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Logarithmic decay of the energy for an
hyperbolic-parabolic coupled system

Ines Kamoun Fathallah*

Abstract

This paper is devoted to the study of a coupled system which consists of a
wave equation and a heat equation coupled through a transmission condition
along a steady interface. This system is a linearized model for fluid-structure
interaction introduced by Rauch, Zhang and Zuazua for a simple transmission
condition and by Zhang and Zuazua for a natural transmission condition.

Using an abstract theorem of Burq and a new Carleman estimate proved
near the interface, we complete the results obtained by Zhang and Zuazua
and by Duyckaerts. We prove, without a Geometric Control Condition, a
logarithmic decay of the energy.

Keywords : Fluid-structure interaction; Wave-heat model; Stability; Log-
arithmic decay.

2000 Mathematics Subject Classification : 37L15; 35B37; 74F10; 93D20

1 Introduction and results

In this work, we are interested in a linearized model for fluid-structure interaction
introduced by Zhang and Zuazua in [14] and Duyckaerts in [6]. This model consists
of a wave equation and a heat equation coupled through an interface by suitable
transmission conditions. Our purpose is to analyze the stability of this system and
therefore to determine the decay rate of the energy of solutions as ¢t — oo.

Let 2 C R™ be a bounded domain with a smooth boundary I' = 9Q. Let €4
and €2y be two bounded open sets with smooth boundary such that €; C € and
Qy = Q\Qy. We denote by v = 99y N 9Qy the interface, v CC Q, T'; = 99\,
j = 1,2, and we suppose that I'y # (. Let 0, and 9,, the unit outward normal
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vectors of €} and )y respectively. We recall that 0,, = —0, on 7.

([ Ou—Au=0 in (0,00) x Q,
02v— Av =0 in (0,00) x Qo,
u=0 on (0,00) x Ty,
v=20 on (0,00) x I'y, (1)
u= 0w, Oyu=—0uv on (0, 00) X 7,
U|t:0 =Ug € LQ(Ql) in Ql,
U’t:() =19 € H1<QQ), aﬂ}’t:() =1 € L2<Qg) in QQ.

\

In this system, u may be viewed as the velocity of fluid; while v and O,v represent
respectively the displacement and velocity of the structure. That’s why the trans-
mission condition u = d;v is considered as the natural condition. For the discussion
of this model, we refer to [11] and [14].

System (1) is introduced by Zhang and Zuazua [14]. The same system is con-
sidered by Rauch, Zhang and Zuazua in [11] but for the simplified transmission
condition © = v on the interface instead of u = d;v. They prove, under a suitable
Geometric Control Condition (GCC) (see [1]), a polynomial decay result. Zhang
and Zuazua in [14] prove, without the GCC, a logarithmic decay result. Duyckaerts
in [6] improves these results.

For system (1), Zhang and Zuazua in [14], prove the lack of uniform decay and,
under the GCC, a polynomial decay result. Without geometric conditions, they
analyze the difficulty to prove the logarithmic decay result. This difficulty is mainly
due to the lack of regularity gain of the wave component v near the interface ~
(see [14], Remark 19) which means that the embedding of the domain D(.A) of the
dissipative operator in the energy space is not compact (see [14], Theorem 1). In
[6], Duyckaerts improves the polynomial decay result under the GCC and confirms
the same obstacle to proving the logarithmic decay for solution of (1) without the
GCC. In this paper we are interested in this problem.

There is an extensive literature on the stabilization of PDEs and on the Loga-
rithmic decay of the energy ([2], [3] [4], [8], [10], [12] and the references cited therein)
and this paper uses part of the idea developed in [3].

Here we recall the mathematical framework for this problem (see [14]).

Define the energy space H and the operator A on H with domain D(A) by

H={F = (fi, fo, ) € L*() x H{,(Q) x L*(2)}

where H{ (Q2) is defined as the space
HIl‘g(QQ) = {f € H1<Q2)7f‘f‘2 = 0}7

AF = (Afl, I3, Af2)

D(A)={F e H, fi e H (), Afi € L* (),

fs € H%Q(QQ), Afy € LQ(Qz), fily = f3ly, Onfily = —Onfaly}
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Thus system (1) may be rewritten as an abstract cauchy problem in H as

AU(t) = AU(t), t >0,

(2)
U(0) = U,

where U(t) = (u(t),v(t), wv(t)) and Uy = (ug, vo, v1).

The operator A is the generator of a strongly continuous semi-group (see [14], The-
orem 1).

In our case, i.e. when 'y # (), the energy of any solution U = (u,v,dv) of (2) is
defined as one half of the square of a norm on H and we have

1
EU(t)) == ( ]u(t)|2d:c+ latv(t)|2dx+ |V”u(t)\2dx) :
2 Ql QQ QQ
When T'y = ), we refer to [14] and [6].
By means of the classical energy method, we have

Lpww)=- [ [VuPde.
it o

Therefore the energy of (2) is decreasing with respect to ¢, the dissipation coming
from the heat component u. Our main goal is to prove a logarithmic decay without
the GCC assumption.

As Duyckaerts [6] did for the simplified model, the idea is, first, to use a known
result of Burq (see [5]) which links, for dissipative operators, logarithmic decay to
resolvent estimates with exponential loss; secondly to prove, following the work of
Bellassoued in [3], a new Carleman inequality near the interface .

The main results are the following theorem 1.1 concerning the resolvent and
theorem 1.2 concerning the decay.

Theorem 1.1 There exists C' > 0, such that for every u € R, we have
S -1 c
[(A = ip) HL(H) < Cefll, (3)

Theorem 1.2 There ezists C > 0, such that for all Uy € D(A), we have

EU®) < —C

—_— : 4
< g 53 0ol g

Remark 1.1 To simplify, we assumed that T'y # 0. When T'y is empty, the constant
functions (0,¢,0), where c is arbitrary, are solutions of system (2). Therefore it is
necessary to consider the decay of solutions orthogonal to (0,¢,0) in H (for more
details we refer to theorem 1 in [14]).

Burq in ([5], Theorem 3) and Duyckaerts in ([6], Section 7) show that to prove
Theorem 1.2 it suffices to prove Theorem 1.1.



The strategy of the proof of Theorem 1.1, when u # 0, is the following. A new
Carleman estimate proved near the interface v implies an interpolation inequality
given by Theorem 2.2. Theorem 2.2 implies Theorem 2.1 which gives an estimate
of the wave component by the heat one and which is the key point of the proof of
Theorem 1.1.

The rest of this paper is organized as follows. In section 2, we prove Theorem
1.1, for u # 0, from Theorem 2.1 and we explain how Theorem 2.2 implies Theorem
2.1. For pu = 0, the proof of Theorem 1.1 is given in Appendix C. In section 3,
we begin by stating the new Carleman estimate and we explain how this estimate
implies Theorem 2.2. Then we give the proof of this Carleman estimate. Section 4
is devoted to the proof of important estimates, stated in Theorem 3.2, in the proof
of this Carleman estimate. Appendices A and B are devoted to prove some technical
results used along the paper.
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tribution to this work and for careful reading of the manuscript. I want to thank
also professor Mourad Bellassoued for his offer to work in this domain.

2 Proof of Theorem 1.1

For = 0, the proof of Theorem 1.1 is given in Appendix C. For u # 0, we start
by stating Theorem 2.1. Then we will explain how this Theorem implies Theorem
1.1. Finally, we give the proof of Theorem 2.1.

Let po > 0, small enough, for any p such that |u| > po, we assume

F=(A—ip)U, U= (up,vo,v1) € D(A), F = (fo,90,91) € H (5)
The equation (5) yields

(A — ZM)UO = f() in Ql,
(A+pP)vy = g1 +ipgo inQy, (6)
v = go+ipvy in€ly,

with the following boundary conditions

ug|r, =0, volr, =0
Uy — 144V = Golv, (7)
8nU() — @n'UO = 0|7

Theorem 2.1 Let U = (ug, vo,v1) € D(A) satisfy equation (6) and (7). Then there
exist constants C' > 0, ¢; > 0 and po > 0 such that for any |p| > o we have the
following estimate

2 c 2 . 2 2 2
[vol[ 71,y < Ce e <Hf0HL2(Ql) + 1191 + ingollz2(0,) + 190[l5r1 0y + HUOHHl(m)) :

(8)



Moreover, from the first equation of system (6), we have
/Q (= + ip)uoTiods = || Vool Zagg, + it 100 2oy — /8nu0u_oda.
1 Y
Since ug|y = go + ipvy and O,ug = —30,v, then

/(; (—A + Z/L)Uoﬂodl' = HVU/OHiQ(Ql) + Z,U HUOHiQ(Ql) — iu/@n/voﬂoda + /an/voyoda. (9)
1

Y Y

From the second equation of system (6) and multiplying by (—iu), we obtain
in / (D + Yo = —ip | Vool oy, + i ool 2aqy + it / DvoTodo.  (10)
Qo ¥
Adding (9) and (10), we obtain

/ (—=A + ip)ugtodr + i,u/ (A + p?)vgTodr =
Ql Q2

. 2 2 . 2 . 2 _
L ||u0||L2(Ql) + ||VUO||L2(91) U ||VUO||L2(92) + iy’ ”vOHLQ(Qg) + /Gn/vogoda.
g

Taking the real part of this expression, we get

2 . —
[Vuollz2i) < (A —ip)uoll 2 g, HUOHB(QI)"‘H(A + MQ)UOHLz(QQ) |’U0‘|L2(92)+’/5n/0090d0
v
(11)
Recalling that Avg = g1 + ijugo — p*vy and using the trace lemma (Lemma 3.4 in
[6]), we obtain

[0wvioll -3,y < € (2 ool sy + 91 + il 2 ) -
Combining with (11), we obtain
||VUO||?;2(91) < ”fOHL?(Ql) ||U'0||L2(Ql) + g1 + W90||L2(92) ||U0||L2(Qz)
+ (ol gy + s + im0l 120 ) 0 ]3.,
Then

C C
2 2 2 : 2 2
||VU0||L2(91) < s ||f0||L2(Ql) te ||UOHL2(91) + s g1 + W90||L2(Q2) +e HUOHLQ(QQ)

+ <M2 lvoll g1 (0, + llg1 + iugolle(92)> lgoll 7., (12)
Now we use this result proved in Appendix A.

