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This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition.

Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained by Zhang and Zuazua and by Duyckaerts. We prove, without a Geometric Control Condition, a logarithmic decay of the energy.

Introduction and results

In this work, we are interested in a linearized model for fluid-structure interaction introduced by Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] and Duyckaerts in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]. This model consists of a wave equation and a heat equation coupled through an interface by suitable transmission conditions. Our purpose is to analyze the stability of this system and therefore to determine the decay rate of the energy of solutions as t → ∞.

Let Ω ⊂ R n be a bounded domain with a smooth boundary Γ = ∂Ω. Let Ω 1 and Ω 2 be two bounded open sets with smooth boundary such that Ω 1 ⊂ Ω and Ω 2 = Ω\Ω 1 . We denote by γ = ∂Ω 1 ∩ ∂Ω 2 the interface, γ ⊂⊂ Ω, Γ j = ∂Ω j \γ, j = 1, 2, and we suppose that Γ 2 = ∅. Let ∂ n and ∂ n the unit outward normal 1 vectors of Ω 1 and Ω 2 respectively. We recall that ∂ n = -∂ n on γ.

                   ∂ t u -u = 0 in (0, ∞) × Ω 1 , ∂ 2 t v -v = 0 in (0, ∞) × Ω 2 , u = 0 on (0, ∞) × Γ 1 , v = 0 on (0, ∞) × Γ 2 , u = ∂ t v, ∂ n u = -∂ n v on (0, ∞) × γ, u| t=0 = u 0 ∈ L 2 (Ω 1 ) in Ω 1 , v| t=0 = v 0 ∈ H 1 (Ω 2 ), ∂ t v| t=0 = v 1 ∈ L 2 (Ω 2 ) in Ω 2 .
(1)

In this system, u may be viewed as the velocity of fluid; while v and ∂ t v represent respectively the displacement and velocity of the structure. That's why the transmission condition u = ∂ t v is considered as the natural condition. For the discussion of this model, we refer to [START_REF] Rauch | Polynomial decay for a hyperbolicparabolic coupled system[END_REF] and [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF].

System [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] is introduced by Zhang and Zuazua [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF]. The same system is considered by Rauch, Zhang and Zuazua in [START_REF] Rauch | Polynomial decay for a hyperbolicparabolic coupled system[END_REF] but for the simplified transmission condition u = v on the interface instead of u = ∂ t v. They prove, under a suitable Geometric Control Condition (GCC) (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]), a polynomial decay result. Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] prove, without the GCC, a logarithmic decay result. Duyckaerts in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF] improves these results.

For system (1), Zhang and Zuazua in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], prove the lack of uniform decay and, under the GCC, a polynomial decay result. Without geometric conditions, they analyze the difficulty to prove the logarithmic decay result. This difficulty is mainly due to the lack of regularity gain of the wave component v near the interface γ (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], Remark 19) which means that the embedding of the domain D(A) of the dissipative operator in the energy space is not compact (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], Theorem 1). In [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], Duyckaerts improves the polynomial decay result under the GCC and confirms the same obstacle to proving the logarithmic decay for solution of (1) without the GCC. In this paper we are interested in this problem.

There is an extensive literature on the stabilization of PDEs and on the Logarithmic decay of the energy ( [START_REF] Bellassoued | Distribution of resonances and decay rate of the local energy for the elastic wave equation[END_REF], [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF] [START_REF] Bellassoued | Decay of solutions of the elastic wave equation with a localized dissipation[END_REF], [START_REF] Lebeau | Équation des ondes amorties[END_REF], [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF] and the references cited therein) and this paper uses part of the idea developed in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF].

Here we recall the mathematical framework for this problem (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF]). Define the energy space H and the operator A on H with domain D(A) by

H = F = (f 1 , f 2 , f 3 ) ∈ L 2 (Ω 1 ) × H 1 Γ 2 (Ω 2 ) × L 2 (Ω 2 )
where H 1 Γ 2 (Ω 2 ) is defined as the space

H 1 Γ 2 (Ω 2 ) = f ∈ H 1 (Ω 2 ), f | Γ 2 = 0 , AF = ( f 1 , f 3 , f 2 ) D(A) = {F ∈ H, f 1 ∈ H 1 (Ω 1 ), f 1 ∈ L 2 (Ω 1 ), f 3 ∈ H 1 Γ 2 (Ω 2 ), f 2 ∈ L 2 (Ω 2 ), f 1 | γ = f 3 | γ , ∂ n f 1 | γ = -∂ n f 2 | γ }.
Thus system (1) may be rewritten as an abstract cauchy problem in H as

   ∂ t U (t) = AU (t), t > 0, U (0) = U 0 , (2) 
where U (t) = (u(t), v(t), ∂ t v(t)) and U 0 = (u 0 , v 0 , v 1 ). The operator A is the generator of a strongly continuous semi-group (see [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF], Theorem 1).

In our case, i.e. when Γ 2 = ∅, the energy of any solution U = (u, v, ∂ t v) of ( 2) is defined as one half of the square of a norm on H and we have

E(U (t)) = 1 2 Ω 1 |u(t)| 2 dx + Ω 2 |∂ t v(t)| 2 dx + Ω 2 |∇v(t)| 2 dx .
When Γ 2 = ∅, we refer to [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF] and [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]. By means of the classical energy method, we have

d dt E(U (t)) = - Ω 1 |∇u| 2 dx.
Therefore the energy of ( 2) is decreasing with respect to t, the dissipation coming from the heat component u. Our main goal is to prove a logarithmic decay without the GCC assumption.

As Duyckaerts [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF] did for the simplified model, the idea is, first, to use a known result of Burq (see [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF]) which links, for dissipative operators, logarithmic decay to resolvent estimates with exponential loss; secondly to prove, following the work of Bellassoued in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF], a new Carleman inequality near the interface γ.

The main results are the following theorem 1.1 concerning the resolvent and theorem 1.2 concerning the decay.

Theorem 1.1 There exists C > 0, such that for every µ ∈ R, we have

(A -iµ) -1 L(H) ≤ Ce C|µ| . (3) 
Theorem 1.2 There exists C > 0, such that for all U 0 ∈ D(A), we have

E(U (t)) ≤ C log(t + 2) U 0 D(A) . (4) 
Remark 1.1 To simplify, we assumed that Γ 2 = ∅. When Γ 2 is empty, the constant functions (0, c, 0), where c is arbitrary, are solutions of system [START_REF] Bellassoued | Distribution of resonances and decay rate of the local energy for the elastic wave equation[END_REF]. Therefore it is necessary to consider the decay of solutions orthogonal to (0, c, 0) in H (for more details we refer to theorem 1 in [START_REF] Zhang | Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction[END_REF]).

Burq in ( [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF], Theorem 3) and Duyckaerts in ( [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF], Section 7) show that to prove Theorem 1.2 it suffices to prove Theorem 1.1.

The strategy of the proof of Theorem 1.1, when µ = 0, is the following. A new Carleman estimate proved near the interface γ implies an interpolation inequality given by Theorem 2.2. Theorem 2.2 implies Theorem 2.1 which gives an estimate of the wave component by the heat one and which is the key point of the proof of Theorem 1.1.

The rest of this paper is organized as follows. In section 2, we prove Theorem 1.1, for µ = 0, from Theorem 2.1 and we explain how Theorem 2.2 implies Theorem 2.1. For µ = 0, the proof of Theorem 1.1 is given in Appendix C. In section 3, we begin by stating the new Carleman estimate and we explain how this estimate implies Theorem 2.2. Then we give the proof of this Carleman estimate. Section 4 is devoted to the proof of important estimates, stated in Theorem 3.2, in the proof of this Carleman estimate. Appendices A and B are devoted to prove some technical results used along the paper.
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Proof of Theorem 1.1

For µ = 0, the proof of Theorem 1.1 is given in Appendix C. For µ = 0, we start by stating Theorem 2.1. Then we will explain how this Theorem implies Theorem 1.1. Finally, we give the proof of Theorem 2.1.

Let µ 0 > 0, small enough, for any µ such that |µ| ≥ µ 0 , we assume

F = (A -iµ)U, U = (u 0 , v 0 , v 1 ) ∈ D(A), F = (f 0 , g 0 , g 1 ) ∈ H (5) 
The equation ( 5) yields

   ( -iµ)u 0 = f 0 in Ω 1 , ( + µ 2 )v 0 = g 1 + iµg 0 in Ω 2 , v 1 = g 0 + iµv 0 in Ω 2 , (6) 
with the following boundary conditions 6) and [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]. Then there exist constants C > 0, c 1 > 0 and µ 0 > 0 such that for any |µ| ≥ µ 0 we have the following estimate

   u 0 | Γ 1 = 0, v 0 | Γ 2 = 0 u 0 -iµv 0 = g 0 | γ , ∂ n u 0 -∂ n v 0 = 0| γ . (7) Theorem 2.1 Let U = (u 0 , v 0 , v 1 ) ∈ D(A) satisfy equation (
v 0 2 H 1 (Ω 2 ) ≤ Ce c 1 |µ| f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) . (8) 
Moreover, from the first equation of system (6), we have

Ω 1 (-+ iµ)u 0 u 0 dx = ∇u 0 2 L 2 (Ω 1 ) + iµ u 0 2 L 2 (Ω 1 ) - γ ∂ n u 0 u 0 dσ. Since u 0 | γ = g 0 + iµv 0 and ∂ n u 0 = -∂ n v 0 , then Ω 1 (-+ iµ)u 0 u 0 dx = ∇u 0 2 L 2 (Ω 1 ) + iµ u 0 2 L 2 (Ω 1 ) -iµ γ ∂ n v 0 v 0 dσ + γ ∂ n v 0 g 0 dσ. (9)
From the second equation of system [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF] and multiplying by (-iµ), we obtain

iµ Ω 2 ( + µ 2 )v 0 v 0 dx = -iµ ∇v 0 2 L 2 (Ω 2 ) + iµ 3 v 0 2 L 2 (Ω 2 ) + iµ γ ∂ n v 0 v 0 dσ. ( 10 
)
Adding ( 9) and ( 10), we obtain

Ω 1 (-+ iµ)u 0 u 0 dx + iµ Ω 2 ( + µ 2 )v 0 v 0 dx = iµ u 0 2 L 2 (Ω 1 ) + ∇u 0 2 L 2 (Ω 1 ) -iµ ∇v 0 2 L 2 (Ω 2 ) + iµ 3 v 0 2 L 2 (Ω 2 ) + γ ∂ n v 0 g 0 dσ.
Taking the real part of this expression, we get

∇u 0 2 L 2 (Ω 1 ) ≤ ( -iµ)u 0 L 2 (Ω 1 ) u 0 L 2 (Ω 1 ) + ( + µ 2 )v 0 L 2 (Ω 2 ) v 0 L 2 (Ω 2 ) + γ ∂ n v 0 g 0 dσ .
(11) Recalling that v 0 = g 1 + iµg 0 -µ 2 v 0 and using the trace lemma (Lemma 3.4 in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]), we obtain

∂ n v 0 H -1 2 (γ) ≤ C µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 )
. Combining with [START_REF] Rauch | Polynomial decay for a hyperbolicparabolic coupled system[END_REF], we obtain 12) Now we use this result proved in Appendix A.

