
HAL Id: hal-00468780
https://hal.science/hal-00468780

Submitted on 31 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Algorithms for Several Constrained Activity
Scheduling Problems in the Time and Space Domains

Madalina Andreica, Mugurel Ionut Andreica, Angela Andreica

To cite this version:
Madalina Andreica, Mugurel Ionut Andreica, Angela Andreica. Efficient Algorithms for Several Con-
strained Activity Scheduling Problems in the Time and Space Domains. Proceedings of the 33rd
American Romanian Academy of Arts and Sciences’ International Congress (ISBN: 978-2-553-01433-
8), Jun 2009, Sibiu, Romania. pp.59-63. �hal-00468780�

https://hal.science/hal-00468780
https://hal.archives-ouvertes.fr

EFFICIENT ALGORITHMS FOR SEVERAL CONSTRAINED ACTIVITY

SCHEDULING PROBLEMS IN THE TIME AND SPACE DOMAINS

Madalina Ecaterina Andreica

The Bucharest Academy of Economic Studies

madalina.andreica@gmail.com

Mugurel Ionut Andreica

Politehnica University of Bucharest

mugurel.andreica@cs.pub.ro

Angela Andreica
Commercial Academy Satu Mare

academiacomerciala@yahoo.com

Abstract: In this paper we consider several constrained activity scheduling problems in the time and space domains, like finding

activity orderings which optimize the values of several objective functions (time scheduling) or finding optimal locations where

certain types of activities will take place (space scheduling). We present novel, efficient algorithmic solutions for all the considered

problems, based on the dynamic programming and greedy techniques. In each case we compute exact, optimal solutions.

1. Introduction

Activity scheduling is an important aspect in various

domains, like business processes, industrial workflows,

distributed systems, and so on. Scheduling the activities

efficiently can bring multiple benefits, like minimizing

costs, maximizing profits and/or throughput or optimizing

the social welfare of the employees. In this paper we

consider several constrained time and space activity

scheduling problems, for which we present efficient

algorithms for computing optimal schedules. Although

the considered problems are mostly tackled from a

theoretical point of view, they have applications in some

of the domains mentioned above, particularly those

related to economic activities and computer science.

The rest of this paper is structured as follows. In

Sections 2-5 we present novel algorithmic solutions for

several activity scheduling problems over time. In

Sections 6 and 7 we consider two space scheduling

problems, where we need to find optimal locations or to

divide the existing space optimally. In Section 8 we

discuss related work and in Section 9 we conclude.

2. Scheduling K Activities over Time in order to

Maximize the Total Utility

We consider a sequence of N time moments. For each

time moment t (1≤t≤N), a value u(t) is known (which may

be both positive and negative), representing the utility

function if an activity is scheduled during a time interval

containing t. We want to schedule K activities during non-

overlapping time intervals (i.e. consisting of disjoint time

moments), such that the sum of the utilities of the time

moments during which an activity is scheduled is

maximum. Moreover, the time interval of the j
th

 activity

(1≤j≤K) in chronological order, must contain at least Lo(j)

and at most Up(j) time moments.

We will compute Smax(i,j)=the maximum sum of

utilities which can be obtained by scheduling j activities

during the first i time moments. We have Smax(0≤i≤N,

0)=0 and Smax(0, 1)=-∞ (if Lo(1)>0) or 0 (if Lo(1)=0);

Smax(0, j>1)=-∞ (if Lo(j)>0) or Smax(0, j-1) (if

Lo(j)=0). Smax(N, K) will be the maximum total utility

which can be achieved.

We will first consider the case when all the upper

bounds Up(j) are equal to N (1≤j≤K). For each j=1,…,K,

we will traverse, in order, all the time moments i=1,…,N.