Lemma 2.1 Let O be a bounded open set of R™. Then for all py > 0, there exists
C' > 0 such that for u and f satisfying (A —ip)u = f in O, |u| > po, we have the
following estimate

lllin o < € (IVull20) + 1 l120)) - (13)



Using this lemma and (12), we obtain, for € small enough

2 2 , 2 2
HUOHHl(Ql) <C Hf0HL2(Ql) + Cellg1 + WQOHH(QQ) te€ ||U0HL2(QQ)

+ (1 L3y + 91 + 10l 2 ) N0l -

Then there exists ¢3 >> ¢; such that

2 2 —¢ 2 —¢ , 2 ¢ 2
HU’OHHl(Ql) <C (HfOHL?(Ql) + el ||U0||H1(Q2) + Ceem el g1 + W90||L2(92) + el ”90||H1(92)> :

(14)
Plugging (14) in (8), we obtain, for € small enough
2 c 2 2 . 2
||U0||H1(92) < et (“fOHL?(Ql) + ||90||H1(92) + g1 + ZMQOHL?(QQ)) : (15)
Combining (14) and (15), we obtain
ol 710,y < Cel¥! <||f0||12(91) + [lgoll 7710y + [lon + iu90||i2(92)> : (16)
Recalling that v; = gy + ipve and using (15), we obtain
2 c 2 2 . 2
||U1”H1(92) < Cet (Hfo”m(m) + ”gOHHl(Qz) + g1 + W90HL2(QQ)> : (17)
Combining (15), (16) and (17), we obtain Theorem 1.1.
U

Proof of Theorem 2.1

Estimate (8) is the consequence of two important results. The first one is a known
result proved by Lebeau and Robbiano in [9] and the second one is given by Theorem
2.2 and proved in section 3.

Let 0 < € < e and V, j = 1,2, such that V., = {z € Qy, d(z,7) < ¢}

Recalling that (A + p?)vg = g1 + iugo, then for all D > 0, there exists C' > 0 and
v €]0, 1] such that we have the following estimate (see [9])

1—v . v
fooll gy < Ce ool (s +itgoll oy + ol (18)

Moreover we have the following result proved in section 3.

Theorem 2.2 There exist C > 0, €a > 0 and po > 0 such that for any |u| > po,
for all ko > 0, there exists ky > 0 such that we have the following estimate

2 2 o 2 2
HUOHHl(V(Z) < Cetil [HfOHH(Ql) + g1 +ingoll 20,y + 190151 00y + w0l

+ Ce kM ||U0H?{1(92) : (19)



Combining (18) and (19), we obtain

C ,p C D
2 2 D 2 D_ 2
||U0||H1(92\V€2) < Celvol[ g (a, + = e*v i ||gy + i119ol| 720, + Ee(zv k)l [voll 71 ()
C D 2 . 2 2 2
+€13€(2”+k1)|“| [HfOHL?(Ql) + lg1 +ingollr2(0,) + 90l 51 (0y) + ||u0||H1(Ql)] (20)

Adding (19) and (20), we obtain

2 2 D . 2 D _ 2
||U0||H1(Q2) < Ce ||U0||H1(92) +Cee®v g1 + WQOHL?(QQ) + Cee®v i ||U0||H1(Q2)

D 2 . 2 2 2
FOl S| fol20) + llgn + g2y + 0l ) + ol |-

We fixe € small enough and ky such that 2% < ko, then there exists pg > 0 such

that for any |u| > 1o, we obtain (8).
4

3 The Carleman estimate and its consequence

In this part, we prove the new Carleman estimate and Theorem 2.2 which is a
consequence of this estimate.

3.1 Statement of the Carleman estimate

In this subsection we state the Carleman estimate which is the starting point
of the proof of the main result. We begin by giving some notations and definitions
used in the sequel.

Let 7 be a positive real number such that 7 > Cj|u|, Cy > 0. We define the
Sobolev spaces with a parameter 7, H: by

w(z,7) € HE <= (&)U, r)el? (&) =[¢f + 7%

where u denoted the partial Fourier transform with respect to z.
For a differential operator

P(z,D,7,p) = Y agx(z)u"r’ D",

|a|+k+j<m

we denote the associated symbol by

p(l‘,g,T, M) = Z aa’k(a:),uijéo‘.

|ee|+k+j<m

The class of symbols of order m is defined by

ST = {p(w,&ﬂ n) € C™,

DgD?p(fE,f,T, M)‘ < Ca7/3<£’7'>m_|/3|}



and the class of tangential symbols of order m by
TS0 = {p(e,€.7.0) € €, |DEDip(e, €7, 0)| < Capte )™ P}

We denote by O™ (resp. TO™) the set of pseudo-differential operators P = op(p),
p € S (resp. TS™) and by o(P) the principal symbol of P.

We shall frequently use the symbol A = (¢, 7) = (|¢/]> + 72)2.

We use the following Garding estimate: if p € T'S? satisfies for Cy > 0, p(z, &, 7) +
p(x, &, 1) > CyA?, then

3C; >0, 379 >0, V7 > 79, Vu € C°(K), Re(P(x, D', 7, u)u,u) > C4 ||0p(A)u||iQ .

(21)
Let u = (ug, vg) satisfy the equation
—(A —+ M)UO = f1 in Ql,
—(A + M2>U0 = fg in QQ,
: (22)
op(B1)u = ug — ipvyg = ey on-~y,

op(Ba)u = Oyug — Opvg = €3 On7y,

We will proceed like Bellassoued in [3], we will reduce the problem of transmission to
a diagonal system defined only on one side of the interface with boundary conditions.

Let z = (2/,2,) € R"! xR. In a neighborhood W C R" of (0, 0), we use normal
geodesic coordinates (we can assume W symmetric with respect to x, — —x,). We
denote

Oy ={reR"z,>0}NW, and ©;={xeR" z, <0}NW.
The Laplacian on ©, is written in the form
A = —Ay(x,D) = — (D2 + R(+x,,2', Dy)) .
The Laplacian on ©; can be identified locally to an operator in ©, given by
A =—A(z,D) =— (D2 + R(—z,,2', D)) .
We denote the operator, with C'* coefficients defined in ©,, by
A(w, D) = diag(4i(, D), As(x, D,))
and the tangential operator by
R(z, Dy) = diag <R(—xn, %', Dy), R(+n, @, Dx/)) — diag (Rl (z, Dy), Ro(z, Dm/)>.

The principal symbol of the differential operator A(z, D) satisfies
o(4) = & +1(x,€), where r(z,€) = diag(ri(2,€),72(2,€)) = o(R(z, Dr)) and
the quadratic form r;(x,&’), j = 1,2, satisfies

3C >0, Y(x,&), ri)>ClEP, j=1,2
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We denote P(z, D) the matrix operator with C*° coefficients defined in
@27 by

Ple. D) = ding(P (. D) Pae. D) = (DD

Let p(z) = diag(y1(x), p2(z)), with ¢;, j = 1,2, are C* functions in ©,. For 7
large enough, we define the operator

A(z,D, 1) = "% A(x,D)e” "%

where the principal symbol of A(z, D, T) is given by

Op >2 —i—r(w,f'—i—zﬁ'a—(p) € S2.

o(A) = (gn + T =~

Let
. 1 . . 1 . .
Q2 = §(Aj + A7), Q= Z(Aj —A%), =12

its real and imaginary part. Then we have
Aj = Qs +1iQ1,
0(Qaj) = &+ q2(2,8.7), 0(Qry) = 27—%&1 +27q1(2, 1), j=12,
where ¢ ; € T'S! and ¢o; € T'S? are two tangential symbols given by
ga5(2,&',7) = r(2,€) = (7522 — m2r(x, 35,

~ 0w .
(h,j(%f’ﬂ') - Tj(l',él, {;;3)7 J = ]-72a

where 7(z, &', ) is the bilinear form associated to the quadratic form r(z,&’).
In the sequel, P(x, D, 7, ) is the matrix operator with C'*° coefficients defined
in ©, by

. A(x,D, 1) — 0
Plo D.rop) = ding(Pie, D7) Paa, D) = (B RT 70

(25)
and u = (ug, vy) satisfies the equation

Pu=f in {z,>0}NW,

op(b1)u = ug|z,—0 — T4V |x,—0 = €1 on {z,=0}NW,

op(bg)u = (Dmn + iT%ﬁ%) o)z, =0 + (Dmn + irg%) Volz,=0 = €2 on {x, =0} NW,
(26)

where f = (f1,f2), e = (e1,e2) and B = (op(b1),op(b2)). We note p;(z,&, 7, 1),
J = 1,2, the principal symbol associated to Pj(z, D, 7, ). We have

pl(za 57 T, M) = 572L + QQ,1<-T7 517 T) + 2(27—%3%511 -+ 27'611,1(35, 5/7 T))
(27)
pQ(‘ra §7 T, M) - 52 + Q2,2<x7 5,7 T) - MZ + Z<27—gxi72l§n + 27(]1,2(*%7 5/7 T))

9



We assume that ¢ satisfies

[ 01(z) = pa(2) on{z, =0}NW
3@1 _
< 6xn>0 on{z, =0}NW (25)

gl 2— O¢2 2>1 on{z,=0}NW
L \ Oz, o, "
and the following hypoellipticity condition of Hormander: 3C' > 0, Vo € K
V¢ € R"\{0},

1 1
Rep; =0 et —Imp; =0) = < Rep;, —Imp; ¢ > C(,,7)?%, (29)
2T 2T
_ of g _ of g\ - . .
where {f,g}(z,&) = > <6_£'W — $6—6> is the Poisson bracket of two functions

f(z, &) and g(z,€) and K is a compact in {z,, > 0} NV
We denote by

k
2 —j 2 2 2
lallpaon) = llull s Nulli, =D 7 lulfey, s lulli = [lop(A*)u|”,
§=0
2 2 2 2 2 2 2
ulyr = Nulen=olly > luly = llule,=olly, # €R and fuli,, = |uly + [De,ul”.