∇u 0 2 L 2 (Ω 1 ) ≤ f 0 L 2 (Ω 1 ) u 0 L 2 (Ω 1 ) + g 1 + iµg 0 L 2 (Ω 2 ) v 0 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ) . Then ∇u 0 2 L 2 (Ω 1 ) ≤ C f 0 2 L 2 (Ω 1 ) + u 0 2 L 2 (Ω 1 ) + C g 1 + iµg 0 2 L 2 (Ω 2 ) + v 0 2 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ) .(
Lemma 2.1 Let O be a bounded open set of R n . Then for all µ 0 > 0, there exists C > 0 such that for u and f satisfying ( -iµ)u = f in O, |µ| ≥ µ 0 , we have the following estimate

u H 1 (O) ≤ C ∇u L 2 (O) + f L 2 (O) . (13) 
Using this lemma and [START_REF] Robbiano | Fonction de coût et contrôle des solutions des équations hyperboliques[END_REF], we obtain, for small enough

u 0 2 H 1 (Ω 1 ) ≤ C f 0 2 L 2 (Ω 1 ) + C g 1 + iµg 0 2 L 2 (Ω 2 ) + v 0 2 L 2 (Ω 2 ) + µ 2 v 0 H 1 (Ω 2 ) + g 1 + iµg 0 L 2 (Ω 2 ) g 0 H 1 2 (γ) .
Then there exists c 3 >> c 1 such that

u 0 2 H 1 (Ω 1 ) ≤ C f 0 2 L 2 (Ω 1 ) + e -c 3 |µ| v 0 2 H 1 (Ω 2 ) + C e -c 3 |µ| g 1 + iµg 0 2 L 2 (Ω 2 ) + e c 3 |µ| g 0 2 H 1 (Ω 2 )
. ( 14) Plugging ( 14) in [START_REF] Lebeau | Équation des ondes amorties[END_REF], we obtain, for small enough

v 0 2 H 1 (Ω 2 ) ≤ Ce c|µ| f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . (15) 
Combining ( 14) and (15), we obtain

u 0 2 H 1 (Ω 1 ) ≤ Ce c|µ| f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . (16) 
Recalling that v 1 = g 0 + iµv 0 and using (15), we obtain

v 1 2 H 1 (Ω 2 ) ≤ Ce c|µ| f 0 2 L 2 (Ω 1 ) + g 0 2 H 1 (Ω 2 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) . (17) 
Combining (15), ( 16) and (17), we obtain Theorem 1.1.

Proof of Theorem 2.1

Estimate (8) is the consequence of two important results. The first one is a known result proved by Lebeau and Robbiano in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and the second one is given by Theorem 2.2 and proved in section 3. Let 0 < 1 < 2 and V j , j = 1, 2, such that V j = {x ∈ Ω 2 , d(x, γ) < j }.

Recalling that ( + µ 2 )v 0 = g 1 + iµg 0 , then for all D > 0, there exists C > 0 and ν ∈]0, 1[ such that we have the following estimate (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF])

v 0 H 1 (Ω 2 \V 1 ) ≤ Ce D|µ| v 0 1-ν H 1 (Ω 2 ) g 1 + iµg 0 L 2 (Ω 2 ) + v 0 H 1 (V 2 ) ν (18) 
Moreover we have the following result proved in section 3.

Theorem 2.2 There exist C > 0, 2 > 0 and µ 0 > 0 such that for any |µ| ≥ µ 0 , for all k 2 > 0, there exists k 1 > 0 such that we have the following estimate

v 0 2 H 1 (V 2 ) ≤ Ce k 1 |µ| f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) + Ce -k 2 |µ| v 0 2 H 1 (Ω 2 ) . (19) 
Combining ( 18) and (19), we obtain

v 0 2 H 1 (Ω 2 \V 2 ) ≤ C v 0 2 H 1 (Ω 2 ) + C 1-ν ν e 2 D ν |µ| g 1 + iµg 0 2 L 2 (Ω 2 ) + C 1-ν ν e (2 D ν -k 2 )|µ| v 0 2 H 1 (Ω 2 ) + C 1-ν ν e (2 D ν +k 1 )|µ| f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) .(20)
Adding ( 19) and (20), we obtain

v 0 2 H 1 (Ω 2 ) ≤ C v 0 2 H 1 (Ω 2 ) + C e 2 D ν g 1 + iµg 0 2 L 2 (Ω 2 ) + C e (2 D ν -k 2 )|µ| v 0 2 H 1 (Ω 2 ) +C e (2 D ν +k 1 )|µ| f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 )
.

We fixe small enough and k 2 such that 2 D ν k 2 , then there exists µ 0 > 0 such that for any |µ| ≥ µ 0 , we obtain (8).

The Carleman estimate and its consequence

In this part, we prove the new Carleman estimate and Theorem 2.2 which is a consequence of this estimate.

Statement of the Carleman estimate

In this subsection we state the Carleman estimate which is the starting point of the proof of the main result. We begin by giving some notations and definitions used in the sequel.

Let τ be a positive real number such that τ ≥ C 0 |µ|, C 0 > 0. We define the Sobolev spaces with a parameter τ , H s τ by

u(x, τ ) ∈ H s τ ⇐⇒ ξ, τ s u(ξ, τ ) ∈ L 2 , ξ, τ 2 = |ξ| 2 + τ 2 ,
where u denoted the partial Fourier transform with respect to x.

For a differential operator

P (x, D, τ, µ) = |α|+k+j≤m a α,k (x)µ k τ j D α ,
we denote the associated symbol by

p(x, ξ, τ, µ) = |α|+k+j≤m a α,k (x)µ k τ j ξ α .
The class of symbols of order m is defined by

S m τ = p(x, ξ, τ, µ) ∈ C ∞ , D α x D β ξ p(x, ξ, τ, µ) ≤ C α,β ξ, τ m-|β|
and the class of tangential symbols of order m by

T S m τ = p(x, ξ , τ, µ) ∈ C ∞ , D α x D β ξ p(x, ξ , τ, µ) ≤ C α,β ξ , τ m-|β| .
We denote by O m (resp. T O m ) the set of pseudo-differential operators P = op(p), p ∈ S m τ (resp. T S m τ ) and by σ(P ) the principal symbol of P . We shall frequently use the symbol Λ = ξ , τ = (|ξ

| 2 + τ 2 ) 1 2 .
We use the following Gårding estimate: if p ∈ T S 2 τ satisfies for C 0 > 0, p(x, ξ , τ

) + p(x, ξ , τ ) ≥ C 0 Λ 2 , then ∃ C 1 > 0, ∃ τ 0 > 0, ∀τ > τ 0 , ∀u ∈ C ∞ 0 (K), Re(P (x, D , τ, µ)u, u) ≥ C 1 op(Λ)u 2 L 2 . ( 21 
) Let u = (u 0 , v 0 ) satisfy the equation        -( + µ)u 0 = f 1 in Ω 1 , -( + µ 2 )v 0 = f 2 in Ω 2 , op(B 1 )u = u 0 -iµv 0 = e 1 on γ, op(B 2 )u = ∂ n u 0 -∂ n v 0 = e 2 onγ, (22) 
We will proceed like Bellassoued in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF], we will reduce the problem of transmission to a diagonal system defined only on one side of the interface with boundary conditions.

Let

x = (x , x n ) ∈ R n-1 × R.
In a neighborhood W ⊂ R n of (0, 0), we use normal geodesic coordinates (we can assume W symmetric with respect to x n → -x n ). We denote

Θ 2 = {x ∈ R n , x n > 0} ∩ W, and Θ 1 = {x ∈ R n , x n < 0} ∩ W.
The Laplacian on Θ 2 is written in the form

= -A 2 (x, D) = -D 2 xn + R(+x n , x , D x ) .
The Laplacian on Θ 1 can be identified locally to an operator in Θ 2 given by

= -A 1 (x, D) = -D 2 xn + R(-x n , x , D x ) .
We denote the operator, with C ∞ coefficients defined in Θ 2 , by

A(x, D) = diag A 1 (x, D x ), A 2 (x, D x )
and the tangential operator by

R(x, D x ) = diag R(-x n , x , D x ), R(+x n , x , D x ) = diag R 1 (x, D x ), R 2 (x, D x ) .
The principal symbol of the differential operator A(x, D) satisfies σ(A) = ξ 2 n + r(x, ξ ), where r(x, ξ ) = diag r 1 (x, ξ ), r 2 (x, ξ ) = σ(R(x, D x )) and the quadratic form r j (x, ξ ), j = 1, 2, satisfies

∃ C > 0, ∀(x, ξ ), r j (x, ξ ) ≥ C |ξ | 2 , j = 1, 2.
We denote P (x, D) the matrix operator with C ∞ coefficients defined in Θ 2 , by

P (x, D) = diag(P 1 (x, D), P 2 (x, D)) = A 1 (x, D) -µ 0 0 A 2 (x, D) -µ 2 . Let ϕ(x) = diag(ϕ 1 (x), ϕ 2 (x)), with ϕ j , j = 1, 2, are C ∞ functions in Θ 2 .
For τ large enough, we define the operator

A(x, D, τ ) = e τ ϕ A(x, D)e -τ ϕ
where the principal symbol of A(x, D, τ ) is given by

σ(A) = ξ n + iτ ∂ϕ ∂x n 2 + r x, ξ + iτ ∂ϕ ∂x ∈ S 2 τ . Let Q2,j = 1 2 (A j + A * j ), Q1,j = 1 2i (A j -A * j ), j = 1, 2
its real and imaginary part. Then we have

   A j = Q2,j + i Q1,j , σ( Q2,j ) = ξ 2 n + q 2,j (x, ξ , τ ), σ( Q1,j ) = 2τ ∂ϕ j ∂xn ξ n + 2τ q 1,j (x, ξ , τ ), j = 1, 2, (23) 
where q 1,j ∈ T S 1 τ and q 2,j ∈ T S 2 τ are two tangential symbols given by

   q 2,j (x, ξ , τ ) = r j (x, ξ ) -(τ ∂ϕ j ∂xn ) 2 -τ 2 r j (x, ∂ϕ j ∂x ), q 1,j (x, ξ , τ ) = rj (x, ξ , ∂ϕ j ∂x ), j = 1, 2, (24) 
where r(x, ξ , η ) is the bilinear form associated to the quadratic form r(x, ξ ).

