Jérémie Vautard
email: jeremie.vautard@univ-orleans.fr

Arnaud Lallouet

A multithreaded solving algorithm for QCSP +

This paper presents some ideas about multi-threading QCSP solving procedures. We introduce a first draft of a multi-threaded algorithm for solving QCSP + and give some work leads about parallel solving of quantified problems.

Introduction

Quantified constraint satisfaction problems (QCSP) have been studied for several years, and many search procedures ([START_REF] Verger | Blocksolve: a bottom-up approach for solving quantified csps[END_REF] [START_REF] Gent | Qcsp-solve: A solver for quantified constraint satisfaction problems[END_REF]), consistency definitions([START_REF] Nightingale | Consistency for quantified constraint satisfaction problems[END_REF] [START_REF] Bordeaux | Beyond np: Arc-consistency for quantified constraints[END_REF]) and propagations algorithms([START_REF] Bordeaux | Csp properties for quantified constraints: Definitions and complexity[END_REF] [START_REF] Benedetti | Reusing csp propagators for qcsps[END_REF]) have been proposed to solve them. However, while several attempts have been done to make a parallel solver for CSPs, we have not found any parallel approach for solving quantified problem. This is what we try to do in this paper. First, we propose a sketch of a quite general framework for solving QCSP + problems (introduced in [START_REF] Benedetti | Qcsp made practical by virtue of restricted quantification[END_REF]) using a multi-threaded approach. Then, we discuss about several leads that can be explored in this domain.

2 The QCSP + framework

Formalism

Variables, constraints and CSPs.

Let V be a set of variables. Each v ∈ V , has got a domain D v . For a given W ⊆ V , we denote D W the set of tuples on W , i.e. the cartesian product of the domains of all the variables of W . A constraint c is a pair (W, T), W being a set of variables ant T ∈ D W a set of tuples. The constraint is satisfied for the values of the variables of W which form a tuple of T . If T = ∅, the constraint is said to be empty and can never be satisfied. On the other hand, a constraint such that T = D W is full and will be satisfied whatever value its variables take. W and T are also denoted by var(c) and sol(c).

A CSP is a set C of constraints. We denote var(C) the set of its variables, i.e.

c∈C var(c) and sol(C) the set of its solutions, i.e. the set of tuples on var(C) satisfying all the constraints of C. The empty CSP (denoted) is true whereas a CSP containing an empty constraint is false and denoted ⊥.

Quantified problems.

A quantified set of variables (or qset) is a pair (q, W) where q ∈ {∀, ∃} is a quantifier and W a set of variables. We call a prefix a sequence of qsets [(q 0 , W 0), . . . , (q n-1 , W n-1)] such that (i = j) → (W i ∩ W j = ∅). We denote

var(P) = n-1 i=0 W i .
A QCSP is a pair (P, G) where P is a prefix and G, also called the goal, is a CSP such that var(C) ∈ var(P).

A restricted quantified set of variables or rqset is a triple (q, W, C) where (q, W) is a qset and C a CSP. A QCSP + is a pair Q = (P, G) where P is a prefix of rqsets such that ∀i, var(C i) ⊆ i j=0 W j . Moreover, var(G) ⊆ var(P) still holds.

Solution.

A QCSP (P, G) where P = [(∃, W 0), (∀, W 1), . . . , (∃, W n)] represents the following logic formula :

∃W 0 ∈ D W0 ∀W 1 ∈ D W1 . . . ∃W n G
Thus, a solution of a quantified problem can not be a simple assignment of all the variables anymore : in fact, the goal has to be satisfied for all values the universally quantified variables may take. Intuitively, such a problem can be seen as a "game" where an existential player tries to satisfy all the constraints of G while a universal player aims at violating one of them, each player assigning the variables in turn, in the order defined by the prefix. The solution must represent the strategy that the existential player should adopt to be sure that, whatever its opponent do, the goal will always be satisfied. This strategy can be represented as a family of Skolem functions that give a value to an existential variable as a function of the preceding universal ones, or by the set of every possible scenario (i.e. total assignment of the variables) of the strategy. In this paper, we use this later representation and organize the set of scenarios in a tree : a root node represents the whole problem, then, inductively :

if the next qset (q i , W i) is universal, the current node gets as many sons as there are tuples in D Wi . Each node is tagged vith one of these tuples ; -if the next qset is existential, the current node gets one unique son, tagged by an element of D Wi .

Thus, each complete branch of this tree coresponds to a total assignment of the variables of the problem. If every branch of such a tree corresponds to an assignment satisfying G, then it is indeed a solution of the problem. QCSP + restricts the "moves" of each player to assignments that satisfy the CSP of the rqsets. The logic formula represented is :

∃W 0 C 0 ∧ (∀W 1 C 1 → (∃W 2 . . . G))
In this case, the notion of solution is the same, except that the restrictions have to be taken into account : for universal rqsets (∀, W i , C i) the current node's sons corresponds to each solution of C i . For existential rqsets (∃, W j , C j), the son must be tagged by an element such that the partial branch corresponds to an assignment that satisfies C j .

A basic solving procedure

One simple way to solve quantified problems is to adapt the classical backtracking algorithm for CSPs :

first, perform a propagation algorithm on the problem. If an inconsistency is detected, return f alse. -pick up the leftmost quantified set of variables and enumerate the possible values of its variables, dividing the problem in as many subproblems.