We are now ready to state our result.

Theorem 3.1 Let ¢ satisfy (28) and (29). Then there exist constants C > 0, 19 > 0
and po > 0 such that for any ™ > 7o, || > po such that > Cy|p|, Co > 0, we have
the following estimate

el + 7 fwf} + 7| Dy, uly

7_2
< (1Pt Dryull + Z oplboyu + 7lopfta)ul) (30

for any w € C°({x, > 0} NW).

Corollary 3.1 Let ¢ satisfy (28) and (29). Then there exist constants C' > 0,
7o > 0 and po > 0 such that for any 7 > 79, || > po such that ™ > Cy|u|, Co > 0,
we have the following estimate

T ||€Wh||§{1(@2) < C(HQWP(%D)’"L“;(%)
2
T T T
s lemop(BOnI%y I op(Bahlg ). (31
for any h € Cg°({z, > 0} NW).

Proof.
Let w = e™?h. Recalling that P(x, D, T, p)w = e"?P(z, D)e”"?w and using (30), we
obtain (31).

10



3.2 Proof of Theorem 2.2

To apply Corollary 3.1, we have to choose ¢; and g9 satisfying (28) and (29).
We denote z = (2/, z,,) a point in Q. Let o = (0, —4d), § > 0. We set

W(x) = |z — 20)* — 62 and
901(1‘) — 6_ﬁ¢(ml7_xn)7 SDZ(‘,E) =

The weight function ¢ = diag(p1, p2) has to satisfy (28) and (29). With these
choices, we have ¢i|,,—o = ¥als,—0 and %|$n:0 > 0. It remains to verify

O\ (D) on {z, = 0} (32)
ox,, ox,, "
and the condition (29). We begin by condition (29) and we compute for ¢; and p;
(the computation for ¢y and p, is made in the same way). Recalling that

)
6—5(¢(:c)—0ca:n)7 >0, and 5 < a < 20.

{Rep. - mp | 0,6) = 57 e, il (0) Q€ + it o)

+ [0epi (2, € — ity (2))] @1 (%) [Oepn (2, € — ity (7))
We replace ¢ (z) by @1 (x) = e PP =) 3 > 0, we obtain, by noting & = — By ()1

{Reph —Imp, }

= (=0 | {Repson  ir), 5t o+ i7) | (20) = 010/ @0yp s + i)
and
¥/ @)0pr (. n + i) = 4 |72 Ipu ()1 + | m, )

where pi(x,n,1’) is the bilinear form associated to the quadratic form p;(z,n). We
have

1
(Rep1 =0 et Q—Impl = O) < pi(z,n+imy)’) =
T

o If 7 =0, we have pi(z,£) = 0 which is impossible. Indeed, we have
m(z, &) >C \5]2, V(z,&) € K x R", K compact in {x, > 0} NW.

o If 7 # 0, we have py(z,n,9") = 0.
Then |4/ (2)dyp1 (x,1 + im¢")| = 472 |p1(,4")|> > 0. On the other hand, we
have

1
{Repl(xa n— iT’[p/)a Zlmpl(mu n + ZT¢/>} (.flf, 7]) S Cl(|77‘2 + 7—2 |¢/|2)

where C; is a positive constant independent of ¢'. Then for § > C, the
condition (29) is satisfied.

11



Now let us verify (32). We have, on {x, = 0},

2 2
()~ (Gn) = et

Then to satisfy (32), it suffices to choose § = % where M > 0 such that % > (.
In the sequel, to respect the geometry we return in ©; for the heat component

uo (In this case ¢; defined above becomes ¢, (z) = e~ #¥@),

Let us choose 1 <1} <ry <0 =1(0) < ry <ry <ry. We denote

wj:{:ceQ,rj<w(x)<r;} and Ty, = wy N Oy,

We set R; = e 773, R = e j=1,2,3.
Then Ry < R3 < R, < Ry < R} < R;. We introduce a cut-off function xy €
Cs°(R™1) such that

0 if p<mr, p=>ri
1 if  per,rsl.
Let @ = (g, Do) = Xu = (Xuo, X00), we get the following system
(A —idp)ig = Xfo+ [A —ip X]uo
(A +p*)0 = x(g1+ipgo) + [ + 12, X]vo,
U1 = go+ 1o,

with the boundary conditions

tio|r, = olr, = 0,
OP(Bl)fL = 7:6[) - Z/MNJO = ()NC.QO)”%
Op(Bg)'iL = ([8717)2]'”0 - [afwje]vo)h'

From the Carleman estimate of Corollary 3.1 , we have
o |12 r e 12 T - 112
Flle il < CUle™ (B = iniiolagey + €7D + 10|,

2

T r ~ 112 r ~ 112
gl op(Boll g,y + 71 op(Bill o, ) (33)

)

Using the fact that [A —ipu, x| is the first order operator supported in (w; Uws)N©Oq,
we have

T SN~ )2 T 2 T 2
€7 (A = ip)tio|| 20,y < C (62 Bl foll220, + €37 ||u0||H1(Ql)) . (34)

Recalling that [A + p?, ] is the first order operator supported in (w; Uws) N O,
we show

T ~ 2 T . T
He (A + NZ)UOHLz((%) <C <€2 g1 + ZlﬁgOHi%QQ) + *Ths ||U0H§{1(Qg)> : (35)
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From the trace formula and recalling that op(Bs)@ is an operator of order zero and
supported in {z,, = 0} Nws, we show

T ~12 T 2 T 2 T 2
T e op(B)il} (s, —0) < C*™ lullin @y < C (27 ol ) + ™ ol ) -
(36)
Now we need to use this result shown in Appendix B

Lemma 3.1 There exists C > 0 such that for all s € R and u € C3°(2), we have

lop(A)e™ul| < Ce™ [lop(A*)u| . (37)

Following this Lemma and recalling that 7 > Cy ||, Co > 0, and || > o, we obtain
72 o 12 2 927¢ 2 2 27¢ 2

zleop(BIilly o) < CT e golyy < CTe g0l - (38)

Combining (33), (34), (35), (36) and (38), we obtain

/ 2 / 2 2 2
Cre¥ri ||u0||H1(w2m@1) + Cre? R ||U0||H1(T$0) < O ”fOHL?(Ql) + i ||u0||H1(Q1)

T . 2 T 2 T 2 TC 2
+e77 [|gr + ZMQOHL?(QZ) + 7 ||U0||H1(Q2) + i ||u0||H1(Ql) +e? “gOHHl(Qg))'

Since R3 < R, < R;. Then there exist ¢; > 0 and ¢y > 0 such that

2 c1T 2 . 2 2 2
HUOHHl(TzO) < Ceo [HfOHU(Ql) + g1 +ingoll 2,y + 1901151 0y + HuoHHl(Ql)}

—CoT 2
+ Ce® ||U0||H1(Q2) : (39)
Now we must distinguish two cases :
2 2 , 2 2 2
o Case 1 : ||UO||H1(92) 2 (||f0||L2(Ql) + g1 + W90||L2(92) + ||90||H1(92) + ”uOHHl(Ql))

Minimizing the right-hand side of (39) with respect to 7, we get with 0y = ¢2/(c14¢2),
the following estimate

)

2 2 : 2 2 2
HUOHHl(TzO) < C <Hf0”L2(Ql) + llgr + wgoHL2(92) + H90HH1(QQ) + HUOHHI(Ql)>

—80

9 1
x (Ilolngay) - (40)
, 2 2 . 2 2 2
e Case 2 : [[vo|[31q,) < <Hf0HL2(Ql) + g1 +ingollz2 0,y + 190115 0y + Hu0HH1(§21)>

In this case (40) is trivial.
Then for all k5 > 0, there exists k1 > 0 such that we have

2 2 . 2 2 2
loolyy < CEM [ ollZagany + lon + ol + 0l ey + ol o |

+ Cetelv ||U0||§{1(92) : (41)

Since 7 is compact, then there exists a finite number of T}, such that v C UT,, and
if €5 small enough, we have V., C UT,,. Then (19) follows from (41).
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3.3 Proof of the Carleman estimate (Theorem 3.1)

In the next section we will prove the following theorem which is analogous to
Theorem 3.1 with another scale of Sobolev spaces.

Theorem 3.2 Let ¢ satisfy (28) and (29). Then there exist constants C > 0, 15 > 0

and o > 0 such that for any T > 1o, || > po such that > Coy |p|, Co > 0, we have
the following estimate

rlull?, < € (1P, D7, pull” + 7l ) (42)

and

)
a2, 47l < © (HP(as,Dm P + T opltn)uf} + 7 \op(bz>u\2) )

for any u € C°({x, >0} NW).
To prove Theorem 3.1, we need the following Lemma.