In the sequel, P (x, D, τ, µ) is the matrix operator with C ∞ coefficients defined in Θ 2 by

P (x, D, τ, µ) = diag(P 1 (x, D, τ, µ), P 2 (x, D, τ, µ)) = A 1 (x, D, τ ) -µ 0 0 A 2 (x, D, τ ) -µ 2 (25) and u = (u 0 , v 0 ) satisfies the equation      P u = f in {x n > 0} ∩ W, op(b 1 )u = u 0 | xn=0 -iµv 0 | xn=0 = e 1 on {x n = 0} ∩ W, op(b 2 )u = D xn + iτ ∂ϕ 1 ∂xn u 0 | xn=0 + D xn + iτ ∂ϕ 2 ∂xn v 0 | xn=0 = e 2 on {x n = 0} ∩ W, (26) 
where f = (f 1 , f 2 ), e = (e 1 , e 2 ) and B = (op(b 1 ), op(b 2 )). We note p j (x, ξ, τ, µ), j = 1, 2, the principal symbol associated to P j (x, D, τ, µ). We have

   p 1 (x, ξ, τ, µ) = ξ 2 n + q 2,1 (x, ξ , τ ) + i(2τ ∂ϕ 1 ∂xn ξ n + 2τ q 1,1 (x, ξ , τ )) p 2 (x, ξ, τ, µ) = ξ 2 n + q 2,2 (x, ξ , τ ) -µ 2 + i(2τ ∂ϕ 2 ∂xn ξ n + 2τ q 1,2 (x, ξ , τ )) (27) 
We assume that ϕ satisfies

                   ϕ 1 (x) = ϕ 2 (x) on {x n = 0} ∩ W ∂ϕ 1 ∂x n > 0 on {x n = 0} ∩ W ∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1 on {x n = 0} ∩ W (28)
and the following hypoellipticity condition of Hörmander:

∃ C > 0, ∀x ∈ K ∀ξ ∈ R n \{0}, Rep j = 0 et 1 2τ Imp j = 0 ⇒ Rep j , 1 2τ Imp j ≥ C ξ, τ 2 , ( 29 
)
where {f, g}(x, ξ)

= ∂f ∂ξ j ∂g ∂x j -∂f ∂x j ∂g ∂ξ j
is the Poisson bracket of two functions f (x, ξ) and g(x, ξ) and K is a compact in {x n ≥ 0} ∩ W .

We denote by

u L 2 (Θ 2 ) = u , u 2 k,τ = k j=0 τ 2(k-j) u 2 H j (Θ 2 ) , u 2 k = op(Λ k )u 2 , |u| 2 k,τ = u| xn=0 2 k,τ , |u| 2 k = u| xn=0 2 k , k ∈ R and |u| 2 1,0,τ = |u| 2 1 + |D xn u| 2 .
We are now ready to state our result. Theorem 3.1 Let ϕ satisfy (28) and (29). Then there exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

τ w 2 1,τ + τ 2 |w| 2 1 2 + τ 2 |D xn w| 2 -1 2 ≤ C P (x, D, τ )w 2 + τ 2 µ 2 |op(b 1 )w| 2 1 2 + τ |op(b 2 )w| 2 , ( 30 
)
for any w ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). Corollary 3.1 Let ϕ satisfy (28) and (29). Then there exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

τ e τ ϕ h 2 H 1 (Θ 2 ) ≤ C( e τ ϕ P (x, D)h 2 L 2 (Θ 2 ) + τ 2 µ 2 e τ ϕ op(B 1 )h 2 H 1 2 (xn=0) + τ e τ ϕ op(B 2 )h 2 L 2 (xn=0) ), ( 31 
)
for any h ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). Proof.
Let w = e τ ϕ h. Recalling that P (x, D, τ, µ)w = e τ ϕ P (x, D)e -τ ϕ w and using (30), we obtain (31).

Proof of Theorem 2.2

To apply Corollary 3.1, we have to choose ϕ 1 and ϕ 2 satisfying (28) and (29). We denote x = (x , x n ) a point in Ω. Let x 0 = (0, -δ), δ > 0. We set

ψ(x) = |x -x 0 | 2 -δ 2 and ϕ 1 (x) = e -βψ(x ,-xn) , ϕ 2 (x) = e -β(ψ(x)-αxn) , β > 0, and δ 2 < α < 2δ.
The weight function ϕ = diag(ϕ 1 , ϕ 2 ) has to satisfy (28) and ( 29). With these choices, we have

ϕ 1 | xn=0 = ϕ 2 | xn=0 and ∂ϕ 1 ∂xn | xn=0 > 0. It remains to verify ∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1 on {x n = 0} (32)
and the condition (29). We begin by condition (29) and we compute for ϕ 1 and p 1 (the computation for ϕ 2 and p 2 is made in the same way). Recalling that

Rep 1 , 1 2τ Imp 1 (x, ξ) = Im 2τ [∂ ξ p 1 (x, ξ -iτ ϕ 1 (x)) ∂ x p 1 (x, ξ + iτ ϕ 1 (x))] + t [∂ ξ p 1 (x, ξ -iτ ϕ 1 (x))] ϕ 1 (x) [∂ ξ p 1 (x, ξ -iτ ϕ 1 (x))] . We replace ϕ 1 (x) by ϕ 1 (x) = e -βψ(x ,-xn) , β > 0, we obtain, by noting ξ = -βϕ 1 (x)η Rep 1 , 1 2τ Imp 1 (x, ξ) = (-βϕ 1 ) 3 Rep 1 (x, η -iτ ψ ), 1 2τ Imp 1 (x, η + iτ ψ ) (x, η) -β |ψ (x)∂ η p 1 (x, η + iτ ψ )| 2 and |ψ (x)∂ η p 1 (x, η + iτ ψ )| 2 = 4 τ 2 |p 1 (x, ψ )| 2 + |p 1 (x, η, ψ )| 2
where p1 (x, η, ψ ) is the bilinear form associated to the quadratic form p 1 (x, η). We have

Rep 1 = 0 et 1 2τ Imp 1 = 0 ⇐⇒ p 1 (x, η + iτ ψ ) = 0,
• If τ = 0, we have p 1 (x, ξ) = 0 which is impossible. Indeed, we have

p 1 (x, ξ) ≥ C |ξ| 2 , ∀(x, ξ) ∈ K × R n , K compact in {x n ≥ 0} ∩ W . • If τ = 0, we have p1 (x, η, ψ ) = 0. Then |ψ (x)∂ η p 1 (x, η + iτ ψ )| 2 = 4τ 2 |p 1 (x, ψ )| 2 > 0.
On the other hand, we have

Rep 1 (x, η -iτ ψ ), 1 2τ Imp 1 (x, η + iτ ψ ) (x, η) ≤ C 1 (|η| 2 + τ 2 |ψ | 2 )
where C 1 is a positive constant independent of ψ . Then for β ≥ C 1 , the condition (29) is satisfied. Now let us verify (32). We have, on {x n = 0},

∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 = β 2 α(4δ -α)e -2βψ .
Then to satisfy (32), it suffices to choose β = M δ where M > 0 such that M δ ≥ C 1 . In the sequel, to respect the geometry we return in Θ 1 for the heat component u 0 (In this case ϕ 1 defined above becomes ϕ 1 (x) = e -βψ(x) ). Let us choose r 1 < r 1 < r 2 < 0 = ψ(0) < r 2 < r 3 < r 3 . We denote

w j = {x ∈ Ω, r j < ψ(x) < r j } and T x 0 = w 2 ∩ Θ 2 . We set R j = e -βr j , R j = e -βr j , j = 1, 2, 3. Then R 3 < R 3 < R 2 < R 2 < R 1 < R 1 . We introduce a cut-off function χ ∈ C ∞ 0 (R n+1 ) such that χ(ρ) =    0 if ρ ≤ r 1 , ρ ≥ r 3 1 if ρ ∈ [r 1 , r 3 ].
Let ũ = (ũ 0 , ṽ0 ) = χu = ( χu 0 , χv 0 ), we get the following system

   ( -iµ)ũ 0 = χf 0 + [ -iµ, χ]u 0 ( + µ 2 )ṽ 0 = χ(g 1 + iµg 0 ) + [ + µ 2 , χ]v 0 , ṽ1 = g 0 + iµṽ 0 ,
with the boundary conditions

   ũ0 | Γ 1 = ṽ0 | Γ 2 = 0, op(B 1 )ũ = ũ0 -iµṽ 0 = ( χg 0 )| γ , op(B 2 )ũ = ([∂ n , χ]u 0 -[∂ n , χ]v 0 )| γ .
From the Carleman estimate of Corollary 3.1 , we have

τ e τ ϕ ũ 2 H 1 ≤ C( e τ ϕ 1 ( -iµ)ũ 0 2 L 2 (Θ 1 ) + e τ ϕ 2 ( + µ 2 )ṽ 0 2 L 2 (Θ 2 ) + τ 2 µ 2 e τ ϕ op(B 1 )ũ 2 H 1 2 (xn=0) + τ e τ ϕ op(B 2 )ũ 2 L 2 (xn=0) ). ( 33 
)
Using the fact that [ -iµ, χ] is the first order operator supported in (w

1 ∪ w 3 ) ∩ Θ 1 ,
we have

e τ ϕ 1 ( -iµ)ũ 0 2 L 2 (Θ 1 ) ≤ C e 2τ R 1 f 0 2 L 2 (Ω 1 ) + e 2τ R 1 u 0 2 H 1 (Ω 1 ) . (34) 
Recalling that [ + µ 2 , χ] is the first order operator supported in (w

1 ∪ w 3 ) ∩ Θ 2 ,
we show

e τ ϕ 2 ( + µ 2 )ṽ 0 2 L 2 (Θ 2 ) ≤ C e 2τ g 1 + iµg 0 2 L 2 (Ω 2 ) + e 2τ R 3 v 0 2 H 1 (Ω 2 ) . (35) 
From the trace formula and recalling that op(B 2 )ũ is an operator of order zero and supported in {x n = 0} ∩ w 3 , we show

τ e τ ϕ op(B 2 )ũ 2 L 2 (xn=0) ≤ Ce 2τ R 3 u 2 H 1 (Ω) ≤ C e 2τ R 3 u 0 2 H 1 (Ω 1 ) + e 2τ R 3 v 0 2 H 1 (Ω 2 ) .
(36) Now we need to use this result shown in Appendix B Lemma 3.1 There exists C > 0 such that for all s ∈ R and u ∈ C ∞ 0 (Ω), we have op(Λ s )e τ ϕ u ≤ Ce τ C op(Λ s )u .

(37)

Following this Lemma and recalling that τ ≥ C 0 |µ|, C 0 > 0, and |µ| ≥ µ 0 , we obtain

τ 2 µ 2 e τ ϕ op(B 1 )ũ 2 H 1 2 (xn=0) ≤ Cτ 2 e 2τ c |g 0 | 2 H 1 2 ≤ Cτ 2 e 2τ c g 0 2 H 1 (Ω 2 ) . (38) 
Combining ( 33), (34), ( 35), ( 36) and (38), we obtain

Cτ e 2τ R 2 u 0 2 H 1 (w 2 ∩Θ 1 ) + Cτ e 2τ R 2 v 0 2 H 1 (Tx 0 ) ≤ C(e 2τ R 1 f 0 2 L 2 (Ω 1 ) + e 2τ R 1 u 0 2 H 1 (Ω 1 ) +e 2τ g 1 + iµg 0 2 L 2 (Ω 2 ) + e 2τ R 3 v 0 2 H 1 (Ω 2 ) + e 2τ R 3 u 0 2 H 1 (Ω 1 ) + e 2τ c g 0 2 H 1 (Ω 2 ) ). Since R 3 < R 2 < R 1 . Then there exist c 1 > 0 and c 2 > 0 such that v 0 2 H 1 (Tx 0 ) ≤ Ce c 1 τ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) + Ce -c 2 τ v 0 2 H 1 (Ω 2 ) . (39) 
Now we must distinguish two cases :

• Case 1 : v 0 2 H 1 (Ω 2 ) ≥ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 )
Minimizing the right-hand side of (39) with respect to τ , we get with δ 0 = c 2 /(c 1 +c 2 ), the following estimate

v 0 2 H 1 (Tx 0 ) ≤ C f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) δ 0 × v 0 2 H 1 (Ω 2 ) 1-δ 0 . ( 40 
) • Case 2 : v 0 2 H 1 (Ω 2 ) ≤ f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 )
In this case (40) is trivial. Then for all k 2 > 0, there exists k 1 > 0 such that we have

v 0 2 H 1 (Tx 0 ) ≤ Ce k 1 |µ| f 0 2 L 2 (Ω 1 ) + g 1 + iµg 0 2 L 2 (Ω 2 ) + g 0 2 H 1 (Ω 2 ) + u 0 2 H 1 (Ω 1 ) + Ce -k 2 |µ| v 0 2 H 1 (Ω 2 ) . ( 41 
)
Since γ is compact, then there exists a finite number of T x 0 such that γ ⊂ ∪T x 0 and if 2 small enough, we have V 2 ⊂ ∪T x 0 . Then (19) follows from (41).

