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Abstract: In this paper we consider several constrained activity scheduling problems in the time and space domains, like finding 

activity orderings which optimize the values of several objective functions (time scheduling) or finding optimal locations where 

certain types of activities will take place (space scheduling). We present novel, efficient algorithmic solutions for all the considered 

problems, based on the dynamic programming and greedy techniques. In each case we compute exact, optimal solutions. 

 
1. Introduction 

 

Activity scheduling is an important aspect in various 

domains, like business processes, industrial workflows, 

distributed systems, and so on. Scheduling the activities 

efficiently can bring multiple benefits, like minimizing 

costs, maximizing profits and/or throughput or optimizing 

the social welfare of the employees. In this paper we 

consider several constrained time and space activity 

scheduling problems, for which we present efficient 

algorithms for computing optimal schedules. Although 

the considered problems are mostly tackled from a 

theoretical point of view, they have applications in some 

of the domains mentioned above, particularly those 

related to economic activities and computer science. 

The rest of this paper is structured as follows. In 

Sections 2-5 we present novel algorithmic solutions for 

several activity scheduling problems over time. In 

Sections 6 and 7 we consider two space scheduling 

problems, where we need to find optimal locations or to 

divide the existing space optimally. In Section 8 we 

discuss related work and in Section 9 we conclude. 

 

2. Scheduling K Activities over Time in order to 

Maximize the Total Utility 
 

We consider a sequence of N time moments. For each 

time moment t (1≤t≤N), a value u(t) is known (which may 

be both positive and negative), representing the utility 

function if an activity is scheduled during a time interval 

containing t. We want to schedule K activities during non-

overlapping time intervals (i.e. consisting of disjoint time 

moments), such that the sum of the utilities of the time 

moments during which an activity is scheduled is 

maximum. Moreover, the time interval of the j
th

 activity 

(1≤j≤K) in chronological order, must contain at least Lo(j) 

and at most Up(j) time moments. 

We will compute Smax(i,j)=the maximum sum of 

utilities which can be obtained by scheduling j activities 

during the first i time moments. We have Smax(0≤i≤N, 

0)=0 and Smax(0, 1)=-∞ (if Lo(1)>0) or 0 (if Lo(1)=0); 

Smax(0, j>1)=-∞ (if Lo(j)>0) or Smax(0, j-1) (if 

Lo(j)=0). Smax(N, K) will be the maximum total utility 

which can be achieved. 

We will first consider the case when all the upper 

bounds Up(j) are equal to N (1≤j≤K). For each j=1,…,K, 

we will traverse, in order, all the time moments i=1,…,N. 

We will consider that we computed the partial sums SP(*) 

(SP(0)=0 and SP(1≤i≤N)=SP(i-1)+u(i)), such that we can 

efficiently compute Sum(a,b)=the sum of the utilities 

between the time moments a and b (Sum(a,b)=SP(b)-

SP(a-1)). Smax(i, j)=max{Smax(i-1, j), max{Sum(p,i)+ 

Smax(p-1, j-1) | max{1, i-Up(j)+1}≤p≤i-Lo(j)+1}}. As we 

traverse the time moments i=1,…,N (for a fixed value of 

j), we will maintain a maximum value Sbest. Initially, 

Sbest=Smax(0,j-1)-SP(0). When we reach the time 

moment i, we consider a candidate value Scand=Smax(i-

Lo(j), j-1)-SP(i-Lo(j)) and we set Sbest=max{Sbest, 

Scand}. We will have Smax(i, j) = max{Smax(i-1, j), 

Sbest+SP(i)}. This way, the case Up(j)=N (for all 1≤j≤K) 

can be solved in O(N·K) time. 