Lemma 3.2 There exist constants C > 0, 19 > 0 and po > 0 such that for any
T > To, || > po such that 7 > Cy ||, Co > 0, we have the following estimate

1 2 1 2
| p2.op(A~ 4| + || Dayop(adyu +7lull,

2 3
+ Hop(Ai)u

)
<c (IIP(:L", Druull + 7 fop(ouf + 7 |op<b2>ur2) R

for any u € C°({z, > 0} NW).

Proof.
We have

P(z,D,1,p) = ch” + R+ 70, + 12Cy,
where R € TO?, Cy = ¢y(x)D,, + Ty, with T} € TO" and Cy € TO°. Then we have

|22, + Ryop(asa
1 2 1 2 1 2 L 2

<C <HP0p(A‘2)uH + 72 Hop(AE)uH + 72 HDxnop(A_i)uH + 74 Hop(A_E)uH ) )

Since

2 . 9
7 < O7° fJull”,

op(A~ )l

2
T2 HDmnop(A_%)uH <Cr HD%UH2 and

L2
72 Hop(AE)uH = 72(\%0p(A)u, VTu) < C (T ||0p(A)u||2 + 73 HuHZ) )
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Using the fact that ull; . = op(A)u]|® + | Dy, ull*, we obtain

|22, + Ryop(aiyu <c(HPop yul| +T||uuh).
Following (42), we have
L 2 o 2
@2, + mesa b < ¢ ([Posa b+ 1PulP < 7y, ) )

We can write

Pop(A’%)u = op(A’%)Pu + [P, op(A’%)]u
= op(A’%)Pu + (R, op(A’%)]u
+ 7[Ch, op(A_%)]u + 72[Cy, op(A_%)]u
= op(A_%)Pu +t1 + to + t5. (46)

Let us estimate t1, ¢, and t3. We have [R, op(A~2)] € TOz, then following (42), we
have

2 1 2 2 2 2 2
1) < € |lop(A3)u|” < € (lop(A)ull® + ull?) < € (IPulP +7lul}, ) - (47)

We have ty = 7][Cy1,0p(A~2)]u = 7[ci(2) Dy, , op(A~2)]u + T[T}, op(A~2)]u. Then
following (42), we obtain

6ol < € (Dl + 7 JulP) < © (I1Pulf 47 luly,) . (49
We have [Cy, op(A~2)] € TO™2, then following (42), we obtain
[721C0,opa ] < o7 JulP < & (I1PulP + 7 lul,, ) (49)
From (46), (47), (48) and (49), we have
|Pop(a—tyul" < € (1Pul + 1l )
and from (45), we obtain
|02, + Ryop(a=3yu| < & (IPulP + 71k, ). (50)
Moreover, we have

2 2
H(D2 + R)op(A H = HD2 op(A~ 2y (A_%)u

15
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where (.,.) denote the scalar product in L?. By integration by parts, we find

2

1 2 1 2 1
|02, + Ryop(AHu|” = || D2, op(a~)u (A H)u

1

+2Re (i(Dmnu, Rop(A™YYu)g + i(Dy, u, [op(A72), R]op(A_E)u)())

1oRe ((RDxnop(A_%)u, D, op(A~%)u) + (Ds, op(A=)u, [Ds, , R]op(A—%)u)> (51)

Since, we have

[op(A2)u]|" = (op(A2)op(A)u, op(A2yu) = 37 (DRop(A2yu, op(A%)u) 7 (op(A% ), op(A

1<n—1

D=

Ju).

By integration by parts, we find

2 2 2

= > (Dyop(Ad)u, Diop(Adyu) +72 |op(A)u

j<n—1

1

= k47° Hop 2)

HOP(A%)U

(52)
Let xo € C°(R™"1) such that xo = 1 in the support of u. We have

N[

k= >" (xoDjop(AZ)u, Djop(AZ)u) + > (1= x0)Djop(A?)u, Djop(A

j<n—1 j<n—1

Ju).

Recalling that you = u, we obtain

k=" (xoDjop(A2)u, Djop(A2)u)+ Y ([(1=xo), Djop(A?)]u, Djop(A2)u) = K'+k".

Jj<n—1 Jj<n—1
(53)
Using the fact that [(1 — xo), D;jop(A 2)] € TOz and D;op(Az) € TO?2, we show
k< Clop(A)ul®. (54)

Using the fact that Zj,kgnfl Xoa@jxDjvDgv > dxo ngnq ]Djvlz, 0 > 0, we obtain

K <C Z (Xoajijop(A u, Dkop(A%) )

7, k<n—1
<C Y (o, aeDiop(A2)|u, Dpop(A2)u) + > (aDjop(A%)u, Dyop(A%)u).
phsnt jk<n—1

Using the fact that [xo, a;xD;0p(A2)] € TOz and Dyop(A2)u € TO2, we obtain

K< c( Y (auDjop(A2)u, Dyop(A2)u) + Hop(A)uH2> . (55)

G k<n—1
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By integration by parts and recalling that R = a;rD; Dy, we have

§k<n—1

Z (ajijop(A%)u,Dkop(A%)u) = (Rop(A )u, op(Al)u (56)
7, k<n—1
+ 3" (IDx, aplDyop(A? yu, op(Au).
7,k<n—1

Since [Dy, ajk]Djop(A%) € TOz, then

> ([Dx, aj] Dop(A2)u, op(A2)u) < C'[lop(A)ul]”.

7,k<n—1
Following (56), we obtain
> (agDyop(A)u, Diop(Aryu) < € ((Rop(A#)u, op(AF)u) + op(A)ul?)
G k<n—1

(57)

Since
(Rop(A%)u, op(AZ )u) = (Rop(A™%)u, op(AZ )u) + ([op(A™1), Rlop(AZ )u, op(A%)u)).

Using the fact that [op(A™1), Rlop(A %) € TO2 and the Cauchy Schwartz inequality,
we obtain

3
2

(Rop(A%yu, op(A}u) < e op(a?) uH2+§HRop(A—%)qu+C||op(A)u||2 (58)

Combining (52), (53), (54), (55), (57) and (58), we obtain
2 C

3 3

Jop(at)u op(A}) |+ € llopayul.
For € small enough, we obtain
HRop(A_é)qu >C (Hop(/\g)uH2 — 72 Hop(Aé)uHQ) . (59)

Using the same computations, we show
1 1 1 2
(RD,,op(A™%)u, D, 0p(A"3)u) > C (prnop(Az)uH —7 ||Dmnu||2> . (60)
Combining (51), (59) and (60), we obtain

1 1 ‘

|02, + Rop(A=5)a| + [(Dayiw, Rop(A~ yuo] + [(Dr, 0, lop(A=5), Rlop(a—5)u),

+ [P, op(A ), [Day Rlop(A )| 7 [ullf, (6

i)

-
CAJ

> o (Jonentr il + [onemstn]
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Since

(D, Rop(A )| +{ (D, 0, [op(A%), Rlop(A=4)uw)o| < € (IDu,ul? + Jul?) = Cul?,

(62)
and
(D2, 0p(A™H)u, [, Rlop(A~)u)| < O [}, (63)
From (50), (61), (62), (63) and (42), we obtain
22, epa b+ [ Dssomtadye[ + rtaal]
< (IP(, D, 7, pyull* + 7 full,.)
Following (43), we obtain (44).
U

We are now ready to prove that Theorem 3.2 and Lemma 3.2 imply
Theorem 3.1.

Let x € C5°(R"™!) such that y = 1 in the support of w and u = Xop(A_%)w.
Then

N

Pu = op(A~
= op(A”
+ B[y, op(A"2)|w + e1(x) Dy, [, op(A 2w
+ 7Tilx, op(A~2)Jw + 7Co[x, op(A~2)w
= Op(A_%)Pw + [P, op(A_%)]w +ay + as + az + ay + as. (64)

)P
)P

Nl Nl

+ [P.op(A™2)Jw + P[x, op(A™2)]w
+

w + [P, op(A™2)]w + D2 [x, 0p(A™2)]w

Let us estimate ai, ag, as, ay and as. Recalling that [y, op(A_%)] € TO 2 and
xw = w. Using the fact that [D,,,T;] € TO* for all T}, € TO*, we show

) ow

lag|* < © (# op(A—3>w]]2) . (66)

We have R[X,op(A )] € TOz, T[x,op(A~2)] € TO™2 and
Co[x,op(A~2)] € TO~2. Then we obtain

Joul? < € ([[p2,002 ) (A B[+ [lop(a e

Tn

and

In

(A—g)wH2 + 72

1 2
lazll® + flasll* + llas > < € op(a®yu| " (67)

Using the same computations made in the proof of Lemma 3.2 (cf ¢, ty and 3 of
(46)), we show

1

Jienta il < ¢ (Joptaira + 7 hos,l?). (69
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Following (64), (65), (66), (67) and (68), we obtain

2
|Pul* < © ( 1Pl +[|op(a || + 774 Dy 0] + 7! HDinopm-l)sz) -

(69)
We have

op(br)u = op(br)xop(A™2)w = op(A™2)op(by w+op(b)[x, op(A™ 2 )Jw+[op(by ), op(A~2))]w.

Recalling that op(b;) € TO!, we obtain

T 2 T 2 T
T lopoult = T lapop(v)uf < © (E

1 2 T
op(M)op(byu| + 73

T
op(AZ)w‘ ) :
(70)
We have

op(ba)u = op(bs) xop(A™2)w = op(A™%)op(be)w-+op(ba)[x, op(A™2)]w+[op(bs), op(A~2)Juw.

)

(71)

Recalling that op(bs) € D,,, + TO', we obtain

1 2 1 2
7 lop(by)ul* < C <T ‘OP(AW)OP((D)UJ +7 ‘op(A*E)w +7 ‘Dmnop(A*%)w

Moreover, we have
Tlull o, =7 luli + 7 |Duul* = 7 |op(A)yul* + 7| Dy, ul*.