3.3 Proof of the Carleman estimate (Theorem 3.1)

In the next section we will prove the following theorem which is analogous to Theorem 3.1 with another scale of Sobolev spaces. Theorem 3.2 Let ϕ satisfy (28) and (29). Then there exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

τ u 2 1,τ ≤ C P (x, D, τ, µ)u 2 + τ |u| 2 1,0,τ (42) 
and

τ u 2 1,τ + τ |u| 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 , ( 43 
)
for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ).
To prove Theorem 3.1, we need the following Lemma.

Lemma 3.2 There exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 
2 )u 2 + τ |u| 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 , ( 44 
)
for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ).
Proof.

We have

P (x, D, τ, µ) = D 2 xn + R + τ C 1 + τ 2 C 0 , where R ∈ T O 2 , C 1 = c 1 (x)D xn + T 1 , with T 1 ∈ T O 1 and C 0 ∈ T O 0 . Then we have (D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + τ 2 op(Λ 1 2 )u 2 + τ 2 D xn op(Λ -1 2 )u 2 + τ 4 op(Λ -1 2 )u 2 .
Since

τ 4 op(Λ -1 2 )u 2 ≤ Cτ 3 u 2 , τ 2 D xn op(Λ -1 2 )u 2 ≤ Cτ D xn u 2 and τ 2 op(Λ 1 2 )u 2 = τ 2 ( 1 √ τ op(Λ)u, √ τ u) ≤ C τ op(Λ)u 2 + τ 3 u 2 .
Using the fact that u 2 1,τ op(Λ)u 2 + D xn u 2 , we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + τ u 2 1,τ
.

Following (42), we have

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P op(Λ -1 2 )u 2 + P u 2 + τ |u| 2 1,0,τ . (45) 
We can write

P op(Λ -1 2 )u = op(Λ -1 2 )P u + [P, op(Λ -1 2 )]u = op(Λ -1 2 )P u + [R, op(Λ -1 2 )]u + τ [C 1 , op(Λ -1 2 )]u + τ 2 [C 0 , op(Λ -1 2 )]u = op(Λ -1 2 )P u + t 1 + t 2 + t 3 . (46) 
Let us estimate t 1 , t 2 and t 3 . We have [R, op(Λ

-1 2 )] ∈ T O 1 2
, then following (42), we have

t 1 2 ≤ C op(Λ 1 2 )u 2 ≤ C op(Λ)u 2 + u 2 ≤ C P u 2 + τ |u| 2 1,0,τ . ( 47 
)
We have

t 2 = τ [C 1 , op(Λ -1 2 )]u = τ [c 1 (x)D xn , op(Λ -1 2 )]u + τ [T 1 , op(Λ - 1 
2 )]u. Then following (42), we obtain

t 2 2 ≤ C τ -1 D xn u 2 + τ u 2 ≤ C P u 2 + τ |u| 2 1,0,τ . (48) 
We have [C 0 , op(Λ -1 2 )] ∈ T O -3 2 , then following (42), we obtain

τ 2 [C 0 , op(Λ -1 2 )]u 2 ≤ Cτ u 2 ≤ C P u 2 + τ |u| 2 1,0,τ (49) 
From ( 46), (47), ( 48) and (49), we have

P op(Λ -1 2 )u 2 ≤ C P u 2 + τ |u| 2 1,0,τ ,
and from (45), we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 ≤ C P u 2 + τ |u| 2 1,0,τ . (50) 
Moreover, we have

(D 2 xn + R)op(Λ -1 2 )u 2 = D 2 xn op(Λ -1 2 )u 2 + Rop(Λ -1 2 )u 2 +2Re(D 2 xn op(Λ -1 2 )u, Rop(Λ -1 2 )u),
where (., .) denote the scalar product in L 2 . By integration by parts, we find

(D 2 xn + R)op(Λ -1 2 )u 2 = D 2 xn op(Λ -1 2 )u 2 + Rop(Λ -1 2 )u 2 +2Re i(D xn u, Rop(Λ -1 )u) 0 + i(D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 +2Re (RD xn op(Λ -1 2 )u, D xn op(Λ -1 2 )u) + (D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) .( 51 
)
Since, we have

op(Λ 3 
2 )u 2 = (op(Λ 2 )op(Λ 1 
2 )u, op(Λ

1 2 )u) = j≤n-1 (D 2 j op(Λ 1 
2 )u, op(Λ

1 2 )u)+τ 2 (op(Λ 1 2 )u, op(Λ 1 
2 )u).

By integration by parts, we find

op(Λ 3 
2 )u 2 = j≤n-1 (D j op(Λ 1 2 )u, D j op(Λ 1 2 )u)+τ 2 op(Λ 1 2 )u 2 = k +τ 2 op(Λ 1 2 )u 2 . ( 52 
) Let χ 0 ∈ C ∞ 0 (R n+1
) such that χ 0 = 1 in the support of u. We have

k = j≤n-1 (χ 0 D j op(Λ 1 2 )u, D j op(Λ 1 2 )u) + j≤n-1 ((1 -χ 0 )D j op(Λ 1 2 )u, D j op(Λ 1 
2 )u).

Recalling that χ 0 u = u, we obtain

k = j≤n-1 (χ 0 D j op(Λ 1 
2 )u, D j op(Λ

1 2 )u)+ j≤n-1 ([(1-χ 0 ), D j op(Λ 1 
2 )]u, D j op(Λ

2 )u) = k +k".

(53) Using the fact that [(1 -χ 0 ), D j op(Λ

1 2 )] ∈ T O 1 2 and D j op(Λ 1 2 ) ∈ T O 3 2 , we show k" ≤ C op(Λ)u 2 . ( 54 
)
Using the fact that j,k≤n-1 χ 0 a j,k D j vD k v ≥ δχ 0 j≤n-1 |D j v| 2 , δ > 0, we obtain

k ≤ C j,k≤n-1 (χ 0 a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) ≤ C j,k≤n-1 ([χ 0 , a jk D j op(Λ 1 2 )]u, D k op(Λ 1 2 )u) + j,k≤n-1 (a jk D j op(Λ 1 2 )u, D k op(Λ 1 
2 )u).

Using the fact that [χ 0 , a jk D j op(Λ

1 2 )] ∈ T O 1 2 and D k op(Λ 1 2 )u ∈ T O 3 2 , we obtain k ≤ C j,k≤n-1 (a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) + op(Λ)u 2 . ( 55 
)
By integration by parts and recalling that R = j,k≤n-1 a j,k D j D k , we have j,k≤n-1

(a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) = (Rop(Λ 1 2 )u, op(Λ 1 2 )u (56) + j,k≤n-1 ([D k , a jk ]D j op(Λ 1 2 )u, op(Λ 1 2 )u). Since [D k , a jk ]D j op(Λ 1 2 ) ∈ T O 3 2 , then j,k≤n-1 ([D k , a jk ]D j op(Λ 1 
2 )u, op(Λ

1 2 )u) ≤ C op(Λ)u 2 .
Following (56), we obtain j,k≤n-1

(a jk D j op(Λ 1 2 )u, D k op(Λ 1 2 )u) ≤ C (Rop(Λ 1 
2 )u, op(Λ

1 2 )u) + op(Λ)u 2 .
(57) Since (Rop(Λ

1 2 )u, op(Λ 1 2 )u) = (Rop(Λ -1 2 )u, op(Λ 3 
2 )u) + ([op(Λ -1 ), R]op(Λ 1 2 )u, op(Λ 3 
2 )u)).

Using the fact that [op(Λ -1 ), R]op(Λ

1 2 ) ∈ T O 1 2
and the Cauchy Schwartz inequality, we obtain

(Rop(Λ 1 2 )u, op(Λ 1 2 )u) ≤ C op(Λ 3 2 )u 2 + C Rop(Λ -1 2 )u 2 + C op(Λ)u 2 (58)
Combining ( 52), ( 53), ( 54), ( 55), ( 57) and (58), we obtain

op(Λ 3 2 )u 2 ≤ C op(Λ 3 
2 )u 2 + C Rop(Λ -1 2 )u 2 + C op(Λ)u 2 .
For small enough, we obtain

Rop(Λ -1 2 )u 2 ≥ C op(Λ 3 2 )u 2 -τ 2 op(Λ 1 2 )u 2 . ( 59 
)
Using the same computations, we show

(RD xn op(Λ -1 2 )u, D xn op(Λ -1 2 )u) ≥ C D xn op(Λ 1 2 )u 2 -τ D xn u 2 . (60) 
Combining ( 51), ( 59) and (60), we obtain

(D 2 xn + R)op(Λ -1 2 )u 2 + (D xn u, Rop(Λ -1 )u) 0 + (D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 + (D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) + τ u 2 1,τ (61) 
≥ C D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 . Since (D xn u, Rop(Λ -1 )u) 0 + (D xn u, [op(Λ -1 2 ), R]op(Λ -1 2 )u) 0 ≤ C |D xn u| 2 + |u| 2 1 = C |u| 2 1,0,τ (62) and (D xn op(Λ -1 2 )u, [D xn , R]op(Λ -1 2 )u) ≤ Cτ u 2 1,τ . (63) 
From ( 50), ( 61), ( 62), ( 63) and (42), we obtain

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 ≤ C P (x, D, τ, µ)u 2 + τ |u| 2 1,0,τ .
Following (43), we obtain (44).

We are now ready to prove that Theorem 3.2 and Lemma 3.2 imply Theorem 3.1.