We will consider that we computed the partial sums SP(*)

(SP(0)=0 and SP(1≤i≤N)=SP(i-1)+u(i)), such that we can

efficiently compute Sum(a,b)=the sum of the utilities

between the time moments a and b (Sum(a,b)=SP(b)-

SP(a-1)). Smax(i, j)=max{Smax(i-1, j), max{Sum(p,i)+

Smax(p-1, j-1) | max{1, i-Up(j)+1}≤p≤i-Lo(j)+1}}. As we

traverse the time moments i=1,…,N (for a fixed value of

j), we will maintain a maximum value Sbest. Initially,

Sbest=Smax(0,j-1)-SP(0). When we reach the time

moment i, we consider a candidate value Scand=Smax(i-

Lo(j), j-1)-SP(i-Lo(j)) and we set Sbest=max{Sbest,

Scand}. We will have Smax(i, j) = max{Smax(i-1, j),

Sbest+SP(i)}. This way, the case Up(j)=N (for all 1≤j≤K)

can be solved in O(N·K) time.

In order to solve the general case, we will proceed as

follows. When we compute the values Smax(*,j), we will

maintain a deque DQ, into which we will introduce

(value, moment) pairs. These pairs will be maintained

sorted decreasingly according to the value and

increasingly according to the moment. The functions

DQ.getFirst() and DQ.getLast() (DQ.removeFirst() and

DQ.removeLast()) will be used for retrieving (removing)

the first and last pair of (from) the deque (if DQ is not

empty). When we start computing the values Smax(*,j),

we will introduce into DQ the first pair (value=Smax(0,j-

1)-SP(0), moment=0). Then, we traverse the moments

i=1,…,N, in increasing order. When we reach a moment i,

we perform the following actions. While DQ.getFirst().

moment<i-Up(j), we call DQ.removeFirst(). Then, we

compute Scand=Smax(i-Lo(j),j-1)-SP(i-Lo(j)). While

DQ.getLast().value≤Scand, we call DQ.removeLast().

Afterwards, we add at the end of the deque the pair

(value=Scand, moment=i-Lo(j)). After this, we compute

Smax(i,j)=max{Smax(i-1,j), SP(i)+DQ.getFirst().value}.

The time complexity is O(N·K) in an amortized sense.

3. Constrained Scheduling of K Activities over Time in

order to Maximize the Total Utility

This problem is identical to the previous one, except that

every activity j (1≤j≤K) must necessarily contain the

special time moment p(j) (p(1)<…<p(K)). We notice that

the time moments in intervals of the form [p(j), p(j+1)-1]

(1≤j≤K) can be the rightmost time moment only of

activity j’s interval (we consider p(K+1)=N+1 and

p(0)=0). We will assign a(t)=j to every time moment t in

the interval [left(j)=p(j), right(j)=p(j+1)-1] (in O(N)

time). Then, we can use dynamic programming and

compute Smax(i)=the maximum sum of the utilities if the

first a(i) activities have been scheduled and the rightmost

moment of activity a(i)’s time interval is smaller than or

equal to i. We have Smax(0≤i≤p(1)-1)=0. Then, we will

compute all the values Smax(i) for the time moments i

with the same value of a(i)=j together, in increasing order

of j (j=1,…,K). Like before, we compute the partial sums

SP(*), with which we can evaluate Sum(a,b) in O(1) time.

We will first consider the case when all the values

Up(j)=N (i.e. there are no upper bounds). In this case,

when we reach the value j, we will compute the values

Vmax(t) (p(j-1)≤t≤p(j)-1). We have Vmax(p(j-1))=

Smax(p(j-1))-SP(p(j-1)) and Vmax(p(j-1)+1≤t≤p(j)-

1)=max{Vmax(t-1), Smax(t)-SP(t)}. Afterwards, we

consider all the values p(j)≤i≤p(j+1)-1, in increasing

order of i. If i-Lo(j)+1≤p(j-1) then Smax(i)=-∞ (if i=p(j))

