacuum wavelength λ = c/ν and the associated wavenumber k = 2π/λ, propagating (scalar)

quasi-modes can be written as ψp = φp(~r⊥) exp[ikn
eff
p z] satisfying the Helmholtz equation

(∆⊥ − k2(neff
p )2)φp + n2(~r⊥)k

2φp = 0 (3)

which can be re-written

−∆⊥φp + [n2
0 − n2(~r⊥)]k

2φp = [n2
0 − (neff

p )2]k2φp (4)

where, in the present context, n(~r⊥) = n0 in the cladding and n(~r⊥) = n1 inside the rods.

This way of writing the Helmholtz equation emphasizes the analogy with the quantum

problem introduced above where the cladding index defines the zero potential. Note that we

are considering quasi-modes of the ARROW type2 (corresponding to the resonant scattering

effect mentioned above) implying neff
p < n0 as opposed to the LP-modes guided inside the

high-index rods neff
p > n0.

5, 6 Moreover, in this description, the scalar hypothesis is justified

in the weak guidance limit (see e.g.7). Putting together the latter conditions, one obtains

0 < n2
0 − (neff

p )2 ≪ 1 . (5)

When one compares equations (2) and (4), one clearly sees that a solution Φp of (2) for a

given eigenvalue K2
p can be considered as a solution of (4) if one identifies

[n2
0 − (neff

p )2]k2 with K2
p and (6a)

(n2
0 − n2

1)k
2 with (1−N2

scat)K
2
p , (6b)

together with the condition n2
1 − n2

0 ≪ (N2
scat − 1) according to the weak guidance limit for

which K2
p ≪ k2. The latter condition indicates that TM solutions of the 2D problem can

be mapped onto solutions in the photonic bandgap fiber only if N2
scat is much larger than

unity. The principal difference between both problems resides in the fact that the unknown

eigenvalue K2
p is factorized in the potential term (1 − N2(~r))K2

p of equation (2) whereas

the unknown effective index neff
p does not appear in the potential term [n2

0 − n2(~r⊥)]k
2 of

equation (4). Note that the above equivalence assumes that the geometries of both systems

are identical.

Within the bandgaps, one can also establish a correspondence between the loss along the

fiber and the decay rate of the 2D problem. This is readily done by expanding the supposedly

small imaginary parts of [n2
0 − (neff

p )2]k2 and K2
p and by identification, one gets:

k2Reneff Imneff = ReK ImK =
Ω

2c2
Γ (7)

where Γ/2 is the amplitude decay rate of the 2D quasi-stationary TM mode.
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3. Numerical study

We have numerically studied the 2D system with the finite-difference time-domain method

(FDTD). Open boundary conditions are modeled by perfectly matched layers (PML). We

first investigated the unperturbed system where the scatterers are positioned over a periodic

triangular lattice (Fig. 2).

Calculations proceed in two steps. In the first step, one obtains the impulse response by

exciting the system with a wide-band pulse. By Fourier transform of the recorded field over

successive time windows, one observes the evolution of the spectrum as a function of the

time. A large amount of the initial energy escapes rapidly from the open system. Only the

small leakage resonances persist at long times. In the second step, one excites the same

system by a monochromatic source at the frequencies of the narrowest peaks in the impulse

spectrum. In the following, we will present results for the two narrowest modes hereafter

denoted modes 1 and 2. These two modes are localized at the center of the system (Fig. 2).

After the build-up of the corresponding resonance, the source is stopped. Since the system is

open, the energy starts decreasing as a function of time. By measuring the decay of the field

amplitude, one obtains the lifetime of the resonance. Using the mapping described above,

one obtains the leakage rate of the corresponding fiber mode.

Next, we resume the same calculations after introducing some amount of disorder on the

location of the scatterers by perturbation of the periodic array. A random displacement with

adjustable amplitude δx and δy is imposed to each scatterer i of the system. The amount of

disorder relative to the periodic system is given by the mean displacement σ over the whole

set of scatterers where σ2 = 1
N

∑N
i=1(δx

2
i + δy2i ). For each value of this parameter, several

implementations of the disorder have been investigated.

4. Results and Conclusion

The 2D system is a periodic array of circular scatterers whose refractive index is Nscat = 4

in a background medium of refractive index N = 1. The array pitch is 15 µm and the radius

of the scatterers is r = 5 µm. The system is made of seven layers of scatterers (Fig. 2). The

amount of disorder on the positions of the scatterers ranges from σ = 0 to σ = 3.5 µm.