We can write

-
-

op(A)u = op(A) xop(A~2)w = op(A%)w + op(A)[x, op(A~?)]w.
Then

2 2 2 9
7 op(A)ul* > 7 ‘OP(A%)U" -Cr IOP(A_%)w‘ > T lop(A%)w‘ —Crt ‘op(_/\%)w‘
For 7 large enough, we obtain

2

™ op(A)ul® = C |op(A (72)
By the same way, we prove, for 7 large enough
2
71Dyl 2 Cr | D op(A~4)w (73)

Combining (72) and (73), we obtain

1

2
+ 7 ‘Dmnop(/\_i)w

N|—=

op(A2)w

. > C (

2) | (74)
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By the same way, we prove

3 2
op(AD)u|” 2 flop(A)wl* ~ € lu. (75)

L2
HD%LOP(AE)UH > ||D$nw||2 e Hop(A/\_l)Df,;nw”2 e Hop(A‘l)wH2 (76)

and

2
>

HDinop(A_%)u

(77)
HDznop (A~ 1)w” - C ||Dmnop 2)wH2 - C HD%Op(A—Q)w”2 - C ||0p(A_2)wH2.
Combining (75), (76) and (77), we obtain for 7 large enough

2

2
HDxnop H —i—HD opA u op(Ag u

> C (|2, op(A o + 1 D] + lop(A)u]?) . (78)

Combining (44), (69), (70), (71), (74) and (78), we obtain (30), for 7 large enough
and [u| = po.
U

4 Proof of Theorem 3.2

In this section, we use especially microlocal analysis and we recall and follow
the notations used in [10]. The techniques used are the Calderon projector for the
elliptic regions and Carleman estimates for non elliptic regions.

4.1 Study of the eigenvalues

The proof is based on a partition argument related to the nature of the roots of
the polynomial p;(z,£,&,, 7, 10), j =1,2,in &,. On x, = 0, we note

q1 (33'/, 5/7 7-) = qu(Oa 33/7 5/7 T) = (11,2(0, xla 5/7 T)'

Let us introduce the following microlocal regions

2
& = {(x,g’,r,u)erRnl XRxR, @1+ (8371>2 >0},
Oxn

2
Z = {(gj,g”T,,u) c K x R xR xR, g21+ (831) :0}’
OTn

2
51_:{(m,ﬁ',T,,u)GKXR”_IXRXR, qu—i-(aZl) <0},
Oxpn
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g;:{u,g',nmeffxw‘lxl&m’ B2 *@Zi) >0}’
Ozn

2
n— q
Zzz{(x,ﬁ’,f,u)erR 'xR xR, qQ,Z_“u(a_é)?:O}’

OTn

@
82:{(x,g’,r,u)EKanlxRxR, Qoo — 1° —|—(a¢2) <O}.
(o2

We consider py/,(x,&, 7, jt) as a polynomial in &,. Then we have the following lemma
describing the root localization of p,/, (here and in the sequel the index 1/, means
1 or 2).

Lemma 4.1 We have the following
1. For (x,&,7,pn) € 517 , the roots of p1/, denoted zf[/Q satisfy j:[mzli/2 > 0.

2. For (x,&,7,1) € 21/,, one of the roots of p1/, is real.

3. For (x,&,1,u) € 517 , the roots of pi, are in the half- plane Im&, > 0 if
6@1/2 <0 (resp. in the half-plane Im§, < 0 if = 901/2 >0).

Proof.
Using (23) and (24), we can write

B B
pr(a’, 6,7 1) = (Sn + iTafl — z’oq) <£n + z'Tafl + z‘al) ;

(79)
.0 . .0 .
p2($/7 57 T, /'L> - gn +T L — 1 fn + T L + 00 |,
oz, oz,
where a; € C, j = 1,2, defined by
8901 ? .
Oé%(l’/, 5/7 T, M) - 7—87 + Q2,1 -+ 217’ql7
(80)
8902 ? .
ag(xlﬂ 5/7 T, /’l’> - 7—87 - ,u2 + q2,2 + 2@7'ql.
We set 9
1/ .
zli/2 8x/ +iay,, (81)

the roots of p;/,. The imaginary parts of the roots of p;,, are

. 8901/2
81‘”

i ag01/2
ax

Reozl/Q, +R60é1/2

The signs of the imaginary parts are opposite if ‘8@01/2/8xn‘ < ‘Re a1yl
the sign of —0¢y,,/0x, if ‘8901/2/8%’ > !Re 051/2’ and one of the imaginary parts
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is null if }8(,01/2/8:%‘ = !Re 041/2‘- However the lines Re 2z = +7 0¢y/,/0x, change
" -

by the application z — 2z’ = 22 into the parabolic curve Rez’ = ‘7’ 01/, /01y,
Im 2/|* /4(7 dp1/,/0x,)?. Thus we obtain the lemma by replacing 2’ by a%/Q.

Lemma 4.2 If we assume that the function ¢ satisfies the following condition

dipq ? o ?
(axn) (axn o1, (82)

then the following estimate holds

2 2
2 4di a0
Q2= + 5 >t 3 (83)
(8902/8%1)2 (8¢1/8xn)2
Proof.
Following (24), on {z, = 0}, we have
de1\* [ _0p2\?
G22(2, &', 7) — qua(x,8',7) = (Tﬁfi) - (Taij) ‘ (84)
Using (82), we have (83). O

Remark 4.1 The result of this lemma imply that £ C & .

4.2 Estimate in &

In this part we study the problem in the elliptic region £'. In this region we
can inverse the operator and use the Calderon projectors. Let x(z,&, 7, 1) € TS?

such that in the support of x™ we have ¢a1 + W > 0 > 0. Then we have the
following estimate.

Proposition 4.1 There exist constants C' > 0, 79 > 0 and pg > 0 such that for any
T > 7o, |p| > po such that > Co |p|, Co > 0, we have

2
7 opOc Yully, < © (PG D7l + el + 7 Jully ) (8)

for any u € C§°({x, > 0} NW).
If we suppose moreover that ¢ satisfies (82) then the following estimate holds

2 T _
rlop(x)ul},, < € (||P<x,D,T, pull” + T op(br)ul? + 7 lop(ba)ul” + |l + 7 |u|io,7) 7

(86)
for any uw € C°({z, > 0} NW) and b;, j = 1,2, defined in (26).
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Pi=f in {z, >0} NW,

op(bl)"& = ﬂo’mnzo — iu?~10|zn:0 = él on {.I’n = 0} N W,

op(b)ii = (Ds, + 792 ) ol + (D, + 7522 ) Tole,co = & on {n = 0} N W,
(87)

with f = op(x*)f + [P, op(x )] u. Since [P, op(x*)] € (TO)D,, + TO", we have
1122 < € (1P, D7, s + Il (88)

and é; = op(x1)e; satisfying
&1lf < Cleils (89)

and
62 = |(Da, +752),0p(x")| tola,0 + | (D, +i752),0p(¢)] a0 + 0P e
Since [D,,,op(x™)] € TO?, we have

[E2* < C (Jul” + leaf*) - (90)

Let @ the extension of @ by 0 in x,, < 0. According to (23), (24) and (25), we obtain,
by noting dp/0z,, = diag (a<p1/axn, Dipa/0y,), vi(0) =1 (Dﬁnn (o) |gn=0+, DL (7o) |wn:0+),
j=0,1and V) = (d/dw,)” (64,-0),

Pi=f—vy(u)®d§+ = (’yl(ﬁ)+2ir a@) ® 9 (91)

= ) ox,

Let x(x,&, 7, 1) € S? be equal to 1 for sufficiently large |£|+7 and in a neighborhood
of supp(x*). We assume p is elliptic in support of y. These conditions are compatible
due to the choice made for supp(x*) and Remark 4.1. Let m large enough chosen
later, by ellipticity of p on supp(x) there exists a parametrix £ = op(e) of P. We
recall that e € S72 and e has the following form e(z,&, 7, 1) = Z;n:o ej(x, &7, 1),
where ¢g = xp~' and e; = diag(e;1,€ej2) € S;277 where e;; and e, are rational
functions with respect to &,. Then we have

EP =op(x)+ Ry, R,€O ™1 (92)
Following (91) and (92), we obtain

/

~ 1
@ZEi‘i’E —h1®5/+gh0®5 +”LU1,

0¢ Yo(w), hy = o(a), (93)




Using the fact that supp(1 — x) Nsupp(x™) = @ and the symbolic calculus (See
Lemma 2.10 in [7]), we have (Id — op(x)) op(x™) € O™™, we obtain

i ll3, < C72 [full7e - (94)

1
Now, let us look at the term F [—hl ®§ + -hg®d|. For z, > 0, we get
i

. 1 . .
E {—hl ® 0 + gho ® 5} = Tihy + Tohy,

~ 1 n-t W APYRN ~
Ti(h) = (g) /62(” VG (2, € (Y )dy'dE = op(i;)h
1

t] = % 8 eiflfnfne(x’ 57 T, :u’)ggzdgn

\

where v is the union of the segment {{, € R, |{,]| < co/|€'|? + 72} and the half
circle {¢, € C, [&,| = co/|¢'|> + 72, Im&, > 0}, where the constant ¢ is chosen
large enough for the roots 2z and 25 to be enclosed by v (if ¢y is large enough,
the change of contour R — + is possible because the symbol e(z,&, 7, 1) is a
holomorphic function for large |£,|; &, € C). In particular we have in z,, > 0

0F 00001;| < Copple Ty 77IE i =0,1. (95)

