
HAL Id: hal-00468764
https://hal.science/hal-00468764

Submitted on 18 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multithreaded solving algorithm for QCSP+
Jérémie Vautard, Arnaud Lallouet

To cite this version:
Jérémie Vautard, Arnaud Lallouet. A Multithreaded solving algorithm for QCSP+. Constraint
Programming 2009 Doctoral Program, Sep 2009, Lisbon, Portugal. �hal-00468764�

https://hal.science/hal-00468764
https://hal.archives-ouvertes.fr

A multithreaded solving algorithm for QCSP+

Jérémie Vautard (student)1 and Arnaud Lallouet2

1 Université d’Orléans — LIFO
BP6759, F-45067 Orléans

jeremie.vautard@univ-orleans.fr
2 Université de Caen-Basse Normandie — GREYC

BP 5186 - 14032 Caen
arnaud.lallouet@info.unicaen.fr

Abstract. This paper presents some ideas about multi-threading QCSP
solving procedures. We introduce a first draft of a multi-threaded algo-
rithm for solving QCSP+ and give some work leads about parallel solving
of quantified problems.

1 Introduction

Quantified constraint satisfaction problems (QCSP) have been studied for several
years, and many search procedures ([7] [5]), consistency definitions([6] [4]) and
propagations algorithms([3] [1]) have been proposed to solve them. However,
while several attempts have been done to make a parallel solver for CSPs, we
have not found any parallel approach for solving quantified problem. This is what
we try to do in this paper. First, we propose a sketch of a quite general framework
for solving QCSP+ problems (introduced in [2]) using a multi-threaded approach.
Then, we discuss about several leads that can be explored in this domain.

2 The QCSP+ framework

2.1 Formalism

Variables, constraints and CSPs.
Let V be a set of variables. Each v ∈ V , has got a domain Dv. For a given
W ⊆ V , we denote DW the set of tuples on W , i.e. the cartesian product of the
domains of all the variables of W .

A constraint c is a pair (W,T), W being a set of variables ant T ∈ DW a set
of tuples. The constraint is satisfied for the values of the variables of W which
form a tuple of T . If T = ∅, the constraint is said to be empty and can never be
satisfied. On the other hand, a constraint such that T = DW is full and will be
satisfied whatever value its variables take. W and T are also denoted by var(c)
and sol(c).

A CSP is a set C of constraints. We denote var(C) the set of its variables, i.e.⋃
c∈C var(c) and sol(C) the set of its solutions, i.e. the set of tuples on var(C)

satisfying all the constraints of C. The empty CSP (denoted >) is true whereas
a CSP containing an empty constraint is false and denoted ⊥.

106

Quantified problems.
A quantified set of variables (or qset) is a pair (q,W) where q ∈ {∀,∃} is

a quantifier and W a set of variables. We call a prefix a sequence of qsets
[(q0,W0), . . . , (qn−1,Wn−1)] such that (i 6= j) → (Wi ∩ Wj = ∅). We denote
var(P) =

⋃n−1
i=0 Wi. A QCSP is a pair (P,G) where P is a prefix and G, also

called the goal, is a CSP such that var(C) ∈ var(P).
A restricted quantified set of variables or rqset is a triple (q,W,C) where

(q,W) is a qset and C a CSP. A QCSP+ is a pair Q = (P,G) where P is a prefix
of rqsets such that ∀i, var(Ci) ⊆

⋃i
j=0Wj . Moreover, var(G) ⊆ var(P) still

holds.

Solution.
A QCSP (P,G) where P = [(∃,W0), (∀,W1), . . . , (∃,Wn)] represents the follow-

ing logic formula : ∃W0 ∈ DW0∀W1 ∈ DW1 . . . ∃Wn G

Thus, a solution of a quantified problem can not be a simple assignment of
all the variables anymore : in fact, the goal has to be satisfied for all values the
universally quantified variables may take. Intuitively, such a problem can be seen
as a “game” where an existential player tries to satisfy all the constraints of G
while a universal player aims at violating one of them, each player assigning the
variables in turn, in the order defined by the prefix. The solution must represent
the strategy that the existential player should adopt to be sure that, whatever its
opponent do, the goal will always be satisfied. This strategy can be represented
as a family of Skolem functions that give a value to an existential variable as a
function of the preceding universal ones, or by the set of every possible scenario
(i.e. total assignment of the variables) of the strategy. In this paper, we use this
later representation and organize the set of scenarios in a tree : a root node
represents the whole problem, then, inductively :

– if the next qset (qi,Wi) is universal, the current node gets as many sons as
there are tuples in DWi . Each node is tagged vith one of these tuples ;

– if the next qset is existential, the current node gets one unique son, tagged
by an element of DWi .