or Smax(i-1) (if i>p(j)). Otherwise, let prev(i)=min{i-

Lo(j), p(j)-1}. If i=p(j) then Smax(i)=Vmax(prev(i))+SP(i)

else Smax(i)=max{Vmax(prev(i))+SP(i), Smax(i-1)}. This

case can be handled in O(N) time. If, instead, we have

Up(j)=Lo(j) (for every 1≤j≤K), then, when considering

the values p(j)≤i≤p(j+1)-1, we have: if (i-Lo(j)+1≤p(j-1))

or (i-Lo(j)+1>p(j)) then Smax(i)=-∞ (if i=p(j)) or Smax(i-

1) (if i>p(j)); otherwise: if (i=p(j)) then Smax(i)=Smax(i-

Lo(j))+Sum(i-Lo(j)+1, i) else Smax(i)=max{Smax(i-1),

Smax(i-Lo(j))+Sum(i-Lo(j)+1, i)}.

In order to handle the general case, we will proceed as

follows. When we compute the values Smax(i)

(p(j)≤i≤p(j+1)-1), we will maintain a deque DQ, into

which we will introduce (value, moment) pairs. These

pairs will be maintained sorted decreasingly according to

the value and increasingly according to the moment. We

will use the functions DQ.getFirst(), DQ.getLast(),

DQ.removeFirst() and DQ.removeLast() (defined in the

previous section). Based on these functions, we define the

function DQ.insert((val, mom)) as follows: (1) while DQ

is not empty and DQ.getLast().value≤val do

DQ.removeLast(); (2) add the pair (val, mom) at the end

of DQ. For each position i (where j=a(i)), we define

tlow(i)=max{i-Up(j), p(j-1)} and thigh(i)=min{i-Lo(j),

p(j)-1}. When we reach a new value of j, we empty the

deque DQ. Then, we consider all the time moments

tlow(p(j))≤t≤thigh(p(j)) and call DQ.insert((value=

Smax(t)-SP(t), moment=t)). Afterwards, if DQ is empty

then Smax(p(j))=-∞; otherwise, we set Smax(p(j))=

DQ.getFirst().value+SP(p(j)). For p(j)+1≤i≤p(j+1)-1 (in

increasing order of i), we perform the following actions:

(1) for every time moment t with thigh(i-1)+1≤t≤thigh(i)

we call DQ.insert((value=Smax(t)-SP(t), moment=t); (2)

while DQ is not empty and DQ.getFirst().moment<tlow(i)

do DQ.removeFirst(). If DQ is empty, then Smax(i)=

Smax(i-1); otherwise, Smax(i)=max{Smax(i-1),

DQ.getFirst().value}. The time complexity in this case is

linear (O(N)) in an amortized sense.

4. Scheduling the Largest Number of Activities

We consider N activities. Each activity i (1≤i≤N) has a

fixed duration l(i) and must be scheduled during l(i)

consecutive time moments. Moreover, each activity has a

special time moment p(i) which must be included within

its scheduled time interval. The activities must be

scheduled during non-overlapping time intervals;

however, the intervals may “touch” at their endpoints, but

must not intersect otherwise. Because of the constraints, it

may not be possible to schedule all the activities. Thus,

we want to maximize the number of scheduled activities.

We will use a greedy algorithm. First, we sort the

activities in increasing order of their special time

moments. Thus, we will consider that p(1)≤p(2)≤...≤p(N).