In order to solve the general case, we will proceed as 

follows. When we compute the values Smax(*,j), we will 

maintain a deque DQ, into which we will introduce 

(value, moment) pairs. These pairs will be maintained 

sorted decreasingly according to the value and 

increasingly according to the moment. The functions 

DQ.getFirst() and DQ.getLast() (DQ.removeFirst() and 

DQ.removeLast()) will be used for retrieving (removing) 

the first and last pair of (from) the deque (if DQ is not 

empty). When we start computing the values Smax(*,j), 

we will introduce into DQ the first pair (value=Smax(0,j-

1)-SP(0), moment=0). Then, we traverse the moments 

i=1,…,N, in increasing order. When we reach a moment i, 

we perform the following actions. While DQ.getFirst(). 

moment<i-Up(j), we call DQ.removeFirst(). Then, we 

compute Scand=Smax(i-Lo(j),j-1)-SP(i-Lo(j)). While 

DQ.getLast().value≤Scand, we call DQ.removeLast(). 

Afterwards, we add at the end of the deque the pair 

(value=Scand, moment=i-Lo(j)). After this, we compute 

Smax(i,j)=max{Smax(i-1,j), SP(i)+DQ.getFirst().value}. 

The time complexity is O(N·K) in an amortized sense. 

 

3. Constrained Scheduling of K Activities over Time in 

order to Maximize the Total Utility 

 

This problem is identical to the previous one, except that 

every activity j (1≤j≤K) must necessarily contain the 



special time moment p(j) (p(1)<…<p(K)). We notice that 

the time moments in intervals of the form [p(j), p(j+1)-1] 

(1≤j≤K) can be the rightmost time moment only of 

activity j’s interval (we consider p(K+1)=N+1 and 

p(0)=0). We will assign a(t)=j to every time moment t in 

the interval [left(j)=p(j), right(j)=p(j+1)-1] (in O(N) 

time). Then, we can use dynamic programming and 

compute Smax(i)=the maximum sum of the utilities if the 

first a(i) activities have been scheduled and the rightmost 

moment of activity a(i)’s time interval is smaller than or 

equal to i. We have Smax(0≤i≤p(1)-1)=0. Then, we will 

compute all the values Smax(i) for the time moments i 

with the same value of a(i)=j together, in increasing order 

of j (j=1,…,K). Like before, we compute the partial sums 

SP(*), with which we can evaluate Sum(a,b) in O(1) time. 

We will first consider the case when all the values 

Up(j)=N (i.e. there are no upper bounds). In this case, 

when we reach the value j, we will compute the values 

Vmax(t) (p(j-1)≤t≤p(j)-1). We have Vmax(p(j-1))= 

Smax(p(j-1))-SP(p(j-1)) and Vmax(p(j-1)+1≤t≤p(j)-

1)=max{Vmax(t-1), Smax(t)-SP(t)}. Afterwards, we 

consider all the values p(j)≤i≤p(j+1)-1, in increasing 

order of i. If i-Lo(j)+1≤p(j-1) then Smax(i)=-∞ (if i=p(j)) 

or Smax(i-1) (if i>p(j)). Otherwise, let prev(i)=min{i-

Lo(j), p(j)-1}. If i=p(j) then Smax(i)=Vmax(prev(i))+SP(i) 

else Smax(i)=max{Vmax(prev(i))+SP(i), Smax(i-1)}. This 

case can be handled in O(N) time. If, instead, we have 

Up(j)=Lo(j) (for every 1≤j≤K), then, when considering 

the values p(j)≤i≤p(j+1)-1, we have: if (i-Lo(j)+1≤p(j-1)) 

or (i-Lo(j)+1>p(j)) then Smax(i)=-∞ (if i=p(j)) or Smax(i-

1) (if i>p(j)); otherwise: if (i=p(j)) then Smax(i)=Smax(i-

Lo(j))+Sum(i-Lo(j)+1, i) else Smax(i)=max{Smax(i-1), 

Smax(i-Lo(j))+Sum(i-Lo(j)+1, i)}. 