Thus, each complete branch of this tree coresponds to a total assignment of
the variables of the problem. If every branch of such a tree corresponds to an
assignment satisfying G, then it is indeed a solution of the problem.

QCSP+ restricts the “moves” of each player to assignments that satisfy the
CSP of the rqsets. The logic formula represented is :
∃W0 C0 ∧ (∀W1 C1 → (∃W2 . . . G))

In this case, the notion of solution is the same, except that the restrictions
have to be taken into account : for universal rqsets (∀,Wi, Ci) the current node’s
sons corresponds to each solution of Ci. For existential rqsets (∃,Wj , Cj), the
son must be tagged by an element such that the partial branch corresponds to
an assignment that satisfies Cj .

107

2.2 A basic solving procedure

One simple way to solve quantified problems is to adapt the classical backtrack-
ing algorithm for CSPs :

– first, perform a propagation algorithm on the problem. If an inconsistency
is detected, return false.

– pick up the leftmost quantified set of variables and enumerate the possible
values of its variables, dividing the problem in as many subproblems.
• in the universal case, solve all the subproblems. If one of them is false,

return false. Else, group all the corresponding substrategies and return
them.

• in the existential case, solve each problem until one of them does not
return false. if such a subproblem exists, create a node containing the
values that led to the corresponding subproblem, attach the substrategy
returned by the subproblem and return the whole. In the other case,
return false.

3 Multithreaded solving : a first attempt

The multithreaded solving method we propose is based on a central data-structure
called manager managing several (single threaded) solvers called workers : a par-
tial strategy is maintained, where some nodes do not father a substrategy. Each
of these nodes corresponds to a task that a worker can solve. Formally, a task
consists in a pair (Q, τ) where Q is a QCSP+ and τ the partial assignment of
the variables of Q corresponding to the branch of the partial strategy where the
task is attached. Once a worker has finished solving a task, it returns its result
(either a sub-strategy or false) that will be taken into account by the manager
to update the partial strategy. Then, the worker receives another task to solve.

Whenever the to-do tasks queue empties, the manager sends a signal to one
or several workers to stop its current task, and send a partial result. Such a
result consists in a partial sub-strategy containing “unfinished” nodes which are
as many other pending tasks.

Once the whole problem is solved (i.e. there is neither more to-do task left
nor other working thread), each worker thread is killed, and the result can be
returned. Here is a list of each procedures and signals used in this framework :

Workers.
Each worker is a thread having a very simple main loop. This loop fetches a task

from the Manager, and tries to solve it by calling an internal (single threaded)
Solve method. The Manager can also possibly answer by a WAIT pseudo-task,
which will cause the worker to sleep until a task becomes available (by calling
a special method of the Manager), or by a STOP pseudo-task, which will kill
the thread. Once the solver finishes, its result is sent to the Manager. This main
loop is described in figure 1.

108

A worker is able to catch two signals called Terminate and Send partial. Both
indicates that the search procedure should stop, but the former means that the
task has become useless while the later calls for returning a partial result, along
with a list of remaining “sub-tasks”.

The Solve method can inherit from any original search procedure, but must
be modified in order to take the signals into account. Figure 2 shows an adapta-
tion from a basic QCSP+ solving procedure which can be interrupted by these
signals.

Finally, a worker provides some methods so that other processes know which
subproblem it is working on.

Procedure Main

loop
task = Manager.fetchWork()
if task == STOP then

Exit
else if task == WAIT then

Manager.wait()
else

result = Solve(task)
Manager.returnWork(result)

end if
end loop

Fig. 1. The worker main loop

Manager.
The manager is an object that contains and builds the winning strategy of the

problem. During search, this winning strategy is incomplete and some nodes are
replaced by tasks remaining to solve. We call ToDo this list of remaining tasks.
A Manager is also aware of the list Current Workers of the workers currently
solving a task and maintains a list of sleeping workers that should be waken
when tasks become available for solving. Unless sait otherwise, the Manager’s
methods are called by a worker.

The fetchWork method withdraws a task from the ToDo list and returns
it. If ToDo is empty, then it sends the signal Send partial to one worker from
Current Workers and returns WAIT. If Current Workers is also empty, the search
has ended and therefore, STOP is returned.