We will traverse the activities in this order, maintaining a

stack S of the activities which have been scheduled so far

(the activities scheduled more recently are closer to the

top of the stack). Initially, we schedule the first activity,

during the interval [p(1)-l(1), p(1)] (and push the activity

together with its interval on the stack). When we reach the

activity i≥2, we have [x,y], the interval of the activity at

the top of the stack. If p(i)≥y, then we schedule activity i

in the interval [u=max{p(i)-l(i), y}, v=u+l(i)]. Then, we

push the activity i on the stack, together with the interval

[u,v] during which it was scheduled. If, instead, we have

p(i)<y and l(i)<y-x, then we remove the activity at the top

of the stack S (we unschedule it). Let [x’,y’] be the

interval during which the (new) activity at the top of S is

scheduled. This time we have y’<p(i) and we can

schedule activity i during the interval [u’=max{p(i)-l(i),

y’}, v’=u’+l(i)]; afterwards, we push the activity i and the

interval [u’,v’] during which it was scheduled on top of

the stack. If we have p(i)<y and l(i)≥y-x, then we do not

schedule the activity i. The time complexity of this

algorithm is O(N·log(N)) for sorting the activities and

O(N) for traversing the activities in the sorted order and

scheduling them.

5. Lexicographically Optimal Activity Scheduling

We consider a sequence of N time moments. For each

time moment t (1≤t≤N), a value u(t) is known,

representing the utility function if no activity is scheduled

during a time interval containing t. We have a set of K

activities, each of which consists of x consecutive time

moments. We want to schedule the K activities during

non-overlapping time intervals (i.e. containing disjoint

time moments), such that the chronological sequence of

utilities of the time moments during which no activity is

scheduled is lexicographically minimum. To be more

precise, if tm(1), …, tm(N-K·x) are the moments when no

activity is scheduled (and tm(i)<tm(i+1) for 1≤i≤N-K·x-

1), then the sequence u(tm(1)), …, u(tm(N-K·x)) is

lexicographically minimum.

A simple solution is the following. We will maintain a

counter CK with the number of already scheduled

activities and a counter CC with the number of saved time

moments (initially, CK=CC=0). We will also maintain a

counter pos, meaning that all the time moments on the

positions 1, …, pos-1 have already been considered (they

are either part of a scheduled activity or are saved);

initially, pos=1. While (CK<K) and (CC<N-K·x), we will

execute the following actions. We will select the next

time moment to be saved. This is one of the moments pos,

pos+x, …, pos+i·x (0≤i≤K-CK). We will choose the time

moment t for which u(t) is minimum and, in case of ties,

we will choose the smallest such moment t. Let’s assume

that we selected the time moment pos+j·x. We will

increment CK by j (as j more activities are scheduled in

the intervals [pos, pos+x-1], …, [pos+(j-1)x, pos+j·x-1]),

we will increment CC by 1 and we will set pos=

pos+j·x+1. This algorithm can be easily implemented in a

time complexity of O(N·K). However, when K is too

large, this complexity is not satisfactory. We will reduce

the time complexity down to O(N), as follows. We will

maintain a double-ended queue (deque) DQ(r) for each

value r=0,1,...,x-1. We will gradually introduce in DQ(r)

(0≤r≤x-1) the utilities of the time moments t (together

with their associated time moments), with t mod x=r.

Initially, every deque is empty. Each deque will store

(utility, moment) pairs and provides the same functions

mentioned in the previous sections. When we need to

compute the minimum utility value among all the time

moments pos+i·x (0≤i≤K-CK), we will perform the

following actions in DQ(r=pos mod x). As long as DQ(r)

is not empty and DQ(r).getFirst().moment<pos, we will

remove the first pair of the deque. If the deque is now

empty, we will add in DQ(r) the pair (u(pos), pos) and we

will set pos’=pos+x; otherwise, we set pos’=

DQ(r).getLast().moment+x. While pos’≤pos+(K-CK)·x

do: (1) while DQ(r) is not empty and DQ(r).getLast().

utility>u(pos’), we remove the last pair from DQ(r); (2)

we add the pair (u(pos’), pos’) at the end of DQ(r); (3)

pos’=pos’+x. At the end of this loop, the first pair of

DQ(r) contains the smallest utility of a time moment

within the required set and the associated time moment

(and, in case of ties, the smallest such time moment).

After finding the time moment which will be saved, we

proceed as in the previously described algorithm. By

using the deques, the amortized time complexity is O(N).