In order to handle the general case, we will proceed as 

follows. When we compute the values Smax(i) 

(p(j)≤i≤p(j+1)-1), we will maintain a deque DQ, into 

which we will introduce (value, moment) pairs. These 

pairs will be maintained sorted decreasingly according to 

the value and increasingly according to the moment. We 

will use the functions DQ.getFirst(), DQ.getLast(), 

DQ.removeFirst() and DQ.removeLast() (defined in the 

previous section). Based on these functions, we define the 

function DQ.insert((val, mom)) as follows: (1) while DQ 

is not empty and DQ.getLast().value≤val do 

DQ.removeLast(); (2) add the pair (val, mom) at the end 

of DQ. For each position i (where j=a(i)), we define 

tlow(i)=max{i-Up(j), p(j-1)} and thigh(i)=min{i-Lo(j), 

p(j)-1}. When we reach a new value of j, we empty the 

deque DQ. Then, we consider all the time moments 

tlow(p(j))≤t≤thigh(p(j)) and call DQ.insert((value= 

Smax(t)-SP(t), moment=t)). Afterwards, if DQ is empty 

then Smax(p(j))=-∞; otherwise, we set Smax(p(j))= 

DQ.getFirst().value+SP(p(j)). For p(j)+1≤i≤p(j+1)-1 (in 

increasing order of i), we perform the following actions: 

(1) for every time moment t with thigh(i-1)+1≤t≤thigh(i) 

we call DQ.insert((value=Smax(t)-SP(t), moment=t); (2) 

while DQ is not empty and DQ.getFirst().moment<tlow(i) 

do DQ.removeFirst(). If DQ is empty, then Smax(i)= 

Smax(i-1); otherwise, Smax(i)=max{Smax(i-1), 

DQ.getFirst().value}. The time complexity in this case is 

linear (O(N)) in an amortized sense. 

 

4. Scheduling the Largest Number of Activities 

We consider N activities. Each activity i (1≤i≤N) has a 

fixed duration l(i) and must be scheduled during l(i) 

consecutive time moments. Moreover, each activity has a 

special time moment p(i) which must be included within 

its scheduled time interval. The activities must be 

scheduled during non-overlapping time intervals; 

however, the intervals may “touch” at their endpoints, but 

must not intersect otherwise. Because of the constraints, it 

may not be possible to schedule all the activities. Thus, 

we want to maximize the number of scheduled activities. 

We will use a greedy algorithm. First, we sort the 

activities in increasing order of their special time 

moments. Thus, we will consider that p(1)≤p(2)≤...≤p(N). 

We will traverse the activities in this order, maintaining a 

stack S of the activities which have been scheduled so far 

(the activities scheduled more recently are closer to the 

top of the stack). Initially, we schedule the first activity, 

during the interval [p(1)-l(1), p(1)] (and push the activity 

together with its interval on the stack). When we reach the 

activity i≥2, we have [x,y], the interval of the activity at 

the top of the stack. If p(i)≥y, then we schedule activity i 

in the interval [u=max{p(i)-l(i), y}, v=u+l(i)]. Then, we 

push the activity i on the stack, together with the interval 

[u,v] during which it was scheduled. If, instead, we have 

p(i)<y and l(i)<y-x, then we remove the activity at the top 

of the stack S (we unschedule it). Let [x’,y’] be the 

interval during which the (new) activity at the top of S is 

scheduled. This time we have y’<p(i) and we can 

schedule activity i during the interval [u’=max{p(i)-l(i), 

y’}, v’=u’+l(i)]; afterwards, we push the activity i and the 

interval [u’,v’] during which it was scheduled on top of 

the stack. If we have p(i)<y and l(i)≥y-x, then we do not 

schedule the activity i. The time complexity of this 

algorithm is O(N·log(N)) for sorting the activities and 

O(N) for traversing the activities in the sorted order and 

scheduling them. 

 

5. Lexicographically Optimal Activity Scheduling 

 

We consider a sequence of N time moments. For each 

time moment t (1≤t≤N), a value u(t) is known, 

representing the utility function if no activity is scheduled 

during a time interval containing t. We have a set of K 

activities, each of which consists of x consecutive time 

moments. We want to schedule the K activities during 

non-overlapping time intervals (i.e. containing disjoint 

time moments), such that the chronological sequence of 

utilities of the time moments during which no activity is 

scheduled is lexicographically minimum. To be more 

precise, if tm(1), …, tm(N-K·x) are the moments when no 

activity is scheduled (and tm(i)<tm(i+1) for 1≤i≤N-K·x-

1), then the sequence u(tm(1)), …, u(tm(N-K·x)) is 

lexicographically minimum. 