Let χ ∈ C ∞ 0 (R n+1 ) such that χ = 1 in the support of w and u = χop(Λ -1 2 )w. Then

P u = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + P [χ, op(Λ -1 2 )]w = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + D 2 xn [χ, op(Λ -1 2 )]w + R[χ, op(Λ -1 2 )]w + τ c 1 (x)D xn [χ, op(Λ -1 2 )]w + τ T 1 [χ, op(Λ -1 2 )]w + τ 2 C 0 [χ, op(Λ -1 2 )]w = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + a 1 + a 2 + a 3 + a 4 + a 5 . (64) 
Let us estimate a 1 , a 2 , a 3 , a 4 and a 5 . Recalling that [χ, op(Λ - 

a 1 2 ≤ C D 2 xn op(Λ -3 2 )w 2 + D xn op(Λ -3 2 )w 2 + op(Λ -3 2 )w 2 (65) 
and

a 3 2 ≤ C τ 2 D xn op(Λ -3 2 )w 2 + τ 2 op(Λ -3 2 )w 2 . ( 66 
) We have R[χ, op(Λ -1 2 )] ∈ T O 1 2 , T 1 [χ, op(Λ -1 2 )] ∈ T O -1 2 and C 0 [χ, op(Λ -1 2 )] ∈ T O -3 2 .
Then we obtain

a 2 2 + a 4 2 + a 5 2 ≤ C op(Λ 1 2 )w 2 . ( 67 
)
Using the same computations made in the proof of Lemma 3.2 (cf t 1 , t 2 and t 3 of (46)), we show

[P, op(Λ -1 2 )]w 2 ≤ C op(Λ 1 2 )w 2 + τ -1 D xn w 2 . ( 68 
)
Following ( 64), ( 65), (66), ( 67) and (68), we obtain

P u 2 ≤ C τ -1 P w 2 + op(Λ 1 2 )w 2 + τ -1 D xn w 2 + µ -1 D 2 xn op(Λ -1 )w 2 .
(69) We have

op(b 1 )u = op(b 1 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 1 )w+op(b 1 )[χ, op(Λ -1 2 )]w+[op(b 1 ), op(Λ - ))]w.
Recalling that op(b 1 ) ∈ T O 1 , we obtain

τ µ 2 |op(b 1 )u| 2 1 = τ µ 2 |op(Λ)op(b 1 )u| 2 ≤ C τ µ 2 op(Λ 1 2 )op(b 1 )w 2 + τ µ 2 op(Λ 1 
2 )w 2 .

(70) We have

op(b 2 )u = op(b 2 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 2 )w+op(b 2 )[χ, op(Λ -1 2 )]w+[op(b 2 ), op(Λ - )]w. Recalling that op(b 2 ) ∈ D xn + T O 1 , we obtain τ |op(b 2 )u| 2 ≤ C τ op(Λ -1 2 )op(b 2 )w 2 + τ op(Λ -1 2 )w 2 + τ D xn op(Λ -3 2 )w 2 .
(71) Moreover, we have

τ |u| 2 1,0,τ = τ |u| 2 1 + τ |D xn u| 2 = τ |op(Λ)u| 2 + τ |D xn u| 2 .
We can write

op(Λ)u = op(Λ)χop(Λ -1 2 )w = op(Λ 1 
2 )w + op(Λ)[χ, op(Λ -1 2 )]w.

Then

τ |op(Λ)u| 2 ≥ τ op(Λ 1 2 )w 2 -Cτ op(Λ -1 2 )w 2 ≥ τ op(Λ 1 2 )w 2 -Cτ -1 op(Λ 1 2 )w 2 .
For τ large enough, we obtain

τ |op(Λ)u| 2 ≥ Cτ op(Λ 1 2 )w 2 . ( 72 
)
By the same way, we prove, for τ large enough

τ |D xn u| 2 ≥ Cτ D xn op(Λ -1 2 )w 2 . ( 73 
)
Combining ( 72) and (73), we obtain

τ |u| 2 1,0,τ ≥ C τ op(Λ 1 2 )w 2 + τ D xn op(Λ -1 2 )w 2 . ( 74 
)
By the same way, we prove

op(Λ 3 2 )u 2 ≥ op(Λ)w 2 -C w 2 , (75) 
D xn op(Λ 1 2 )u 2 ≥ D xn w 2 -C op(Λ -1 )D xn w 2 -C op(Λ -1 )w 2 (76)
and

D 2 xn op(Λ -1 2 )u 2 ≥ (77) D 2 xn op(Λ -1 )w 2 -C D 2 xn op(Λ -2 )w 2 -C D xn op(Λ -2 )w 2 -C op(Λ -2 )w 2 .
Combining (75), ( 76) and (77), we obtain for τ large enough

D 2 xn op(Λ -1 2 )u 2 + D xn op(Λ 1 2 )u 2 + op(Λ 3 2 )u 2 ≥ C D 2 xn op(Λ -1 )w 2 + D xn w 2 + op(Λ)w 2 . ( 78 
)
Combining ( 44), ( 69), ( 70), ( 71), ( 74) and (78), we obtain (30), for τ large enough and |µ| ≥ µ 0 .

4 Proof of Theorem 3.2

In this section, we use especially microlocal analysis and we recall and follow the notations used in [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF]. The techniques used are the Calderon projector for the elliptic regions and Carleman estimates for non elliptic regions.

Study of the eigenvalues

The proof is based on a partition argument related to the nature of the roots of the polynomial p j (x, ξ , ξ n , τ, µ), j = 1, 2, in ξ n . On x n = 0, we note q 1 (x , ξ , τ ) = q 1,1 (0, x , ξ , τ ) = q 1,2 (0, x , ξ , τ ).

Let us introduce the following microlocal regions

E + 1 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,1 + q 2 1 ( ∂ϕ 1 ∂xn ) 2 > 0 , Z 1 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,1 + q 2 1 ( ∂ϕ 1 ∂xn ) 2 = 0 , E - 1 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,1 + q 2 1 ( ∂ϕ 1 ∂xn ) 2 < 0 , E + 2 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,2 -µ 2 + q 2 1 ( ∂ϕ 2 ∂xn ) 2 > 0 , Z 2 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,2 -µ 2 + q 2 1 ( ∂ϕ 2 ∂xn ) 2 = 0 , E - 2 = (x, ξ , τ, µ) ∈ K × R n-1 × R × R, q 2,2 -µ 2 + q 2 1 ( ∂ϕ 2 ∂xn ) 2 < 0 .
We consider p 1/ 2 (x, ξ, τ, µ) as a polynomial in ξ n . Then we have the following lemma describing the root localization of p 1/ 2 (here and in the sequel the index 1/ 2 means 1 or 2).

Lemma 4.1 We have the following

1. For (x, ξ , τ, µ) ∈ E + 1/ 2 , the roots of p 1/ 2 denoted z ± 1/ 2 satisfy ± Im z ± 1/ 2 > 0.
2. For (x, ξ , τ, µ) ∈ Z 1/ 2 , one of the roots of p 1/ 2 is real.

3. For (x, ξ , τ, µ) ∈ E - 1/ 2 , the roots of p 1/ 2 are in the half-plane Imξ n > 0 if

∂ϕ 1/ 2 ∂xn < 0 (resp. in the half-plane Imξ n < 0 if ∂ϕ 1/ 2
∂xn > 0). Proof. Using ( 23) and ( 24), we can write

           p 1 (x , ξ, τ, µ) = ξ n + iτ ∂ϕ 1 ∂x n -iα 1 ξ n + iτ ∂ϕ 1 ∂x n + iα 1 , p 2 (x , ξ, τ, µ) = ξ n + iτ ∂ϕ 2 ∂x n -iα 2 ξ n + iτ ∂ϕ 2 ∂x n + iα 2 , (79) 
where α j ∈ C, j = 1, 2, defined by

           α 2 1 (x , ξ , τ, µ) = τ ∂ϕ 1 ∂x n 2 + q 2,1 + 2iτ q 1 , α 2 2 (x , ξ , τ, µ) = τ ∂ϕ 2 ∂x n 2 -µ 2 + q 2,2 + 2iτ q 1 . (80) 
We set 

z ± 1/ 2 = -iτ ∂ϕ 1/ 2 ∂x n ± iα 1/ 2 , ( 
∂ϕ 1 ∂x n 2 - ∂ϕ 2 ∂x n 2 > 1, ( 82 
)
then the following estimate holds

q 2,2 -µ 2 + q 2 1 (∂ϕ 2 /∂x n ) 2 > q 2,1 + q 2 1 (∂ϕ 1 /∂x n ) 2 . ( 83 
)
Proof.

Following (24), on {x n = 0}, we have

q 2,2 (x, ξ , τ ) -q 2,1 (x, ξ , τ ) = τ ∂ϕ 1 ∂x n 2 -τ ∂ϕ 2 ∂x n 2 . ( 84 
)
Using (82), we have (83).

Remark 4.1 The result of this lemma imply that

E + 1 ⊂ E + 2 .

Estimate in E + 1

In this part we study the problem in the elliptic region E + 1 . In this region we can inverse the operator and use the Calderon projectors. Let χ + (x, ξ , τ, µ) ∈ T S 0 τ such that in the support of χ + we have q 2,1 + q 2 1 (∂ϕ 1 /∂xn) 2 ≥ δ > 0. Then we have the following estimate. Proposition 4.1 There exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have

τ 2 op(χ + )u 2 1,τ ≤ C P (x, D, τ, µ)u 2 + u 2 1,τ + τ |u| 2 1,0,τ , (85) 
for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). If we suppose moreover that ϕ satisfies (82) then the following estimate holds

τ op(χ + )u 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + u 2 1,τ + τ -2 |u| 2 1,0,τ , ( 86 
) for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ) and b j , j = 1, 2, defined in (26).
Proof Let ũ = op(χ + )u. From ( 22), we get

     P ũ = f in {x n > 0} ∩ W, op(b 1 )ũ = ũ0 | xn=0 -iµṽ 0 | xn=0 = ẽ1 on {x n = 0} ∩ W, op(b 2 )ũ = D xn + iτ ∂ϕ 1 ∂xn ũ0 | xn=0 + D xn + iτ ∂ϕ 2 ∂xn ṽ0 | xn=0 = ẽ2 on {x n = 0} ∩ W, ( 87 
) with f = op(χ + )f + [P, op(χ + )] u. Since [P, op(χ + )] ∈ (T O 0 )D xn + T O 1 , we have f 2 L 2 ≤ C P (x, D, τ, µ)u 2 L 2 + u 2 1,τ (88) 
and ẽ1 = op(χ

+ )e 1 satisfying |ẽ 1 | 2 1 ≤ C |e 1 | 2 1 ( 89 
) and ẽ2 = (D xn + iτ ∂ϕ 1 ∂xn ), op(χ + ) u 0 | xn=0 + (D xn + iτ ∂ϕ 2 ∂xn ), op(χ + ) v 0 | xn=0 + op(χ + )e 2 .
Since [D xn , op(χ + )] ∈ T O 0 , we have

|ẽ 2 | 2 ≤ C |u| 2 + |e 2 | 2 . ( 90 
)
Let ũ the extension of ũ by 0 in x n < 0. According to (23), ( 24) and ( 25), we obtain, by noting ∂ϕ/∂x n = diag (∂ϕ

1 /∂x n , ∂ϕ 2 /∂x n ), γ j (ũ) = t D j xn (ũ 0 ) | xn=0 + , D j xn (ṽ 0 ) | xn=0 + , j = 0, 1 and δ (j) = (d/dx n ) j (δ xn=0 ), P ũ = f -γ 0 (ũ) ⊗ δ + 1 i γ 1 (ũ) + 2iτ ∂ϕ ∂x n ⊗ δ (91)
Let χ(x, ξ, τ, µ) ∈ S 0 τ be equal to 1 for sufficiently large |ξ|+τ and in a neighborhood of supp(χ + ). We assume p is elliptic in support of χ. These conditions are compatible due to the choice made for supp(χ + ) and Remark 4.1. Let m large enough chosen later, by ellipticity of p on supp(χ) there exists a parametrix E = op(e) of P . We recall that e ∈ S -2 τ and e has the following form e(x, ξ, τ, µ) = m j=0 e j (x, ξ, τ, µ), where e 0 = χp -1 and e j = diag(e j,1 , e j,2 ) ∈ S -2-j τ where e j,1 and e j,2 are rational functions with respect to ξ n . Then we have