6. Partitioning a Convex Polygon into K Vertex-

Disjoint Parts with Maximum Total Area/Perimeter

In this section we consider the following partitioning

problem. Given a convex polygon with n vertices

(numbered from 0 to n-1), we want to partition it into K

vertex-disjoint parts with maximum total area (or

weighted perimeter). Each part must be a convex polygon

whose vertices are a subset of the polygon’s vertices.

Furthermore, no two of the K parts are allowed to touch.

This implies, among other things, that no two parts are

allowed to share a vertex of the polygon. We also impose

another condition. Each part is allowed to have at most

B≥0 edges which are not also edges of the convex

polygon. For K=1 (and any value of B), the optimal

solution consists of the whole polygon.

For B≥1 (and any K≥2), we will compute a table

Amax(i,j,0≤p≤K)=the maximum total area (weighted

perimeter) obtained if we partition the sub-polygon

formed from the interval of vertices [i,j] into p parts. An

interval of vertices [i,j] is composed of the vertices i, i+1,

…, j-1, j (addition and subtraction are considered modulo

n). It should be obvious that the intervals [i,j] and [j,i] are

different. We have Amax(i,j,0)=0 and Amax(i,j,1)= A(i,j).

We denote by A(i,j) the area (weighted perimeter) of the

sub-polygon composed of the interval of vertices [i,j]. We

will pre-compute all of these values in the beginning, in

O(n
2
) total time. We have A(i,i)=0, A(i,i+1)=0 (for area)

or w(i,i+1) (for perimeter) and A(i,i+q)=A(i,i+q-1)+

ATri(i,i+q-1,i+q)-(if (q>2) and (case=perimeter) then

w(i,i+q-1) else 0) (2≤q≤n-1). ATri(a,b,c) denotes either

the area of the triangle whose vertices are the polygon’s

vertices numbered a, b and c, or the sum w(a,c)+w(b,c)

(for the perimeter case); w(x,y) is the weight (e.g. length)

of the segment joining the vertices x and y of the polygon.

In order to compute Amax(i,j,p>1), we will consider

several possibilities. First of all, Amax(i+1,j,p) and

Amax(i,j-1,p) are good candidates for Amax(i,j,p) (when

vertex i or vertex j do not belong to any of the p parts).

The second possibility is to have vertex i and vertex j two

vertices of two different parts. In order to do this, we

consider every pair of tuples (i, s, q) and (s+1, j, p-q)

(i≤s<j; 0≤q≤p) and compute the maximum value

TMAX(i,j,p)=max{Amax(i,s,q)+Amax(s+1,j,p-q)} over all

the pairs of tuples. TMAX(i,j,p) is a candidate for

Amax(i,j,p). The third possibility consists of having both

vertices i and j as two vertices of the p
th

 part. The p
th

 part

is allowed to have at most emax=B-1 edges which are not

also edges of the polygon; when (i,j) is an edge of the

polygon (j=i+n-1), the p
th

 part may have up to emax=B

edges which are not also edges of the polygon. We will

consider every value e (1≤e≤emax) and, for each e, we

consider every set of e pairs (a1,b1), (a2,b2), …, (ae,be)

with the following properties: i≤a1; be≤j; bl-al≥2 (1≤l≤e);

bl≤al+1 (1≤l≤e-1). Each pair (al,bl) denotes one of the

edges of the p
th

 part which is not also an edge of the

polygon. The area (weighted perimeter) of the p
th

 part, as

defined by the set of e pairs, is AP(e, (a1,b1), …,

(ae,be))=A(i,j)-(A(a1,b1)+…+A(ae,be)) (for the area case)

or A(i,j)-(A(a1,b1)+…+A(ae,be))+(w(a1,b1)+…+w(ae,be)).

For each value of e and set of e pairs (al,bl) (1≤l≤e), we

need to consider every set of e numbers q1, q2, …, qe, with

the following properties: ql≥0 (1≤l≤e); q1+q2+…+ql=p-1.