A simple solution is the following. We will maintain a 

counter CK with the number of already scheduled 

activities and a counter CC with the number of saved time 

moments (initially, CK=CC=0). We will also maintain a 

counter pos, meaning that all the time moments on the 

positions 1, …, pos-1 have already been considered (they 

are either part of a scheduled activity or are saved); 

initially, pos=1. While (CK<K) and (CC<N-K·x), we will 

execute the following actions. We will select the next 

time moment to be saved. This is one of the moments pos, 



pos+x, …, pos+i·x (0≤i≤K-CK). We will choose the time 

moment t for which u(t) is minimum and, in case of ties, 

we will choose the smallest such moment t. Let’s assume 

that we selected the time moment pos+j·x. We will 

increment CK by j (as j more activities are scheduled in 

the intervals [pos, pos+x-1], …, [pos+(j-1)x, pos+j·x-1]), 

we will increment CC by 1 and we will set pos= 

pos+j·x+1. This algorithm can be easily implemented in a 

time complexity of O(N·K). However, when K is too 

large, this complexity is not satisfactory. We will reduce 

the time complexity down to O(N), as follows. We will 

maintain a double-ended queue (deque) DQ(r) for each 

value r=0,1,...,x-1. We will gradually introduce in DQ(r) 

(0≤r≤x-1) the utilities of the time moments t (together 

with their associated time moments), with t mod x=r. 

Initially, every deque is empty. Each deque will store 

(utility, moment) pairs and provides the same functions 

mentioned in the previous sections. When we need to 

compute the minimum utility value among all the time 

moments pos+i·x (0≤i≤K-CK), we will perform the 

following actions in DQ(r=pos mod x). As long as DQ(r) 

is not empty and DQ(r).getFirst().moment<pos, we will 

remove the first pair of the deque. If the deque is now 

empty, we will add in DQ(r) the pair (u(pos), pos) and we 

will set pos’=pos+x; otherwise, we set pos’= 

DQ(r).getLast().moment+x. While pos’≤pos+(K-CK)·x 

do: (1) while DQ(r) is not empty and DQ(r).getLast(). 

utility>u(pos’), we remove the last pair from DQ(r); (2) 

we add the pair (u(pos’), pos’) at the end of DQ(r); (3) 

pos’=pos’+x. At the end of this loop, the first pair of 

DQ(r) contains the smallest utility of a time moment 

within the required set and the associated time moment 

(and, in case of ties, the smallest such time moment). 

After finding the time moment which will be saved, we 

proceed as in the previously described algorithm. By 

using the deques, the amortized time complexity is O(N). 

 

6. Partitioning a Convex Polygon into K Vertex-

Disjoint Parts with Maximum Total Area/Perimeter 

 

In this section we consider the following partitioning 

problem. Given a convex polygon with n vertices 

(numbered from 0 to n-1), we want to partition it into K 

vertex-disjoint parts with maximum total area (or 

weighted perimeter). Each part must be a convex polygon 

whose vertices are a subset of the polygon’s vertices. 

Furthermore, no two of the K parts are allowed to touch. 

This implies, among other things, that no two parts are 

allowed to share a vertex of the polygon. We also impose 

another condition. Each part is allowed to have at most 

B≥0 edges which are not also edges of the convex 

polygon. For K=1 (and any value of B), the optimal 

solution consists of the whole polygon. 

For B≥1 (and any K≥2), we will compute a table 

Amax(i,j,0≤p≤K)=the maximum total area (weighted 

perimeter) obtained if we partition the sub-polygon 

formed from the interval of vertices [i,j] into p parts. An 

interval of vertices [i,j] is composed of the vertices i, i+1, 

…, j-1, j (addition and subtraction are considered modulo 

n). It should be obvious that the intervals [i,j] and [j,i] are 

different. We have Amax(i,j,0)=0 and Amax(i,j,1)= A(i,j). 