EP = op(χ) + R m , R m ∈ O -m-1 . (92) 
Following ( 91) and (92), we obtain

                   ũ = E f + E -h 1 ⊗ δ + 1 i h 0 ⊗ δ + w 1 , h 0 = γ 1 (ũ) + 2iτ ∂ϕ ∂x n γ 0 (ũ), h 1 = γ 0 (ũ), w 1 = (Id -op(χ)) ũ -R m ũ. (93) 
Using the fact that supp(1 -χ) ∩ supp(χ + ) = ∅ and the symbolic calculus (See Lemma 2.10 in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF]), we have (Id -op(χ)) op(χ + ) ∈ O -m , we obtain

w 1 2 2,τ ≤ Cτ -2 u 2 L 2 . (94) 
Now, let us look at the term

E -h 1 ⊗ δ + 1 i h 0 ⊗ δ . For x n > 0, we get                        E -h 1 ⊗ δ + 1 i h 0 ⊗ δ = T1 h 1 + T0 h 0 , Tj (h) = 1 2π n-1 e i(x -y )ξ tj (x, ξ , τ, µ)h(y )dy dξ = op( tj )h tj = 1 2πi γ e ixnξn e(x, ξ, τ, µ)ξ j n dξ n
where γ is the union of the segment

{ξ n ∈ R, |ξ n | ≤ c 0 |ξ | 2 + τ 2 } and the half circle {ξ n ∈ C, |ξ n | = c 0 |ξ | 2 + τ 2 , Imξ n > 0}
, where the constant c 0 is chosen large enough for the roots z + 1 and z + 2 to be enclosed by γ (if c 0 is large enough, the change of contour R -→ γ is possible because the symbol e(x, ξ, τ, µ) is a holomorphic function for large |ξ n |; ξ n ∈ C). In particular we have in

x n ≥ 0 ∂ k xn ∂ α x ∂ β ξ tj ≤ C α,β,k ξ , τ j-1-|β|+k , j = 0, 1. (95) 
We now choose χ 1 (x, ξ , τ, µ) ∈ T S 0 τ , satisfying the same requirement as χ + , equal to 1 in a neighborhood of supp(χ + ) and such that the symbol χ be equal to 1 in a neighborhood of supp(χ 1 ). We set t j = χ 1 tj , j = 0, 1. Then we obtain

ũ = E f + op(t 0 )h 0 + op(t 1 )h 1 + w 1 + w 2 (96) 
where w 2 = op((1 -χ 1 ) t0 )h 0 + op((1 -χ 1 ) t1 )h 1 . By using the composition formula of tangential operator, estimate (95), the fact that supp(1 -χ 1 ) ∩ supp(χ + ) = ∅ and the following trace formula

|γ 0 (u)| j ≤ Cτ -1 2 u j+1,τ , j ∈ N, (97) 
we obtain

w 2 2 2,τ ≤ Cτ -2 u 2 1,τ + |u| 2 1,0,τ . (98) 
Since χ = 1 in the support of χ 1 , we have e(x, ξ, τ, µ) is meromorphic w.r.t ξ n in the support of χ 1 . The roots

z + 1/ 2 are in Imξ n ≥ c 1 |ξ | 2 + τ 2 (c 1 > 0). If c 1 is small enough we can choose fixed contours γ 1/ 2 in Imξ n ≥ c 1 2 |ξ | 2 + τ 2 and
we can write

t j = diag(t j,1 , t j,2 ), t j,1/ 2 (x, ξ , τ, µ) = χ 1 (x, ξ , τ, µ) 1 2πi γ 1/ 2 e ixnξn e 1/ 2 (x, ξ, τ, µ)ξ j n dξ n , j = 0, 1. (99) 
Then there exists c 2 > 0 such that in x n ≥ 0, we obtain

∂ k xn ∂ α x ∂ β ξ t j ≤ C α,β,k e -c 2 xn ξ ,τ ξ , τ j-1-|β|+k . (100) 
In particular, we have e c 2 xnτ (∂ k xn )t j bounded in T S j-1+k τ uniformly w.r.t x n ≥ 0. Then

∂ x op(t j )h j 2 L 2 + op(t j )h j 2 L 2 ≤ C xn>0 e -2c 2 xnτ |op(e c 2 xnτ t j )h j | 2 1 (x n )dx n ≤ Cτ -1 |h j | 2 j and ∂ xn op(t j )h j 2 L 2 ≤ C xn>0 e -2c 2 xnτ |op(e c 2 xnτ ∂ xn t j )h j | 2 L 2 (x n )dx n ≤ Cτ -1 |h j | 2 j .
Using the fact that h 0 = γ 1 (ũ) + 2iτ ∂ϕ ∂xn γ 0 (ũ) and h 1 = γ 0 (ũ), we obtain

op(t j )h j 2 1,τ ≤ Cτ -1 |u| 2 1,0,τ . (101) 
From (96) and estimates (88), ( 94), ( 98) and (101), we obtain (85). It remains to proof (86). We recall that, in supp(χ 1 ), we have

e 0 = diag (e 0,1 , e 0,2 ) = diag 1 p 1 , 1 p 2 = diag 1 (ξ n -z + 1 )(ξ n -z - 1 ) , 1 (ξ n -z + 2 )(ξ n -z - 2 )
.

Using the residue formula, we obtain

e -ixnz + 1/ 2 t j,1/ 2 = χ 1 (z + 1/ 2 ) j z + 1/ 2 -z - 1/ 2 + λ 1/ 2 , j = 0, 1, λ 1/ 2 ∈ T S -2+j τ . (102) 
Taking the traces of (96), we obtain

γ 0 (ũ) = op(c)γ 0 (ũ) + op(d)γ 1 (ũ) + w 0 , (103) 
where w 0 = γ 0 (E f + w 1 + w 2 ) satisfies, according to the trace formula (97), the estimates (88), ( 94) and (98), the following estimate

τ |w 0 | 2 1 ≤ C P (x, D, τ, µ)u 2 + u 2 1,τ + τ -2 |u| 2 1,0,τ . (104) 
Following (101), c and d are two tangential symbols of order respectively 0 and -1 given by

c 0 = diag(c 0,1 , c 0,2 ) with c 0,1/ 2 = -χ 1 z - 1/ 2 z + 1/ 2 -z - 1/ 2 , d -1 = diag(d -1,1 , d -1,2 ) with d -1,1/ 2 = χ 1 1 z + 1/ 2 -z - 1/ 2 .
Following (87), the transmission conditions give

   γ 0 (ũ 0 ) -iµγ 0 (ṽ 0 ) = ẽ1 γ 1 (ũ 0 ) + γ 1 (ṽ 0 ) + iτ ∂ϕ 1 ∂xn γ 0 (ũ 0 ) + iτ ∂ϕ 2 ∂xn γ 0 (ṽ 0 ) = ẽ2 . (105) 
We recall that ũ = (ũ 0 , ṽ0 ), combining (103) and (105) we show that

op(k) t γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 ) = w 0 + 1 µ op     0 0 1 0     ẽ1 +op     0 0 0 1     Λ -1 ẽ2 , (106) 
where k is a 4 × 4 matrix, with principal symbol defined by

k 0 + 1 µ r 0 =             1 -c 0,1 0 -Λ d -1,1 0 0 1 -c 0,2 0 -Λ d -1,2 0 -i 0 0 iτ Λ -1 ∂ϕ 1 ∂x n iτ Λ -1 ∂ϕ 2 ∂x n 1 1             + 1 µ r 0 ,
where r 0 is a tangential symbol of order 0. We now choose χ 2 (x, ξ , τ, µ) ∈ T S 0 τ , satisfying the same requirement as χ + , equal to 1 in a neighborhood of supp(χ + ) and such that the symbol χ 1 be equal to 1 in a neighborhood of supp(χ 2 ). In supp(χ 2 ), we obtain

k 0 | supp(χ 2 ) =                 z + 1 z + 1 -z - 1 0 - Λ z + 1 -z - 1 0 0 z + 2 z + 2 -z - 2 0 - Λ z + 2 -z - 2 0 -i 0 0 iτ Λ -1 ∂ϕ 1 ∂x n iτ Λ -1 ∂ϕ 2 ∂x n 1 1                 .
Then, following (81),

det(k 0 )| supp(χ 2 ) = -z + 1 -z - 1 -1 z + 2 -z - 2 -1 Λ α 1 .
To prove that there exists c > 0 such that det(k 0 )| supp(χ 2 ) ≥ c, by homogeneity it suffices to prove that det(k

0 )| supp(χ 2 ) = 0 if |ξ | 2 + τ 2 = 1.
If we suppose that det(k 0 )| supp(χ 2 ) = 0, we obtain α 1 = 0 and then α 2 1 = 0. Following (80),we obtain

q 1 = 0 and τ ∂ϕ 1 ∂x n 2 + q 2,1 = 0. ( 107 
)
But in E + 1 , this implies q 2,1 > 0, then (107) is impossible. Therefore det(k 0 )| supp(χ 2 ) = 0. It follows that, for τ large enough , k = k 0 + 1 µ r 0 is elliptic in supp(χ 2 ). Then there exists l ∈ T S 0 τ , such that op(l)op(k) = op(χ 2 ) + Rm ,

with Rm ∈ T O -m-1 , for m large enough. This yields

t (γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 )) = op(l)w 0 + 1 µ op(l)op     0 0 1 0     ẽ1 + op(l)op     0 0 0 1     Λ -1 ẽ2 + (op(1 -χ 2 ) -Rm ) t (γ 0 (ũ 0 ), γ 0 (ṽ 0 ), Λ -1 γ 1 (ũ 0 ), Λ -1 γ 1 (ṽ 0 )) .
Since supp(1 -χ 2 ) ∩ supp(χ + ) = ∅ and by using (104), we obtain

τ |ũ| 2 1,0,τ ≤ C τ µ 2 |ẽ 1 | 2 1 + τ |ẽ 2 | 2 + P (x, D, τ, µ)u 2 L 2 + u 2 1,τ + τ -2 |u| 2 1,0,τ .
From estimates (89) and ( 90) and the trace formula (97), we obtain (86).

Estimate in Z 1

The aim of this part is to prove the estimate in the region Z 1 . In this region, if ϕ satisfies (82), the symbol p 1 (x, ξ, τ, µ) admits a real root and p 2 (x, ξ, τ, µ) admits two roots z ± 2 satisfy ± Im(z ± 2 ) > 0. Let χ 0 (x, ξ , τ, µ) ∈ T S 0 τ equal to 1 in Z 1 and such that in the support of χ 0 we have q 2,2 -µ 2 + q 2 1 (∂ϕ 2 /∂xn) 2 ≥ δ > 0. Then we have the following estimate. Proposition 4.2 There exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

τ op(χ 0 )u 2 1,τ ≤ C P (x, D, τ, µ)u 2 + τ |u| 2 1,0,τ + u 2 1,τ , (108) 
for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). If we assume moreover that ϕ satisfies (82) then we have

τ op(χ 0 )u 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + u 2 1,τ + τ -2 |u| 2 1,0,τ , (109 
) for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ) and b j , j = 1, 2, defined in (26).