We now choose xi(z,&, 7, 1) € TS, satisfying the same requirement as ™, equal
to 1 in a neighborhood of supp(x*) and such that the symbol x be equal to 1 in a
neighborhood of supp(x1). We set t; = x1t;, j = 0, 1. Then we obtain

u= Ef + op(to)ho + op(t1)hy + w1 + wy (96)

where wy = op((1 — x1)fo)ho + op((1 — x1)t1)h1. By using the composition formula
of tangential operator, estimate (95), the fact that supp(1 — x1) Nsupp(x*) = @
and the following trace formula

o(w)|; < CT2 |lulljpir, JEN, (97)

we obtain
Jwa )3, < C772 (ull?, + [ulfo.) - (98)

Since x = 1 in the support of x1, we have e(z, &, 7, 1) is meromorphic w.r.t &, in the
support of x;. The roots zf/z are in Im¢&,, > c14/|¢'|? + 72 (c1 > 0). If ¢ is small
enough we can choose fixed contours 7/, in Im§,, > 5-4/|¢{’|? 4+ 72 and we can write

: 1 i ~ ‘
t] - dlag(tj,h tj72)7 tj,l/z (l’, §/7 T, M) = Xl(ma fla T, M)_/ € ngnel/z (l’, 57 T, M)f%dgm J = 07 L.
Y1/4

271
(99)
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Then there exists ¢y > 0 such that in xz,, > 0, we obtain

&
k950t <

wpre 2T ) P (100)

In particular, we have e2"7(9% )t; bounded in 7.S~'** uniformly w.r.t z, > 0.
Then

102r0p(t;) s[5 2+ op ()b 72 < 0/ €72 op (e T hy[ (wn)da, < O By
>0
and

102, 0p(t;) ;72 < C/ e 22T op(e T Oy, 1)y 2 (w)dn < CT Ryl

Tn>0

Using the fact that hg = 71 (@) + 227’ 52-70() and hy = ~yo(a), we obtain

lop(t)hsly , < CT1ult - (101)

From (96) and estimates (88), (94), (98) and (101), we obtain (85).
It remains to proof (86). We recall that, in supp(x1), we have

' o 11\ 1 1
€ = dlag <€071’ 6072) B dlag (p_l7 p_2> a dlag ((gn - Zf—)(gn - Zl_)’ (571 - Z;)(fn - ZQ_)) .

Using the residue formula, we obtain

(=), , .
AV ><1+L + A =01, Ay, € TSI (102)

1)y T *1/s

e mnzl/Qt

Taking the traces of (96), we obtain

Yo(@) = op(c)yo(@) + op(d)y1 (@) + wo, (103)

where wy = o (F f + wy + ws) satisfies, according to the trace formula (97), the
estimates (88), (94) and (98), the following estimate

rlwof} < € (1P, D7l + [l + 772l ) (104)

Following (101), ¢ and d are two tangential symbols of order respectively 0 and —1
given by

: . 2y
co = diag(co,1, Co,2) with ¢/, = X1y _— 2 - |>
21/2 Z1/2

. _ 1
d_y = dlag(d—1,1,d—1,2) with d_y/, = (Xl—_> .

1/ T *1Ys
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Following (87), the transmission conditions give

Yo(to) — ipyo(To) = €1

(105)
’}/1(’&0) +7 (?70) + ZTgT(p:L’}/o(’ELU) + 2.7'27905")/0(170) = é2.
We recall that @ = (1o, 0p), combining (103) and (105) we show that
0 0
t ~ ~ —1. (5 —1. (5 1 0 1. 0 —1
OP(k’) (Wo(uo),%(i}o% A ’Yl(uo), A 71(1)0)) = wﬁ—;op 1 e1+op 0 A" e,
0 1
(106)
where k is a 4 x 4 matrix, with principal symbol defined by
1 —co 0 —ANd_y; 0
0 1— Co,2 0 —A CL1,2
ko + ! + !
—rg = -7
0 " 0 0 _ 0 0 " 05
. dpr . o
A= AT 1 1
T o, T o,

where 7 is a tangential symbol of order 0.

We now choose xo(z, &, 7, 1) € TSY, satisfying the same requirement as Y™, equal
to 1 in a neighborhood of supp(x*) and such that the symbol y; be equal to 1 in a
neighborhood of supp(x2). In supp(xz), we obtain

4 0 R 0
2F — 27 2 — 27
1 1 1 1
zy A
0 zy — 2y 0 -
Folsupp(x) = 2 T % 2 T %
0 —1 0 0
0 0
Z'TA_la—;ill Z'TA_la—;‘: 1 1

Then, following (81),

det(ko)ysupp(xg) = — (ZIr — Z;)_l (Z;r — Z;)_l AOél.

To prove that there exists ¢ > 0 such that |det(ko)|supp(xs)| = ¢ by homogeneity it
suffices to prove that det(ko)|supp(xs) 7 0 if 1&)? + 72 = 1.
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If we suppose that det(ko)|supp(y,) = 0, we obtain a; = 0 and then of = 0.
Following (80),we obtain

2
¢ =0 and (T3§01> + o1 = 0. (107)
ox,,

But in &, this implies ¢go; > 0, then (107) is impossible.
Therefore det(ko)|supp(x,) 7 0. It follows that, for 7 large enough , k = ko + l%ro is
elliptic in supp(x2). Then there exists [ € 759, such that

op(Dop(k) = op(x2) + Bum,

with R,, € TO~™1, for m large enough. This yields

0

! (70(110)770(170)71\_171(@0); A_l%(@o)) = op(l)wo + %OP(Z)OP (1) €1+ op(l)op
0

+ (op(1 = X2) — Run)* (70(ii0), %0 (D

Since supp(1 — x2) Nsupp(x™) = @ and by using (104), we obtain
120, < C (=612 + rléaf? + | P(a, D 2 2 )
7’|“‘1,0,T > E|61|1 + 7lé|* + (| P(x, D, 7, p)ul|72 + ||“”1T +7 ‘u|1,0,7' :

From estimates (89) and (90) and the trace formula (97), we obtain (86).

4.3 Estimate in Z;

The aim of this part is to prove the estimate in the region Z;. In this region, if
© satisfies (82), the symbol p;(x,&, 7, 1) admits a real root and pe(z, &, 7, 1) admits
two roots z3 satisfy & Im(z3) > 0. Let x°(z, &, 7, 1) € TS? equal to 1 in Z; and
such that in the support of x* we have gg5 — p* + ﬁ > 60 > 0. Then we have

1
OTn
the following estimate.

Proposition 4.2 There exist constants C' > 0, 79 > 0 and pg > 0 such that for any
T > 7o, || > po such that 7 > Cy ||, Co > 0, we have the following estimate

2
llop(ul;, < € (1P, D7 pul® + 7l + ullE, ). (108)

for any uw € C°({x, > 0} NW).

If we assume moreover that ¢ satisfies (82) then we have

0), A" 7 (Tl0), A (o)) -

2 T _
rlop(x)uly ,, < € <HP<w,Dm pull + 75 lop(br)ul} + 7 lop(a)ul” + |l + 7 \uﬁ,oﬁ) ,

(109)
for any u € C3°({z, > 0} NW) and b;, j = 1,2, defined in (26).
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4.3.1 Preliminaries

Let u € C°(K), @ = op(x")u and P be the differential operator with principal
symbol given by
p(l', 57 T, :u) = diag<p1ap2)

with p; and py defined in (27). Then we have the following system

Pi=f in {z, >0} NW,
(110)
Bﬂ:é:(é1,52> OIl{InZO}ﬂVV,

where f = op(x°)f + [P, op(x®)] u. Since [P, op(x°)] € (TO°)D,, + TO", we have
17122 < € (1P, D, 7. wyulfs + lulf, ) (111)
B defined in (26) and é; = op(x")e; satisfying
e} < Cleal; (112)

and

&y = (D, + iT%%), op(XO)} Up |y =0 + [(Dwn + 2'7'%5—5), op(XO)] V02,0 + op(x°)es.
Since [D,, ,op(x™)] € TO®, we have

e < O (ju + leal?) (113)

Let us reduce the problem (110) to a first order system. Put v =' ((D’, 1), D,, @).
Then we obtain the following system

D, v—op(P)v=F in{x,>0}NW,
(114)
op(B)v = (iAél, éy) on{z,=0}NW,

where P is a 4 x 4 matrix, with principal symbol defined by

Py = 0 Aldy I, = q¢iip O ly = 42,1 0
Ay —ily )7 0 qa2 )’ 0 Goo—p* )’

B is a tangential symbol of order 0, with principal symbol given by

B+ I 0 —i 0 0 n 1
0 MTO o iTA_lgT@:l Z'TA_lgTsai 11 MTO
. 1
(ro a tangential symbol of order 0), F =4(0, f) and A = (¢/,7) = (|¢']* + 7).
For a fixed (xg, &, 7o, ft0) in suppxo, the generalized eigenvalues of the matrix P
are the zeroes in &, of p; and py i.e 2f = —iTgT“":l + iy and 2 = —i7222 4 jo, with