We denote by A(i,j) the area (weighted perimeter) of the 

sub-polygon composed of the interval of vertices [i,j]. We 

will pre-compute all of these values in the beginning, in 

O(n
2
) total time. We have A(i,i)=0, A(i,i+1)=0 (for area) 

or w(i,i+1) (for perimeter) and A(i,i+q)=A(i,i+q-1)+ 

ATri(i,i+q-1,i+q)-(if (q>2) and (case=perimeter) then 

w(i,i+q-1) else 0) (2≤q≤n-1). ATri(a,b,c) denotes either 

the area of the triangle whose vertices are the polygon’s 

vertices numbered a, b and c, or the sum w(a,c)+w(b,c) 

(for the perimeter case); w(x,y) is the weight (e.g. length) 

of the segment joining the vertices x and y of the polygon. 

In order to compute Amax(i,j,p>1), we will consider 

several possibilities. First of all, Amax(i+1,j,p) and 

Amax(i,j-1,p) are good candidates for Amax(i,j,p) (when 

vertex i or vertex j do not belong to any of the p parts). 

The second possibility is to have vertex i and vertex j two 

vertices of two different parts. In order to do this, we 

consider every pair of tuples (i, s, q) and (s+1, j, p-q) 

(i≤s<j; 0≤q≤p) and compute the maximum value 

TMAX(i,j,p)=max{Amax(i,s,q)+Amax(s+1,j,p-q)} over all 

the pairs of tuples. TMAX(i,j,p) is a candidate for 

Amax(i,j,p). The third possibility consists of having both 

vertices i and j as two vertices of the p
th

 part. The p
th

 part 

is allowed to have at most emax=B-1 edges which are not 

also edges of the polygon; when (i,j) is an edge of the 

polygon (j=i+n-1), the p
th

 part may have up to emax=B 

edges which are not also edges of the polygon. We will 

consider every value e (1≤e≤emax) and, for each e, we 

consider every set of e pairs (a1,b1), (a2,b2), …, (ae,be) 

with the following properties: i≤a1; be≤j; bl-al≥2 (1≤l≤e); 

bl≤al+1 (1≤l≤e-1). Each pair (al,bl) denotes one of the 

edges of the p
th

 part which is not also an edge of the 

polygon. The area (weighted perimeter) of the p
th

 part, as 

defined by the set of e pairs, is AP(e, (a1,b1), …, 

(ae,be))=A(i,j)-(A(a1,b1)+…+A(ae,be)) (for the area case) 

or A(i,j)-(A(a1,b1)+…+A(ae,be))+(w(a1,b1)+…+w(ae,be)). 

For each value of e and set of e pairs (al,bl) (1≤l≤e), we 

need to consider every set of e numbers q1, q2, …, qe, with 

the following properties: ql≥0 (1≤l≤e); q1+q2+…+ql=p-1. 

Then, the value AP(e, (a1,b1), …, (ae,be))+Amax(a1+1, b1-

1, q1)+…+Amax(ae+1,be-1,qe) is a candidate value for 

Amax(i,j,p). We will set Amax(i,j,p) to the maximum of 

all the candidate values (or -∞ if no candidate value 

exists). The optimal value of the total area of the K 

vertex-disjoint parts is max{Amax(i,j,K)} and the time 

complexity of this approach is O(n
max{2·B+2,3}

·K
max{B+2,2}

). 

 

7. Maximum Utility Rectangular Submatrix with a 

Bounded Number of Distinct Heights 

 
We have a terrain modelled as an M-by-N matrix A (with 

M≤N). Each value of the matrix represents the height of 

the corresponding terrain zone. Moreover, for each 

position (i,j) in the matrix we have a utility value u(i,j)≥0. 

We want to find a rectangular submatrix B containing at 

most K≤M·N distinct values (i.e. K different heights), such 

that the aggregate (sum or max) of the utility values of the 

positions in the submatrix B is maximum. 

We will consider every row LS=1,...,M as a possible 

upper row for the submatrix B. For each value of LS we 

will create a list List(c) for every column c (1≤c≤N). 