Then, the value AP(e, (a1,b1), …, (ae,be))+Amax(a1+1, b1-

1, q1)+…+Amax(ae+1,be-1,qe) is a candidate value for

Amax(i,j,p). We will set Amax(i,j,p) to the maximum of

all the candidate values (or -∞ if no candidate value

exists). The optimal value of the total area of the K

vertex-disjoint parts is max{Amax(i,j,K)} and the time

complexity of this approach is O(n
max{2·B+2,3}

·K
max{B+2,2}

).

7. Maximum Utility Rectangular Submatrix with a

Bounded Number of Distinct Heights

We have a terrain modelled as an M-by-N matrix A (with

M≤N). Each value of the matrix represents the height of

the corresponding terrain zone. Moreover, for each

position (i,j) in the matrix we have a utility value u(i,j)≥0.

We want to find a rectangular submatrix B containing at

most K≤M·N distinct values (i.e. K different heights), such

that the aggregate (sum or max) of the utility values of the

positions in the submatrix B is maximum.

We will consider every row LS=1,...,M as a possible

upper row for the submatrix B. For each value of LS we

will create a list List(c) for every column c (1≤c≤N).

Initially, these lists will be empty. Then, we will consider,

one at a time, every row LJ=LS, LS+1, ..., M as a possible

lower row for the submatrix B. Once the row LJ is also

fixed, we will traverse all the columns c=1,…,N and we

will add the element A(LJ, c) to the list List(c). For every

element added to a list List(c), we will also maintain a

counter with the number of occurrences of this element in

List(c) (e.g. by using a hash table HT(c) associated to each

column, where the keys are the elements’ values and the

values are the number of occurrences of the

corresponding key). If, when adding a new element to

List(c), this element has never occurred before in List(c),

then its counter will be set to 1; otherwise, its counter will

be incremented by 1. Thus, List(c) will contain all the

distinct elements on the column c, between the rows LS

and LJ. If |List(c)|>K (|List(c)| denotes the number of

elements in List(c)), we will add no more element to

List(c). Thus, the maximum number of elements in a list

List(c) is bounded by min{M, K+1}. We will now traverse

the columns from left to right, maintaining two pointers,

CS and CD. We initialize CS=1 and CD=0. We will also

maintain a list L with the distinct elements (and a hash

table H with their numbers of occurrences) between the

rows LS and LJ and the columns CS and CD. Initially, L

(and H) will be empty. At every step i (i=1,…,N) we

increment CD by 1 and add the elements in List(CD) to

the list L; if an element x in List(CD) was not part of L,

then we add it to L and set its number of occurrences (in

H) to 1; otherwise, we increment the number of

occurrences of the element x (in H). Then, while |L|>K,

we will perform the following steps: (1) we delete from L

the elements x in List(CS); if the number of occurrences

of x (in H) is greater than 1, we decrement this number by

1; otherwise, we remove x from L (and from H); (2)

CS=CS+1. At the end of each step, if CS≤CD, then we

have a submatrix B with at most K distinct elements, with

the upper row LS, lower row LJ, left column CS and right

column CD. We will compute the aggregate Bagg of the

utilities of the submatrix B in O(1) time. For the sum

aggregate function, we can use 4 prefix sum queries (see

[5]) and for the max aggregate function, we can use

multidimensional RMQ [5]. If all the utility values are 1,

then Bagg is the area of the submatrix: Bagg=(LJ-

LS+1)·(CD-CS+1). We will set MaxAgg=max{MaxAgg,

Bagg} (where MaxAgg=the maximum aggregate value

found so far; initially, MaxAgg=0). Let’s analyze the time

complexity of the presented algorithm. There are O(M
2·
N)