Bzn
+Im(z5) > 0 and 2 € R.
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Let s(z,&,7,1u) = (s7,85,51,55) be a basis of the generalized eigenspace of
P(z0,&), 70, o) corresponding to eigenvalues with positive or negative imaginary
parts. The vectors s;-t (x,& 1, 1), j = 1,2 are C* functions on a conic neighborhood
of (g, &, 7o, o) of degree zero in (', 7, u). We denote op(s)(z, D, 7, i) the pseudo-
differential operator associated to the principal symbol

s(x, &, p) = (s7 (2, & 7, 1), 55 (2,& 7, 0), st (2,87, 10), 85 (2, €, 7, 1) -

Let x(z,&, 7, 1) € TS? be equal to 1 in a conic neighborhood of (g, &), o, fto) and
in a neighborhood of supp(x”) and satisfy that in the support of ¥, s is elliptic.
Then there exists n € T.S?, such that

op(s)op(n) = op(X) + Run,
with R,, € TO™™! for m large.
Let V = op(n)v. Then we have the following system
D, V=GV+AV+F,  in{z,>0}NnW,
(115)
op(B)V = (iAél, é)+vy on{x,=0}NW,
where G = op(n)op(P)op(s), A = [Ds,, op(n)] op(s), .
Fy = op(n)F + op(n)op(P)(op(l = X) — Rp)v + [Ds,, 0p(n)] (op(1 = X) — Rn)v,
op(By) = op(B)op(s) and vy = op(B)(op(x — 1) + Ry )v.
Using the fact that supp(1 — x) Nsupp(x°) = &, R,, € TO™ 1, for m large and
estimate (111), we show

1B < € (1P, D7 wpul2s + ) (116)

Using the fact that supp(1 — x) Nsupp(x°) = @, R € TO™1, for m large and
the trace formula (97), we show

m ol < C (72 ul} o, + lulf, ) (117)

Here we recall an argument proved in Taylor [13] given by this lemma

Lemma 4.3 Let v solve the system

0
8_yv =Guv+ Av
E : .
where G = and A are pseudo-differential operators of order 1 and 0,

F
respectively. We suppose that the symbols of E and F' are two square matrices and
have disjoint sets of eigenvalues. Then there exists a pseudo-differential operator K
of order —1 such that w = (I + K)v satisfies

2w:Gw—i—(al )w+R1w+R2v
dy Q2

where o; and R;, j = 1,2 are pseudo-differential operators of order 0 and —oo,
respectively.
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By this argument, there exists a pseudo-differential operator K(z, D,/, T, i) of
order —1 such that the boundary problem (115) is reduced to the following

D, w— op(H)w = F in{x, >0}NW,
) (118)
op(B)w = (%Aél, é) + v +vy on{z, =0}NW,

where w = (I+ K)V, F = (I+ K)Fy, op(H) is a tangential of order 1 with principal
symbol H = diag(H~,H*) and —Im(H~) > CA, op(B) = op(B))(I + K') with
K’ is such that (I + K')(I + K) = Id + R, (R,, € O~™"' for m large) and
vy = op(B1) R V.

According to (116), we have

|£1? < € (1P(, D, 7 myullzs + ul?,) (119)

Using the fact that R, € O~™~! for m large, the trace formula (97) and estimates
(112), (113) and (117), we show

5 2 T 2 2 —21 2 2
7 lop(B)w| <C E|€1I1+T|62| + 7 fulio, +llulli, ) (120)

Lemma 4.4 Let R = diag(—plds,0), p > 0. Then there exists C > 0 such that
1. Im(RH) = diag (e(x, &', 1, 1),0), with e(x, &7, 1) = —pIm(H™),
2. e(x, &, 1, 1) > CA in supp (X°),
3. —R+B*B> C.Id on {x, = 0} N W N supp (x°).

Proof
We have
Im(RH) = diag (—pIm(H™),0) = diag (e(z, ', 7, 1), 0), (121)
where e(z, &', 7,1) = —pIm(H~) > CA, C > 0. It remains to prove 3.
We denote the principal symbol B of the boundary operator op(B) by (B‘,l’;’*)

where B* is the restriction of B to subspace generated by (si,s3). We begin by

proving that B is an isomorphism. Denote

wy =" (1,0) and wqy =" (0,1).

Then N o
st = (w1, zf Awy)
+ +A-1
s3 = (w2, 25 A w,)
are ei t iated to 2" and z3. We have Bt = (By + Lro)(sf sf) =
genvectors associated to z;{" and z;. We have = (By + ,ﬂ"O)(31 Sy ) =

Bt + i?“o* . To prove that B* is an isomorphism it suffices, for 7 large, to prove that
BZ is an isomorphism. Following (81), we obtain

0 i
+
Bo = < A Yy A Vi ) '
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Then
det(BS’) = —A_lOél.

If we suppose that det(Bg) = 0, we obtain a; = 0 and then o? = 0. Following (80),
we obtain

64,01 2
¢ =0 and T +q21 = 0.
oz,

2
= 0, we obtain <T%> = 0, that is

Combining with the fact that ¢»; + .

(9p /3%)
impossible because following (82), we have (%) # 0 and following (24), we have

7 # 0. We deduce that B* is an isomorphism. 3 ) . )
Let w = (w™,w") € C* = C?* @ C?. Then we have Bw = B~w~ + BTw". Since BT
is an isomorphism, then there exists a constant C' > 0 such that

’BJ%U*‘Z > }w+|2.

‘wﬂ2 <C <’Z§’w‘2 + ‘w|2) )

Therefore, we have

We deduce
—(Rw,w) =p ‘w’f > é ’w+‘2 +(p—1) ‘w’|2 — ‘Bwﬁ

Then, we obtain the result, if p is large enough.

4.3.2 Proof of proposition 4.2
We start by showing (108). We have

1P1(z, D, 7, pyuol|* = [[(RePr)uol|* + || (Tm Py yuo |
+ z{((lmpl)uo, (RePl)u0> - ((RePl)uo, (ImPl)ugﬂ .

By integration by parts we find
PG, D7, g = (| (R Py et | (1 Py el P+ [ReP TPt g, ) +7 o (o),

where

Qo(u) = (—252-Dy,un, Dy, uo)o + (0p(r1)ug, Do, uo)o
+  (op(r}) Dy, o, uo)o + (0p(r2)uo, uo)o + T(_so_uo’ U)o,

/ 0
ry =11 = 2q11, ro = —252Gs1.
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Then we have
Qo(uo)|* < C |U0|io,7‘

We obtain the same estimate on vy by the same method. In addition we know that
the principal symbol of the operator [ReP;, ImP;], j = 1,2, is given by %{Rer, ImP;}.
Proceeding like Lebeau and Robbiano in paragraph 3 in [9], we obtain (108).

It remains to prove (109). Following Lemma 4.4, let G(x,,) = d/dz,,(op(R)w, w) 2 (mn-1).
Using D,,,w — op(H) = F, we obtain

G(an) = —2Im(op(R)F, w) — 2Im(op(R)op(H)w, w).
The integration in the normal direction gives
(op(Ryw.w)o = [ Tm(op(R)op(H)w, whdz, +2 [ mlop(R)F. wide,. (122)
From Lemma 4.4 and the Garding inequality, we obtain, for 7 large enough,
Im(op(R)op(H)w,w) > C ‘w’@ ) (123)
moreover we have for all e > 0
J

Applying Lemma 4.4 and the Garding inequality, we obtain, for 7 large enough,

(op(R)F,w)’dxn < eC'THw_HQ—I—%HFHQ. (124)

—(op(R)w, w) + |op(B)w[* > C |w]*. (125)

Combining (125), (124), (123) and (122), we get
C -~ .
C [} + Cluwl < Z|IF|? + op(B)wl. (126)

Then ) 3
7 w® < C|IF|? + |op(B)w|*.

Recalling that w = (I + K)V, V = op(n)v, v =! ((D',7)a, D,,u) and @ = op(x")u
and using estimates (119) and (120), we prove (109).

U
4.4 Estimate in &

Let x (x,&,7,u) € TS? equal to 1 in & and such that in the support of xy~ we
2
have g21 + ((9@13#71)2 < —9 < 0. Then we have the following estimate.

Proposition 4.3 There exist constants C' > 0, 79 > 0 and pg > 0 such that for any
T > 7o, || > po such that 7 > Cy ||, Co > 0, we have the following estimate

_ 2
rlopculls, < € (1P, D7 pull + 7 luf}o, + ) (127)
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for any u € C°({z, > 0} NW).
Moreover if we assume 27@:1 > 0, we have
2 _
rlop( oy, < C (PG Dor gl + 72 w2y + [ul2,)  (128)

for any u = (ug,vo) € C°({z, >0} NW).

Proof.

Let @ = op(x™)u = (op(x ™ )uo, op(x~)vo) = (i, o).
In this region we have not a priori information for the roots of ps(z, &, 7, ). Following
the proof of (108), we obtain

_ 2
rlloptwol;, < € (1P D, ol + 7 ol + leol2,) . (129)

In supp(x~) the two roots zi of py(x, &, 7, 1) are in the half-plane Im&, < 0. Then
we can use the Calderon projector. By the same way that the proof of (85) and
using the fact that the operators ¢p; and ¢, vanish in x,, > 0 (because the roots
are in Im&,, < 0, see (99)), the counterpart of (96) is then

Uy = Eil + Wi+ W, for Ty > O, (130)

where wq 1 and wo satisfy (94) and (98) respectively.
We then obtain (see proof of (85))

— 2
2 lop(c o[, < C (1P (@, D7 pholl” + 7 ol + o, ) (131)

Combining (129) and (131), we obtain (127).
It remains to prove (128). We take the trace at z,, = 0% of (130),

Yo(to) = wo,1 = ’Yo(Efl + w1+ way),
which, by the counterpart of (104), gives

oliio)? < O (I1Ps @ Dor ol + ol +7 o, ) - (152)
From (130) we also have
Dy, iig = Dy, Ef, + Dy,wiy + Dy,wy,  fora, > 0.
We take the trace at z,, = 07 and obtain

(o) = Y0(Dr, (Ef | + w11 + wa1)).