Initially, these lists will be empty. Then, we will consider, 

one at a time, every row LJ=LS, LS+1, ..., M as a possible 

lower row for the submatrix B. Once the row LJ is also 

fixed, we will traverse all the columns c=1,…,N and we 



will add the element A(LJ, c) to the list List(c). For every 

element added to a list List(c), we will also maintain a 

counter with the number of occurrences of this element in 

List(c) (e.g. by using a hash table HT(c) associated to each 

column, where the keys are the elements’ values and the 

values are the number of occurrences of the 

corresponding key). If, when adding a new element to 

List(c), this element has never occurred before in List(c), 

then its counter will be set to 1; otherwise, its counter will 

be incremented by 1. Thus, List(c) will contain all the 

distinct elements on the column c, between the rows LS 

and LJ. If |List(c)|>K (|List(c)| denotes the number of 

elements in List(c)), we will add no more element to 

List(c). Thus, the maximum number of elements in a list 

List(c) is bounded by min{M, K+1}. We will now traverse 

the columns from left to right, maintaining two pointers, 

CS and CD. We initialize CS=1 and CD=0. We will also 

maintain a list L with the distinct elements (and a hash 

table H with their numbers of occurrences) between the 

rows LS and LJ and the columns CS and CD. Initially, L 

(and H) will be empty. At every step i (i=1,…,N) we 

increment CD by 1 and add the elements in List(CD) to 

the list L; if an element x in List(CD) was not part of L, 

then we add it to L and set its number of occurrences (in 

H) to 1; otherwise, we increment the number of 

occurrences of the element x (in H). Then, while |L|>K, 

we will perform the following steps: (1) we delete from L 

the elements x in List(CS); if the number of occurrences 

of x (in H) is greater than 1, we decrement this number by 

1; otherwise, we remove x from L (and from H); (2) 

CS=CS+1. At the end of each step, if CS≤CD, then we 

have a submatrix B with at most K distinct elements, with 

the upper row LS, lower row LJ, left column CS and right 

column CD. We will compute the aggregate Bagg of the 

utilities of the submatrix B in O(1) time. For the sum 

aggregate function, we can use 4 prefix sum queries (see 

[5]) and for the max aggregate function, we can use 

multidimensional RMQ [5]. If all the utility values are 1, 

then Bagg is the area of the submatrix: Bagg=(LJ-

LS+1)·(CD-CS+1). We will set MaxAgg=max{MaxAgg, 

Bagg} (where MaxAgg=the maximum aggregate value 

found so far; initially, MaxAgg=0). Let’s analyze the time 

complexity of the presented algorithm. There are O(M
2·
N) 

insertion operations into the lists List(*). An insertion can 

be performed in O(1) time (if we use a normal linked list 

and a hash table for the number of occurrences and for 

maintaining pointers to the location of each element x in 

the list), or in O(log(min{M,K})) time if we use a 

balanced tree (both for the list and the number of 

occurrences). Then, we have O(M
2·

N·min{M,K}) addition 

and/or removal operations to/from the list L. Again, if we 

use a standard linked list (for L) together with a hash table 

(H) for the number of occurrences and for maintaining 

pointers to the locations of the elements x in L, the time 

complexity per operation is O(1). If we implement L as a 

balanced tree (which we use both as a “list” and for 

maintaining the number of occurrences), the time 

complexity is O(log(K)) (because the list L never contains 

more than 2·K+1 distinct elements). Thus, the best time 

complexity that we can achieve with the presented 

algorithm is O(M
2·
N·min{M,K}). 

 

8. Related Work 

 

Activity scheduling problems have been considered in 

many papers. Problems regarding personnel activity 

scheduling in multiple domains were considered in [1, 3, 

4, 6, 7, 10]. Pedestrian-route and activity scheduling 

theory and models were presented in [2]. Several greedy 

and dynamic programming algorithms for data transfer 

scheduling were presented in [8] and some efficient data 

structures were developed in [5, 9]. 

 

9. Conclusions and Future Work 

 

In this paper we considered several constrained activity 

scheduling problems in the time and space domains. For 

each problem we presented novel, efficient algorithmic 

solutions which compute optimal schedules. As future 

work, we intend to consider activity scheduling problems 

with more complex constraints, which will have more 

direct applications in practical settings. 
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