Preliminaries

Let u ∈ C ∞ 0 (K), ũ = op(χ 0 )u and P be the differential operator with principal symbol given by p(x, ξ, τ, µ) = diag(p 1 , p 2 )

with p 1 and p 2 defined in (27). Then we have the following system

   P ũ = f in {x n > 0} ∩ W, B ũ = ẽ = (ẽ 1 , ẽ2 ) on {x n = 0} ∩ W, (110) 
where f = op(χ 0 )f + [P, op(χ 0 )] u.

Since [P, op(χ 0 )] ∈ (T O 0 )D xn + T O 1 , we have f 2 L 2 ≤ C P (x, D, τ, µ)u 2 L 2 + u 2 1,τ , (111) 
B defined in (26) and ẽ1 = op(χ 0 )e 1 satisfying

|ẽ 1 | 2 1 ≤ C |e 1 | 2 1 (112) and ẽ2 = (D xn + iτ ∂ϕ 1 ∂xn ), op(χ 0 ) u 0 | xn=0 + (D xn + iτ ∂ϕ 2 ∂xn ), op(χ 0 ) v 0 | xn=0 + op(χ 0 )e 2 .
Since [D xn , op(χ + )] ∈ T O 0 , we have

|ẽ 2 | 2 ≤ C |u| 2 + |e 2 | 2 . ( 113 
)
Let us reduce the problem (110) to a first order system. Put v = t ( D , τ ũ, D xn ũ). Then we obtain the following system

   D xn v -op(P)v = F in {x n > 0} ∩ W, op(B)v = ( 1 µ Λẽ 1 , ẽ2 ) on {x n = 0} ∩ W, (114) 
where P is a 4 × 4 matrix, with principal symbol defined by

P 0 = 0 Λ Id 2 Λ -1 l 2 -il 1 , l 1 = q 1,1 0 0 q 1,2 , l 2 = q 2,1 0 0 q 2,2 -µ 2 ,
B is a tangential symbol of order 0, with principal symbol given by

B 0 + 1 µ r 0 = 0 -i 0 0 iτ Λ -1 ∂ϕ 1 ∂xn iτ Λ -1 ∂ϕ 2 ∂xn 1 1 + 1 µ r 0
(r 0 a tangential symbol of order 0), F = t (0, f ) and Λ = ξ , τ = |ξ | 2 + τ 2 1 2 . For a fixed (x 0 , ξ 0 , τ 0 , µ 0 ) in suppχ 0 , the generalized eigenvalues of the matrix P are the zeroes in ξ n of p 1 and p 2 i.e z ± 1 = -iτ ∂ϕ 1 ∂xn ± iα 1 and z ± 2 = -iτ ∂ϕ 2 ∂xn ± iα 2 with ±Im(z ±

2 ) > 0 and z + 1 ∈ R.

Let s(x, ξ , τ, µ) = (s - 1 , s - 2 , s + 1 , s + 2 ) be a basis of the generalized eigenspace of P(x 0 , ξ 0 , τ 0 , µ 0 ) corresponding to eigenvalues with positive or negative imaginary parts. The vectors s ± j (x, ξ , τ, µ), j = 1, 2 are C ∞ functions on a conic neighborhood of (x 0 , ξ 0 , τ 0 , µ 0 ) of degree zero in (ξ , τ, µ). We denote op(s)(x, D x , τ, µ) the pseudodifferential operator associated to the principal symbol s(x, ξ , τ, µ) = s - 1 (x, ξ , τ, µ), s - 2 (x, ξ , τ, µ), s + 1 (x, ξ , τ, µ), s + 2 (x, ξ , τ, µ) . Let χ(x, ξ , τ, µ) ∈ T S 0 τ be equal to 1 in a conic neighborhood of (x 0 , ξ 0 , τ 0 , µ 0 ) and in a neighborhood of supp(χ 0 ) and satisfy that in the support of χ, s is elliptic. Then there exists n ∈ T S 0 τ , such that op(s)op(n) = op( χ) + Rm ,

with Rm ∈ T O -m-1 , for m large. Let V = op(n)v.
Then we have the following system

   D xn V = GV + AV + F 1 in {x n > 0} ∩ W, op(B 1 )V = ( 1 µ Λẽ 1 , ẽ2 ) + v 1 on {x n = 0} ∩ W, (115) 
where

G = op(n)op(P)op(s), A = [D xn , op(n)] op(s), F 1 = op(n)F + op(n)op(P)(op(1 -χ) -Rm )v + [D xn , op(n)] (op(1 -χ) -Rm )v, op(B 1 ) = op(B)op(s) and v 1 = op(B)(op( χ -1) + Rm )v. Using the fact that supp(1 -χ) ∩ supp(χ 0 ) = ∅, Rm ∈ T O -m-1
, for m large and estimate (111), we show

F 1 2 ≤ C P (x, D, τ, µ)u 2 L 2 + u 2 1,τ . (116) 
Using the fact that supp(1 -χ) ∩ supp(χ 0 ) = ∅, Rm ∈ T O -m-1 , for m large and the trace formula (97), we show

τ |v 1 | 2 ≤ C τ -2 |u| 2 1,0,τ + u 2 1,τ . (117) 
Here we recall an argument proved in Taylor [START_REF] Taylor | Reflection of singularities of solutions to systems of differential equations[END_REF] given by this lemma Lemma 4.3 Let v solve the system

∂ ∂y v = Gv + Av
where G = E F and A are pseudo-differential operators of order 1 and 0, respectively. We suppose that the symbols of E and F are two square matrices and have disjoint sets of eigenvalues. Then there exists a pseudo-differential operator K of order -1 such that w = (I + K)v satisfies

∂ ∂y w = Gw + α 1 α 2 w + R 1 w + R 2 v
where α j and R j , j = 1, 2 are pseudo-differential operators of order 0 and -∞, respectively.

By this argument, there exists a pseudo-differential operator K(x, D x , τ, µ) of order -1 such that the boundary problem (115) is reduced to the following

   D xn w -op(H)w = F in {x n > 0} ∩ W, op( B)w = ( 1 µ Λẽ 1 , ẽ2 ) + v 1 + v 2 on {x n = 0} ∩ W, (118) 
where w = (I + K)V , F = (I + K)F 1 , op(H) is a tangential of order 1 with principal symbol H = diag(H -, H + ) and -Im(H

-) ≥ CΛ, op( B) = op(B 1 )(I + K ) with K is such that (I + K )(I + K) = Id + R m (R m ∈ O -m-1 , for m large) and v 2 = op(B 1 )R m V .
According to (116), we have

F 2 ≤ C P (x, D, τ, µ)u 2 L 2 + u 2 1,τ . (119) 
Using the fact that R m ∈ O -m-1 , for m large, the trace formula (97) and estimates (112), ( 113) and (117), we show

τ op( B)w 2 ≤ C τ µ 2 |e 1 | 2 1 + τ |e 2 | 2 + τ -2 |u| 2 1,0,τ + u 2 1,τ . ( 120 
) Lemma 4.4 Let R = diag(-ρId 2 , 0), ρ > 0. Then there exists C > 0 such that 1. Im(RH) = diag (e(x, ξ , τ, µ), 0), with e(x, ξ , τ, µ) = -ρIm(H -), 2. e(x, ξ , τ, µ) ≥ CΛ in supp (χ 0 ), 3. -R + B B ≥ C.Id on {x n = 0} ∩ W ∩ supp (χ 0 ).

Proof

We have Im(RH) = diag -ρ Im(H -), 0 = diag (e(x, ξ , τ, µ), 0) ,

where e(x, ξ , τ, µ) = -ρ Im(H -) ≥ CΛ, C > 0. It remains to prove 3. We denote the principal symbol B of the boundary operator op( B) by B-, B+ where B+ is the restriction of B to subspace generated by s + 1 , s + 2 . We begin by proving that B+ is an isomorphism. Denote w 1 = t (1, 0) and w 2 = t (0, 1).

Then    s + 1 = w 1 , z + 1 Λ -1 w 1 s + 2 = w 2 , z + 2 Λ -1 w 2 are eigenvectors associated to z + 1 and z + 2 . We have B+ = (B 0 + 1 µ r 0 )(s + 1 s + 2 ) = B + 0 + 1 µ r + 0 .
To prove that B+ is an isomorphism it suffices, for τ large, to prove that B + 0 is an isomorphism. Following (81), we obtain

B + 0 = 0 -i Λ -1 iα 1 Λ -1 iα 2 .
for any u ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). Moreover if we assume ∂ϕ 1 ∂xn > 0, we have

τ op(χ -)u 0 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ -2 |u| 2 1,0,τ + u 2 1,τ (128) 
for any u

= (u 0 , v 0 ) ∈ C ∞ 0 ({x n ≥ 0} ∩ W ). Proof. Let ũ = op(χ -)u = (op(χ -)u 0 , op(χ -)v 0 ) = (ũ 0 , ṽ0 ).
In this region we have not a priori information for the roots of p 2 (x, ξ, τ, µ). Following the proof of (108), we obtain

τ op(χ -)v 0 2 1,τ ≤ C P (x, D, τ, µ)v 0 2 + τ |v 0 | 2 1,0,τ + v 0 2 1,τ . (129) 
In supp(χ -) the two roots z ± 1 of p 1 (x, ξ, τ, µ) are in the half-plane Imξ n < 0. Then we can use the Calderon projector. By the same way that the proof of (85) and using the fact that the operators t 0,1 and t 1,1 vanish in x n > 0 (because the roots are in Imξ n < 0, see (99)), the counterpart of ( 96) is then

ũ0 = E f 1 + w 1,1 + w 2,1 , for x n > 0, (130) 
where w 1,1 and w 2,1 satisfy (94) and (98) respectively.

We then obtain (see proof of (85))

τ 2 op(χ -)u 0 2 1,τ ≤ C P 1 (x, D, τ, µ)u 0 2 + τ |u 0 | 2 1,0,τ + u 0 2 1,τ . (131) 
Combining ( 129) and (131), we obtain (127). It remains to prove (128). We take the trace at x n = 0 + of (130), γ 0 (ũ 0 ) = w 0,1 = γ 0 (E f 1 + w 1,1 + w 2,1 ), which, by the counterpart of (104), gives

τ |γ 0 (ũ 0 )| 2 1 ≤ C P 1 (x, D, τ, µ)u 0 2 + u 0 2 1,τ + τ -2 |u 0 | 2 1,0,τ . (132) 
From (130) we also have

D xn ũ0 = D xn E f 1 + D xn w 1,1 + D xn w 2,1 , for x n > 0.
We take the trace at x n = 0 + and obtain γ 1 (ũ 0 ) = γ 0 (D xn (E f 1 + w 1,1 + w 2,1 )).

Using the trace formula (97), we obtain 

|γ 1 (ũ 0 )| 2 ≤ Cτ -1 D xn (E f 1 + w 1,1 + w 2,1 ) 2 1,τ ≤ Cτ -1 E f 1 + w 1,1 + w 2,1 2 
Combining ( 132) and (133), we obtain (128).

End of the proof

We can choose a partition of unity χ + + χ 0 + χ -= 1 such that χ + , χ 0 and χ -satisfy the properties listed in proposition 4.1, 4.2 and 4.3 respectively. We have u 2 1,τ ≤ op(χ + )u Combining this inequality and (85), ( 108) and (127), we obtain, for τ large, the first estimate (42) of Theorem 3.2. i.e. 