Using the trace formula (97), we obtain

2 2

|’Yl(ﬂo)|2 <Ccrt Dxn<E£1 + w1+ wa) ) <Ccrt E£1 + w1+ wa ,
and, by the counterpart of (88), (94) and (98), this yields
7 Iy(ie)* < C (HP1(5U> D, 7, muo|l* + [luoll; , + 72 \UOﬁ,o,T) : (133)

Combining (132) and (133), we obtain (128).
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4.5 End of the proof

We can choose a partition of unity x ™+ x4+~ = 1 such that x™, x° and x~ satisfy
the properties listed in proposition 4.1, 4.2 and 4.3 respectively. We have

lull?, < llopOHull;, + lopCyully, + [loptxull; -

Combining this inequality and (85), (108) and (127), we obtain, for 7 large, the first
estimate (42) of Theorem 3.2. i.e.

2 2 2
mlull, < (1P, D7yl + 7l )

. . 2 . .. . 2
It remains to estimate 7 |u|}, .. We begin by giving an estimate of 7 |ugl{ ..
We have

|U0|io,7 < ‘OP(XJF)UOEO,T + ‘OP(XO)UOEOJ + |OP(X_)U0|T,O7T,

|Op(X+)u0|i0,T S ‘Op(x+)u‘f,0,7
and , )
‘Op(Xo)uolLo,r = ‘Op(xo)ull,o,r'

Combining these inequalities, (86), (109), (128) and the fact that
772 |“‘i0,¢ =772 |u0|i0ﬁ + 772 ‘U0|i0,7> we obtain, for 7 large enough.

T _
7 lugliy, < C (IIP(% D, 7, mul® + 2 lop(b)ul} + 7 lop(ba)ul* + 77 [vol7 o, + |IUI|f,T)
(134)

For estimate 7 |vo|f o.-» We use the transmission conditions given by (26). We have
op(b1)u = ug|e,—0 — ipgls,—0 on {x, =0} NW.
Then

T T
ol <C (/T ool + 5 \op(bnuri) |

Since, for |u[ = po, we have 75 luol} < C7 ‘“0&0,7' Then using (134), we obtain

T —
7 luoly < C (I!P(%Dm pwull* + 2 lop(br)uly + 7 lop(ba)ul® + 772 Juo[ o, + HUH?,T)

(135)
We have also

0 0
op(bg)u = (Dxn + Z'Ta(pl) Ug|gn=0 + (Dxn + 2.7_8902) Volz,=0 on {x, =0} NW.
Tn Tn

Then
T ]Dznvo|2 <C (7' |0p(bg)u|2 +7 ]Dznu0]2 + 73 |u0|2 + 73 |v0|2) )
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Using the fact that |u, , <77 |ul,, we obtain
2 2 2 2 2
7| Dy, vol” < C (7 lop(b2)ul” + 7 | Dy, uol” + 7 Juoly + 7 Jvol7) -

Since we have T|u0|ioﬁ = 7|Dy,uol> + 7 |ug|;. Then using (134) and (135), we
obtain

-
7|D,,w|” < C (HP(%D,T’ pyul® + 2 lop(br)uly +7 [op(bz)ul” +772 [voly o, + lully .
(136)
Combining (135) and (136), we have
2 2, T 2 2 2
T |volye, <€ (||P(SE,D777 pull”+ 2 lop(by)uly + 7 [op(ba)ul” + ||UI|1,T> - (137)
Combining (134) and (137), we obtain

.
7lully, <C (HP(%DJ, |’ + 2 lop(b1)ul; + 7 lop(b2)ul” + HUHT,T) - (138)

Inserting (138) in (42) and for 7 large enough, we obtain (43).
[
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Appendix A : Proof of Lemma 2.1

To prove Lemma 2.1, we need to distinguish two cases.

1. Inside O
To simplify the expressions, we note |[ul| 2y = [[u]-
Let x € C3°(O). We have by integration by part

(& = ilul)u, x*u) = (=Vu, X*Vu) = (Vu, V) =i |ul | xul*.

Then
il Ixul® < C (LA Pl + 17l + [V xul) -

Then
2 Lo 2 2 1 2 2
il lheull™ < C (= I + e lxCull + 1Vull® + = [Vul” + € lIxul” ) .
Recalling that || > po, we have for € small enough
Ixull® < C (IVull* + [1F1) - (139)

Hence the result inside O.

2. In the neighborhood of the boundary
Let z = (2/,x,) € R"! x R. Then

00 = {zx e R", z, =0}.
Let € > 0 such that 0 < z,, < e. Then we have
w(@' e) —u(z' x,) = / O, u(x, o)do.
Then )
u(e!, w)l < 2Ju(a ) +2 ( [ 1.t o) d") |

Using the Cauchy Schwartz inequality, we obtain
lu(z, 2,))* < 2 |u(a,e)] + 262/ 10, u(z!, )| da,,.
0

Integrating with respect to 2/, we obtain

/ lu(z, z,)|* da’ < 2/ lu(2’, )| dm'—|—262/ <|8$nu(x',xn)|2 dmn> dx'.
|z |<e |z’ |<e |2’ |<e, |zn|<e
(140)

Using the trace Theorem, we have

/|,|< lu(z, e)|” dz’ < C’/ (Ju(x)]? + |Vu(z)[*)dz. (141)

2] <2¢, [zn—e|<§
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Now we introduce the following cut-off functions

1 if 0<z, <3,
xi(x) =
0 if =z, >¢€
and : € 3e
1 if 3 <z, < 5
X2(7) =
0 if x, <, T, > 2e.

Combining (140) and (141), we obtain for e small enough
aull® < € (Ieull® + [IVu]?) -
Since following (139), we have
eull® < C (1P + 1V7u]?) -
Inserting in (142), we obtain
aull® < C (IFIP + 1V7u]?) -
Hence the result in the neighborhood of the boundary.

Following (139), we can write
1 = x)ull® < C (AP + [1Vull”) -

Adding (143) and (144), we obtain (13).
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Appendix B: Proof of Lemma 3.1

Let x € C5°(R™) be such that x = 1 in the support of u. It suffices to show that
op(A*)e™xop(A~*) is bounded in L?. Recall that for all u and v € S(R™), we have

Fluo)(€) = (o Fw) « F)€), v e R
Hence
Flop(A)emsxop(A")0)(€,7) = (&) F(e"*xop(A~")0)(€,7)
= (o) HE e )+ (€T F )€ ),

where g(&',7) = F(e™x) (&', 7). Then we have

F(op(A*)e™xop(A™*)v)(&',7) = /9(5' =, T ), ) F () T)dn
Let k(&' n') = g(§'—n', 7)(', 7)*(n, )~*. Our goal is to show that [ K (&',7')F (v)(n',)dnf
is bounded in L2 To do it, we will use Schur’s Lemma. It suffices to prove that
there exist M > 0 and N > 0 such that

/ K@ )de <M and / K ) dif < N.

In the sequel, we suppose s > 0 (the case where s < 0 is treated in the same way).
For R > 0, we have

<§/7 T>2Rg(§/, 7_) _ /(5/7 T>2Re—iz’§’x(x)€ﬂp(x)dx/
S LR L G MO
— /e‘imlgl(l — A+ 7)) E(x(x)e™ @) da.
Then there exists C' > 0, such that

‘<£,,7>2Rg(£/,7')‘ < CGC’T‘ (145)

Moreover, we can write

[ireanna = [ o~ toote = ET I e

Using (145), we obtain

/ (K (&)l dg < CeT / <§§’,T_>ST<]7 ;;?;de.
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Since

[ED e [ [ A e
[3 In'|<el¢’|

(€ —n',7)*F <ty (& =T (& —n',7)*"
If |¢] < L}n/], we have

& S o C

e L' if 2R>n—1.

<§/ - 77/7 T>2R N <€/ - 77/7 T>2R N <€/ - 77/7 T>2R
It | < e|€], e (¢ —if,7) 2 5(€,7), & > 0, we have
(&', 7)” < ¢ e L' if 2R—s>n—1.

<§/ _ 7]/77_>2R — <§/ _ n/7T>2R—s

Then there exists M > 0, such that
[ mag < e
In the same way, we show that there exists N > 0, such that
/|K(€’,n’)|dn’ < N
Using Schur’s Lemma, we have (op(A*)e™ xop(A~*%)) is bounded in L? and
Hop(As)ewxop(A’s)HL(H) < Ce“T.

Applying this operator to op(A®)u, completes the proof of Lemma 3.1.
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Appendix C : Proof of Theorem 1.1, for =10

Let U = (ug, vo,v1) € D(A) and F = (fo, g0,91) € H such that F' = AU. Then we
have the following system

Aug = fo infly,
A,UO = 01 in Q?a
vp = go infy,
with the following boundary conditions
uolr, =0, volr, =0
uoly = 9ol

(Opuo — Oho)ly, = 0.

From Auy = fo in Q4, uo|r, = 0 and ug = go|,, we have the following estimate

2 2 2
ol ey < € (1ol + ool ) -

Then
2 2 2
lolnany < € (1ol aiany + N9l ) (146)

Moreover, from Avy = g1 in Qo, volr, = 0, I's # 0 and J,v9 = Jyue|,, we have the
following estimate

2 2 2
lolli @) < € (91120 + 19ntoll? -y . ) (147)

Recalling that Aug = fo and using the trace lemme (Lemma 3.4 in [6]), we obtain

10ntioll -3,y < € (ol ) + o)) -

Combining with (147), we obtain

2 2 2 2
ool 51y < C <||91||L2(92) + l[uollz o, + ||f0||L2(Ql)> :

Combining with (146), we get

2 2 2 2
lvolli @) < € (IfollFa@n + 90l @) + 911720 ) - (148)

Recalling that v; = go and combining (146) and (148), we obtain Theorem 1.1, for
w=0.
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