insertion operations into the lists List(*). An insertion can

be performed in O(1) time (if we use a normal linked list

and a hash table for the number of occurrences and for

maintaining pointers to the location of each element x in

the list), or in O(log(min{M,K})) time if we use a

balanced tree (both for the list and the number of

occurrences). Then, we have O(M
2·

N·min{M,K}) addition

and/or removal operations to/from the list L. Again, if we

use a standard linked list (for L) together with a hash table

(H) for the number of occurrences and for maintaining

pointers to the locations of the elements x in L, the time

complexity per operation is O(1). If we implement L as a

balanced tree (which we use both as a “list” and for

maintaining the number of occurrences), the time

complexity is O(log(K)) (because the list L never contains

more than 2·K+1 distinct elements). Thus, the best time

complexity that we can achieve with the presented

algorithm is O(M
2·
N·min{M,K}).

8. Related Work

Activity scheduling problems have been considered in

many papers. Problems regarding personnel activity

scheduling in multiple domains were considered in [1, 3,

4, 6, 7, 10]. Pedestrian-route and activity scheduling

theory and models were presented in [2]. Several greedy

and dynamic programming algorithms for data transfer

scheduling were presented in [8] and some efficient data

structures were developed in [5, 9].

9. Conclusions and Future Work

In this paper we considered several constrained activity

scheduling problems in the time and space domains. For

each problem we presented novel, efficient algorithmic

solutions which compute optimal schedules. As future

work, we intend to consider activity scheduling problems

with more complex constraints, which will have more

direct applications in practical settings.

10. References

[1] Beddoe, G. R., Petrovic, S., “Selecting and Weighting

Features Using a Genetic Algorithm in a Case-Based

Reasoning Approach to Personnel Rostering”, European

Journal of Operational Research, vol. 175, p. 649, 2006.

[2] Hoogendoorn, S. P., Bovy, P. H. L., “Pedestrian route-

choice and activity scheduling theory and models”,

Transportation Research Part B: Methodological, vol. 38

(2), p. 169, 2004.

[3] Burke, E. K., De Causmaecker, P., Vanden Berghe,

G., “A Hybrid Tabu Search Algorithm for the Nurse

Rostering Problem”, Simulated Evolution and Learning,

Springer Lecture Notes in Artificial Intelligence, vol.

1585, p. 187, 1999.

[4] Burke, E. K., Curtois, T., Post, G., Qu, R., Veltman,

B., “A Hybrid Heuristic Ordering and Variable

Neighbourhood Search for the Nurse Rostering Problem”,

Technical Report NOTTCS-TR-2005-3, University of

Nottingham, 2005.

[5] Andreica, M. E., Andreica, M. I., Cataniciu, N.,

“Multidimensional Data Structures and Techniques for

Efficient Decision Making”, Proc. of the WSEAS Intl.

Conf. on Math. and Comp. in Business and Econ., 2009.

[6] Alfieri, A., Kroon, L., van de Veelde, S., “Personnel

scheduling in a complex logistic system: a railway

application case”, Journal of Intelligent Manufacturing,

vol. 18, p. 223, 2007.

[7] Millar, H. H., Kiragu, M., “Cyclic and non-cyclic

scheduling of 12 h shift nurses by network

programming”, European Journal of Operational

Research, vol. 104, p. 582, 1998.

[8] Andreica, M. I., Tapus, N., "High Multiplicity

Scheduling of File Transfers with Divisible Sizes on

Multiple Classes of Paths", Proc. of the IEEE Intl. Symp.

on Consumer Electronics, p. 516, 2008.

[9] Andreica, M. I., Tapus, N., "Efficient Data Structures

for Online QoS-Constrained Data Transfer Scheduling",

Proc. of the IEEE Intl. Symp. on Parallel and Distributed

Computing (ISPDC), p. 285, 2008.

[10] Andreica, M. I., Andreica, R., Andreica, A.,

“Minimum Dissatisfaction Personnel Scheduling”, Proc.

of the 32
nd

 ARA Congress, p. 459, 2008.