The returnWork method attaches the returned sub-strategy and cuts the
branches that are no longer necessary (for example, every brothers of a complete
substrategy of an existential node, or directly the father node of a universal
substrategy if one of the subproblems have been found to be inconsistent). Each
worker that was solving a node on a cut branch are sent the Terminate signal,
and the workers contained in the sleeping list are awoken. Finally, the wait

109

Procedure
Solve e ([(∃, W, C)|P ′], G)

SC = Set of solutions of C
while SC 6= ∅ do

choose t ∈ SC ; SC = SC − t
if Signal Terminate then

return STOP
end if
CURSTR := Solve((P ′, G)[W ← t])
if CURSTR 6= Fail then

if Signal Send Partial then
return
PartialResult(tree(t,CURSTR),SC)

else
return tree(t,CUR STR)

end if
end if

end while
return Fail

Procedure Solve u ([(∀, W, C)|P ′], G)

STR := ∅
SC = Set of solutions of C
while SC 6= ∅ do

choose t ∈ SC ; SC = SC − t
if Signal Terminate then

return STOP
end if
CURSTR := Solve((P ′, G)[W ← t])
if CURSTR = Fail then

return Fail
else

STR := STR
⋃

CURSTR
end if
if Signal Send Partial then

return PartialResult(STR,SC)
end if

end while
return STR

Fig. 2. Search procedure.

method records the calling thread in the Sleeping list and puts it in sleeping
mode, until it is waken by the previous method.

4 Work leads

Search heuristics.
The time taken by a search procedure to solve a CSP greatly depends on the

heuristics used to choose which subproblem should be explored first. Unfortu-
nately, most parallel approaches tends to be incompatible with this heuristics,
thus ruining solving performances. QCSP (and QCSP+), reduce the alternatives,
as a solver have to follow the order of the prefix, and the impact of the heuristics
used to perform these choices remains unclear, because they were not originally
tailored for QCSPs. In 2008, Verger and Bessière presented in [8] a promising
heuristics for QCSP+ that accelerate solving by several orders of magnitude on
some problems. Parallelizing the search might, as for CSPs, drawn the benefit
of theses heuristics.

Task priority.
In the presented parallel approach, each task could be given a priority, in order

to minimize pointless subproblems solving. The method used to calculate this
priority will most likely the solving time: in fact, solving one given subproblem
might be pointless or not according to the result of another given task, and the
priority given to the tasks should take that into account. For example, it sounds
reasonable to give top priority to leftmost universal nodes as every branch from
a universal node must be verified whatsoever, a single failure cutting the whole

110

subproblem. After that, solving rightmost pending existential tasks should help
finishing to build complete sub-strategies.

Several kind of workers.
The workers run independently from each other, and their communications

with the Manager are not specific to a particular search procedure. Thus, using
the algorithm of figure 2 in the workers is not mandatory. Any procedure able to
return the sub-strategy of a problem is a priori appropriate. However, algorithms
that can not return partial work and generate remaining tasks should not be
used, as they will tend to prematurely dry the ToDo list, bringing other workers
into sleep mode.

5 Conclusion

Solving quantified constraint satisfaction problems in a parallel way is new, and
even this contribution is far from being achieved. thus, while looking interesting,
this still needs to prove its worth. We presented here a quite simple and general
framework that has to be implemented and tested against traditional solvers
before drawing definitive conclusions.

References

1. Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Reusing csp propagators
for qcsps. In Francisco Azevedo, Pedro Barahona, François Fages, and Francesca
Rossi, editors, CSCLP, volume 4651 of Lecture Notes in Computer Science, pages
63–77. Springer, 2006.

2. Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Qcsp made practical
by virtue of restricted quantification. In Manuela M. Veloso, editor, IJCAI, pages
38–43, 2007.

3. Lucas Bordeaux, Marco Cadoli, and Toni Mancini. Csp properties for quantified
constraints: Definitions and complexity. In Manuela M. Veloso and Subbarao Kamb-
hampati, editors, AAAI, pages 360–365. AAAI Press / The MIT Press, 2005.

4. Lucas Bordeaux and Eric Monfroy. Beyond np: Arc-consistency for quantified con-
straints. In Pascal Van Hentenryck, editor, CP, volume 2470 of Lecture Notes in
Computer Science, pages 371–386. Springer, 2002.

5. Ian P. Gent, Peter Nightingale, and Kostas Stergiou. Qcsp-solve: A solver for quan-
tified constraint satisfaction problems. In Leslie Pack Kaelbling and Alessandro
Saffiotti, editors, IJCAI, pages 138–143. Professional Book Center, 2005.

6. Peter Nightingale. Consistency for quantified constraint satisfaction problems. In
Peter van Beek, editor, CP, volume 3709 of Lecture Notes in Computer Science,
pages 792–796. Springer, 2005.

7. Guillaume Verger and Christian Bessiere. Blocksolve: a bottom-up approach for
solving quantified csps. In Proceedings of CP’06, pages 635–649, Nantes, France,
2006.

8. Guillaume Verger and Christian Bessiere. Guiding search in qcsp+ with back-
propagation. In Proceedings of CP’08, pages 175–189, Sydney, Australia, 2008.

111