• in the universal case, solve all the subproblems. If one of them is false, return f alse. Else, group all the corresponding substrategies and return them.

• in the existential case, solve each problem until one of them does not return f alse. if such a subproblem exists, create a node containing the values that led to the corresponding subproblem, attach the substrategy returned by the subproblem and return the whole. In the other case, return f alse.

Multithreaded solving : a first attempt

The multithreaded solving method we propose is based on a central data-structure called manager managing several (single threaded) solvers called workers : a partial strategy is maintained, where some nodes do not father a substrategy. Each of these nodes corresponds to a task that a worker can solve. Formally, a task consists in a pair (Q, τ) where Q is a QCSP + and τ the partial assignment of the variables of Q corresponding to the branch of the partial strategy where the task is attached. Once a worker has finished solving a task, it returns its result (either a sub-strategy or f alse) that will be taken into account by the manager to update the partial strategy. Then, the worker receives another task to solve. Whenever the to-do tasks queue empties, the manager sends a signal to one or several workers to stop its current task, and send a partial result. Such a result consists in a partial sub-strategy containing "unfinished" nodes which are as many other pending tasks.

Once the whole problem is solved (i.e. there is neither more to-do task left nor other working thread), each worker thread is killed, and the result can be returned. Here is a list of each procedures and signals used in this framework :

Workers.

Each worker is a thread having a very simple main loop. This loop fetches a task from the Manager, and tries to solve it by calling an internal (single threaded) Solve method. The Manager can also possibly answer by a WAIT pseudo-task, which will cause the worker to sleep until a task becomes available (by calling a special method of the Manager), or by a STOP pseudo-task, which will kill the thread. Once the solver finishes, its result is sent to the Manager. This main loop is described in figure 1.

A worker is able to catch two signals called Terminate and Send partial. Both indicates that the search procedure should stop, but the former means that the task has become useless while the later calls for returning a partial result, along with a list of remaining "sub-tasks".

The Solve method can inherit from any original search procedure, but must be modified in order to take the signals into account. Figure 2 shows an adaptation from a basic QCSP + solving procedure which can be interrupted by these signals.

Finally, a worker provides some methods so that other processes know which subproblem it is working on.

Manager.

The manager is an object that contains and builds the winning strategy of the problem. During search, this winning strategy is incomplete and some nodes are replaced by tasks remaining to solve. We call ToDo this list of remaining tasks. A Manager is also aware of the list Current Workers of the workers currently solving a task and maintains a list of sleeping workers that should be waken when tasks become available for solving. Unless sait otherwise, the Manager's methods are called by a worker.

The fetchWork method withdraws a task from the ToDo list and returns it. If ToDo is empty, then it sends the signal Send partial to one worker from Current Workers and returns WAIT. If Current Workers is also empty, the search has ended and therefore, STOP is returned.

The returnWork method attaches the returned sub-strategy and cuts the branches that are no longer necessary (for example, every brothers of a complete substrategy of an existential node, or directly the father node of a universal substrategy if one of the subproblems have been found to be inconsistent). Each worker that was solving a node on a cut branch are sent the Terminate signal, and the workers contained in the sleeping list are awoken. Finally, the wait subproblem. After that, solving rightmost pending existential tasks should help finishing to build complete sub-strategies.

Several kind of workers.

The workers run independently from each other, and their communications with the Manager are not specific to a particular search procedure. Thus, using the algorithm of figure 2 in the workers is not mandatory. Any procedure able to return the sub-strategy of a problem is a priori appropriate. However, algorithms that can not return partial work and generate remaining tasks should not be used, as they will tend to prematurely dry the ToDo list, bringing other workers into sleep mode.

Conclusion

Solving quantified constraint satisfaction problems in a parallel way is new, and even this contribution is far from being achieved. thus, while looking interesting, this still needs to prove its worth. We presented here a quite simple and general framework that has to be implemented and tested against traditional solvers before drawing definitive conclusions.

method records the calling thread in the Sleeping list and puts it in sleeping mode, until it is waken by the previous method.

Work leads

Search heuristics.

The time taken by a search procedure to solve a CSP greatly depends on the heuristics used to choose which subproblem should be explored first. Unfortunately, most parallel approaches tends to be incompatible with this heuristics, thus ruining solving performances. QCSP (and QCSP +), reduce the alternatives, as a solver have to follow the order of the prefix, and the impact of the heuristics used to perform these choices remains unclear, because they were not originally tailored for QCSPs. In 2008, Verger and Bessière presented in [START_REF] Verger | Guiding search in qcsp + with backpropagation[END_REF] a promising heuristics for QCSP + that accelerate solving by several orders of magnitude on some problems. Parallelizing the search might, as for CSPs, drawn the benefit of theses heuristics.

Task priority.

In the presented parallel approach, each task could be given a priority, in order to minimize pointless subproblems solving. The method used to calculate this priority will most likely the solving time: in fact, solving one given subproblem might be pointless or not according to the result of another given task, and the priority given to the tasks should take that into account. For example, it sounds reasonable to give top priority to leftmost universal nodes as every branch from a universal node must be verified whatsoever, a single failure cutting the whole