Note that the latter value corresponds to a noticeable perturbation of the system as shown

in Fig. 2. Note also that the above values of the refractive index in the 2D system would

correspond, for instance, to n0 = 1.450 and n1 = 1.467 at λ = 1.6 µm for mode 1 in the fiber

problem.

Figure 3 displays the attenuation rate of modes 1 (lower curves) and 2 (upper curves)

as a function of the amount of disorder for each of the different systems, which have been

investigated. The lines connecting the data points enable us to visualize the modes 1 and

2, which correspond to the same realizations of the disorder. The values that have been
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obtained for the periodic system (σ = 0) are in good agreement with the values obtained for

the same system by an independent calculation using the finite-element method.

We note that large fluctuations take place between different realizations of the disorder.

For σ values that do not exceed about 1.5µm, some fluctuations correspond to attenuation

rates smaller than the values of the periodic system. This is a noticeable result, which agrees

with those of Pureur et al.1 Hence, against naive intuition, a slightly disordered system can

display a better confinement than the corresponding unperturbed system. However, Fig.

3 shows that for large amounts of disorder the mean leakage rate eventually increases as

expected.

It is interesting to point out that an anticorrelation is observed between the losses of modes

1 and 2 for the smallest values of the disorder parameter (σ < 1.5µm). When the losses of

mode 1 vary with σ, the losses of mode 2 vary systematically in the opposite way for the

corresponding realizations of the disorder as highlighted by the lines joining the data points

in Fig. 3.

The fact that the average losses increase with σ rules out the possiblity for the system to

be in the localized regime due to disorder. Indeed, in this regime, modes are characterized

by a typical size, the localization length, which is smaller than the system size. The shorter

the localization length is, i.e. the better a localized mode is confined at the center of the

system, the smaller the decay rate due to a weaker leakage through the boundaries.8 As the

localization length is expected to decrease when the disorder increases, well localized modes

should exhibit attenuation rates, which decrease with the amount of disorder contrary to the

behavior observed in Fig. 3. Note that for weak disorder, leakage rates smaller than that of

the periodic system correspond to fluctuations due to particular realizations of the disorder.

They do not correspond to a general trend of decreasing losses with increasing disorder.

Obviously, these results depend on the parameters of the systems we have considered. One

can wonder whether the localization regime, which would improve the confinement losses of a

microstructured fiber is attainable by varying the system parameters. For instance, it is well

known that sufficiently large 2D disordered systems are always in the localization regime.9

Hence, by increasing the number of layers of scatterers, the system size will eventually exceed

the localization length and result in reduced losses. However, such an achievement seems to

be out of reach of the current possibilities of fabrication of microstructured fibers. Instead

of varying the system size, one could change the refractive index of the scatterers. Figure 4

displays the localization length as a function of the V -parameter for scatterers of radius 5

µm. The V -parameter is commonly used in the context of fibers and is defined by

V =
2πr(n2

1 − n2
0)

1/2

λ
(8)

where r is the radius of the scatterers (see e.g.2). The different curves in Fig. 4 correspond
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to different values of the refractive index of the scatterers Nscat = 3, 4, 5, 6. For values of

the V -parameter close to V = 4, which correspond to mode 1 of the fibers studied in this

article, the localization length is very sensitive to the value of the refractive index, ranging

from ξ = 105 µm for Nscat = 3 to ξ = 102 µm for Nscat = 6. The latter value of ξ, which is

smaller than the fiber diameter D ≃ 200 µm for the system shown in Fig. 2, indicates that

localization might be reachable for high values of the refractive indices of the scatterers.

The above estimates of the localization length have been obtained from the scattering

cross section of 2D Mie scatterers10 in the independent scattering approximation.11 This last

approximation is certainly not well verified for the values of the pitch and of the scatterer

diameters considered here. Hence, the above localization lengths are only indicative. However,

the sensitivity of the localization length to the index contrast suggests that there is some hope

to reduce the confinement losses of disordered microstructured fibers by carefully exploring

the ranges of their physical parameters.

We acknowledge support from the project ANR-05-BLAN-0080 “FOCALASE”.
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Fig1.eps.

9
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