Inserting ( 138) in (42) and for τ large enough, we obtain (43).

Appendix A : Proof of Lemma 2.1

To prove Lemma 2.1, we need to distinguish two cases. Then

|µ| χu 2 ≤ C 1 f 2 + χ 2 u + ∇u 2 + 1 ∇u 2 + χu 2 .
Recalling that |µ| ≥ µ 0 , we have for small enough

χu 2 ≤ C ∇u 2 + f 2 . ( 139 
)
Hence the result inside O.

2.

In the neighborhood of the boundary

Let x = (x , x n ) ∈ R n-1 × R. Then ∂O = {x ∈ R n , x n = 0}.
Let > 0 such that 0 < x n < . Then we have In the same way, we show that there exists N > 0, such that |K(ξ , η )| dη ≤ N e Cτ . Using Schur's Lemma, we have (op(Λ s )e τ ϕ χop(Λ -s )) is bounded in L 2 and op(Λ s )e τ ϕ χop(Λ -s ) L(L 2 ) ≤ Ce Cτ .

Applying this operator to op(Λ s )u, completes the proof of Lemma 3.1.

1 2 )

 2 ] ∈ T O -3 2 and χw = w. Using the fact that [D xn , T k ] ∈ T O k for all T k ∈ T O k , we show

+ u 0 2 1

 2 the counterpart of (88), (94) and (98), this yieldsτ |γ 1 (ũ 0 )| 2 ≤ C P 1 (x, D, τ, µ)u 0 2 ,τ + τ -2 |u 0 | 2 1,0,τ .

τ u 2 1 , 2 1 2 1 2 1 . 1 ≤ 2 . 1 .

 12221121 τ ≤ C P (x, D, τ, µ)u 2 + τ |u| 2 1,0,τ .It remains to estimate τ |u|2 1,0,τ . We begin by giving an estimate of τ |u 0 | 2 1,0,τ . We have|u 0 | 2 1,0,τ ≤ op(χ + )u 0 ,0,τ + op(χ 0 )u 0 ,0,τ + op(χ -τ ≤ op(χ 0 )u21,0,τ . Combining these inequalities, (86), (109), (128) and the fact thatτ -2 |u| 2 1,0,τ = τ -2 |u 0 | 2 1,0,τ + τ -2 |v 0 | 2 1,0,τ , we obtain, for τ large enough.τ |u 0 | 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + τ -2 |v 0 | 2 For estimate τ |v 0 | 2 1,0,τ , we use the transmission conditions given by (26). We haveop(b 1 )u = u 0 | xn=0 -iµv 0 | xn=0 on {x n = 0} ∩ W. |op(b 1 )u| 2Since, for |µ| ≥ µ 0 , we have τ µ 2 |u 0 | 2 Cτ |u 0 | 2 1,0,τ . Then using (134), we obtainτ |v 0 | 2 1 ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + τ -2 |v 0 | 2 op(b 2 )u = D xn + iτ ∂ϕ 1 ∂x n u 0 | xn=0 + D xn + iτ ∂ϕ 2 ∂x n v 0 | xn=0 on {x n = 0} ∩ W. Then τ |D xn v 0 | 2 ≤ C τ |op(b 2 )u| 2 + τ |D xn u 0 | 2 + τ 3 |u 0 | 2 + τ 3 |v 0 | Using the fact that |u| k-1 ≤ τ -1 |u| k , we obtain τ |D xn v 0 | 2 ≤ C τ |op(b 2 )u| 2 + τ |D xn u 0 | 2 + τ |u 0 | 2 1 + τ |v 0 | 2 Since we have τ |u 0 | 2 1,0,τ = τ |D xn u 0 | 2 + τ |u 0 | 2 1 .Then using (134) and (135), we obtainτ |D xn v 0 | 2 ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + τ -2 |v 0 |2and (136), we haveτ |v 0 | 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + u 2 1,τ .(137)Combining (134) and (137), we obtain τ |u| 2 1,0,τ ≤ C P (x, D, τ, µ)u 2 + τ µ 2 |op(b 1 )u| 2 1 + τ |op(b 2 )u| 2 + u 2 1,τ .

1 .

 1 Inside O To simplify the expressions, we note uL 2 (O) = u . Let χ ∈ C ∞ 0 (O).We have by integration by part(( -i |µ|)u, χ 2 u) = (-∇u, χ 2 ∇u) -(∇u, ∇(χ 2 )u) -i |µ| χu 2 .Then |µ| χu 2 ≤ C f χ 2 u + ∇u 2 + ∇u χu .

(

  |u(x)| 2 + |∇u(x)| 2 )dx. (141) Since ξ , τ s η , τ -s ξ -η , τ 2R dξ = |ξ |≤ 1 |η | ξ , τ s η , τ -s ξ -η , τ 2R dξ + |η |≤ |ξ | ξ , τ s +η , τ -s ξ -η , τ 2R dξ , > 0. If |ξ | ≤ 1 |η |, we have ξ , τ s η , τ -s ξ -η , τ 2R ≤ C η , τ s η , τ -s ξ -η , τ 2R ≤ C ξ -η , τ 2R ∈ L 1 if 2R > n -1. If |η | ≤ |ξ |, i.e ξ -η , τ ≥ δ ξ , τ , δ > 0, we have ξ , τ s η , τ -s ξ -η , τ 2R ≤ C ξ -η , τ 2R-s ∈ L 1 if 2R -s > n -1.Then there exists M > 0, such that |K(ξ , η )| dξ ≤ M e Cτ .

  81) the roots of p 1/ 2 . The imaginary parts of the roots of p 1/ 2 are The signs of the imaginary parts are opposite if ∂ϕ 1/ 2 /∂x n < Re α 1/ 2 , equal to the sign of -∂ϕ 1/ 2 /∂x n if ∂ϕ 1/ 2 /∂x n > Re α 1/ 2 and one of the imaginary parts is null if ∂ϕ 1/ 2 /∂x n = Re α 1/ 2 . However the lines Re z = ±τ ∂ϕ 1/ 2 /∂x n change by the application z → z = z 2 into the parabolic curve Re z = τ ∂ϕ 1/ 2 /∂x n 2 -|Im z | 2 /4(τ ∂ϕ 1/ 2 /∂x n ) 2 . Thus we obtain the lemma by replacing z by α 2 1/ 2 . If we assume that the function ϕ satisfies the following condition

	Lemma 4.2				
	-τ	∂ϕ 1/ 2 ∂x n	-Re α 1/ 2 , -τ	∂ϕ 1/ 2 ∂x n	+ Re α 1/ 2 .

  |∂ xn u(x , x n )| 2 dx n . |∂ xn u(x , x n )| 2 dx n dx .

		2 + 2 2	
		0	
	Integrating with respect to x , we obtain	
	|u(x , x n )| 2 dx ≤ 2	|u(x , )| 2 dx +2 2	
	|x |<	|x |<	|x |< , |xn|<
			(140)
	Using the trace Theorem, we have	
	|u(x , )| 2 dx ≤ C	
	|x |<		

u(x , ) -u(x , x n ) = xn ∂ xn u(x , σ)dσ. Then |u(x , x n )| 2 ≤ 2 |u(x , )| 2 + 2 xn |∂ xn u(x , σ)| dσ 2 .

Using the Cauchy Schwartz inequality, we obtain

|u(x , x n )| 2 ≤ 2 |u(x , )| |x |<2 , |xn-|< 2

Then det(B + 0 ) = -Λ -1 α 1 . If we suppose that det(B + 0 ) = 0, we obtain α 1 = 0 and then α 2 1 = 0. Following (80), we obtain q 1 = 0 and τ ∂ϕ 1 ∂x n 2 + q 2,1 = 0.

Combining with the fact that q 2,1 + q 2 1 (∂ϕ 1 /∂xn) 2 = 0, we obtain τ ∂ϕ 1 ∂xn 2 = 0, that is impossible because following (82), we have ∂ϕ 1 ∂xn 2 = 0 and following (24), we have τ = 0. We deduce that B+ is an isomorphism. Let w = (w -, w + ) ∈ C 4 = C 2 ⊕ C 2 . Then we have Bw = Bw -+ B+ w + . Since B+ is an isomorphism, then there exists a constant C > 0 such that

Therefore, we have

We deduce

Then, we obtain the result, if ρ is large enough.

Proof of proposition 4.2

We start by showing (108). We have

By integration by parts we find

where

Then we have

We obtain the same estimate on v 0 by the same method. In addition we know that the principal symbol of the operator [ReP j , ImP j ], j = 1, 2, is given by 1 i {ReP j , ImP j }. Proceeding like Lebeau and Robbiano in paragraph 3 in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we obtain (108).

It remains to prove (109). Following Lemma 4.4, let G(

The integration in the normal direction gives

From Lemma 4.4 and the Gårding inequality, we obtain, for τ large enough,

Applying Lemma 4.4 and the Gårding inequality, we obtain, for τ large enough,

Combining ( 125), (124), ( 123) and (122), we get

Recalling that w = (I + K)V , V = op(n)v, v = t ( D , τ ũ, D xn ũ) and ũ = op(χ 0 )u and using estimates (119) and (120), we prove (109).

Estimate in E -

and such that in the support of χ -we have q 2,1 + q 2 1 (∂ϕ 1 /∂xn) 2 ≤ -δ < 0. Then we have the following estimate. Proposition 4.3 There exist constants C > 0, τ 0 > 0 and µ 0 > 0 such that for any τ ≥ τ 0 , |µ| ≥ µ 0 such that τ ≥ C 0 |µ|, C 0 > 0, we have the following estimate

Now we introduce the following cut-off functions

Combining (140) and (141), we obtain for small enough

Since following (139), we have

Inserting in (142), we obtain

Hence the result in the neighborhood of the boundary.

Following (139), we can write

Adding ( 143) and (144), we obtain [START_REF] Taylor | Reflection of singularities of solutions to systems of differential equations[END_REF].

Appendix B: Proof of Lemma 3.1

Let χ ∈ C ∞ 0 (R n ) be such that χ = 1 in the support of u. It suffices to show that op(Λ s )e τ ϕ χop(Λ -s ) is bounded in L 2 . Recall that for all u and v ∈ S(R n ), we have

Hence

where g(ξ , τ ) = F(e τ ϕ χ)(ξ , τ ). Then we have

To do it, we will use Schur's Lemma. It suffices to prove that there exist M > 0 and N > 0 such that

In the sequel, we suppose s ≥ 0 (the case where s < 0 is treated in the same way).

For R > 0, we have

Then there exists C > 0, such that

Moreover, we can write

Using (145), we obtain

Appendix C : Proof of Theorem 1.1, for µ = 0

Let U = (u 0 , v 0 , v 1 ) ∈ D(A) and F = (f 0 , g 0 , g 1 ) ∈ H such that F = AU . Then we have the following system

with the following boundary conditions

Moreover, from

Recalling that u 0 = f 0 and using the trace lemme (Lemma 3.4 in [START_REF] Duyckaerts | Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface[END_REF]), we obtain

.

Combining with (147), we obtain

Combining with (146), we get

Recalling that v 1 = g 0 and combining (146) and (148), we obtain Theorem 1.1, for µ = 0.