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Abstract— Multi-source information fusion usually deals with 

redundant sources; the goal is to aggregate decisions, or evidence 

which supports one or another class. Many frameworks are then 

available:  OWA, fuzzy integrals, etc. In this paper we are 

interested in managing complementary information sources. The 

integration is done using a fuzzy rule base. The rules are 

generated using a fuzzy decision tree algorithm. The application 

consists in the design of a crop harvest monitoring system. The 

three information sources are a time series of satellite images, a 

crop growth model and expert knowledge. The results show that 

the system is ready to use in an operational way. 
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1 Introduction 
Over the past decade, time series of satellite images 

acquired at high spatial resolution have proven to be an 

important source of information for different agricultural 

applications. Several authors have recognized the benefits 

of this kind of data for monitoring agricultural lands [1], 

classifying land cover [2-4], mapping seasonal patterns 

and crop rotations [5, 6],  and for many other uses (see 

papers collected in [7, 8]). 

Nevertheless, the quantity of information extracted from 

time series of optical images is often restricted by several 

factors: acquisition gaps, atmospheric conditions, 

imperfect radiometric normalization, radiometric 

confusion, etc. Therefore, to make credible decisions, this 

information needs to be supplemented with data from 

other sources. 

Let us focus on the sugarcane industry. One of its 

principal needs is to have continuous information about 

the harvest progress throughout the season. Such 

information helps increasing the effectiveness in fields 

and factory. The main method reported in the literature, to 

monitor the sugarcane harvest is based on a multispectral 

classification [9-11]. The major limitations of this method 

are  the subjectivity and the considerable time to invest in 

the photo-interpretation phase and the confusion between 

the various states of a sugarcane field when the gap 

between two released images is important (more than 2 

months). Since the harvest campaign extends over several 

months, it is difficult in some cases to distinguish 

between a standing crop and the regrowth in a field 

harvested at the beginning of the season. 

In order to improve and automate the monitoring of 

sugarcane harvest using time series of high spatial 

resolution satellite images, it is necessary to develop a 

new method that process the time series in co-operation 

with other sources. This co-operation allows 

compensating for the possible lack of data in the time 

series of images by the integration of temporal and 

environmental constraints. 

As the sources are complementary and of different nature, 

usual frameworks of fusion information cannot be used. 

In this paper we propose to make the source integration 

within a fuzzy inference system. Next section introduces 

the study site and the data used. The characteristics of the 

three information sources are presented in section 3. 

Section 4 describes the fuzzy inference system and 

section 5 goes into detail of the experiments. The last 

section deals with concluding remarks. 

 

2 Study site and data sets 
The study site consists of two sugarcane farms located in 

the north-east part of Reunion Island, which is a small 

territory of ~2,500 km² in the Indian Ocean (21°7' to 

19°40' S, 55°13' to 61°13' E), where sugarcane is the 

main crop. The first farm is at an average altitude of 70 m 

and includes 33 fields with an average size of 5.4 ha. The 

second farm is at an altitude ranging from 400 to 700 m, 

and has 46 fields with an average size of 3.5 ha. As the 

study area is located in a tropical zone, the year is divided 

into two seasons: a hot rainy season from November to 

April, and a cool dry season from May to October. 

The satellite data set used in this study consists of 18 

SPOT5 images acquired over Reunion Island between 

January 10th, 2003 and December 7th, 2004. Both 

SPOT5 instruments (HRG1 and HRG2) acquire radiation 

in four spectral bands
1
 with high spatial resolution: 10 m 

for the Green, Red, and Near Infra-Red (NIR) bands, and 

20 m for the Short Wave Infra-Red (SWIR) band. The 

images belong to the Kalideos-ISLE REUNION database 

                                                 
1
 Green (0.50 - 0.59 µm), Red (0.61 - 0.68 µm), Near Infra-Red 

(0.78 - 0.89 µm), Short Wave Infra-Red (1.58 - 1.75 µm). 
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set up by the CNES
2
 [12, 13]. All images were ortho-

rectified and co-registered to the UTM coordinate system 

(zone 40 South) with a root mean square error of less than 

0.5 pixel per image. 

The radiometry of the images was corrected so that pixel 

values represent the top of canopy reflectances in the four 

spectral bands [14, 15]. Cloud mask was available for 

each image. 

Block field boundaries for all Reunion Island were 

provided by the DDAF
3
 and were refined by the CIRAD

4
 

to define the boundaries of each field in the study site. 

Daily climatic data recorded at La Mare meteorological 

station near the two sugarcane farms were collected for 

the period covered by the satellite time series. These data 

are daily estimations of rainfall (mm), potential evapo-

transpiration (mm), global radiation (J/m
2
), and 

minimum, maximum and mean temperature values (°C). 

Climatic data were required to run the crop growth 

model. 

A ground truth database was built by using harvest dates 

reported by farmers for each field during the 2003 and 

2004 harvest campaigns. This database indicates the 

status of each field (whether it was harvested or not) 

between each pair of consecutive satellite acquisition 

dates in the time series. 

 

3  Three information sources 

3.1 SPOT5 time series 

The time series of SPOT5 images are the principal source 

of information. By using field boundaries, the temporal 

profiles of reflectances in the four spectral bands, Green, 

Red, NIR and SWIR, were extracted from the images for 

each field in the study site. This extraction was carried 

out by calculating the average value of field pixels in 

each spectral band. The calculation was done after 

discarding cloud pixels using the cloud masks. Temporal 

profiles of NDVI (Normalized Difference Vegetation 

Index) where then calculated for each field using 

reflectance values in the Red, ρRed, and NIR, ρNIR, bands: 

RedNIR

RedNIR

ρ+ρ

ρρ
=NDVI

−  (1) 

The temporal profile of NDVI provides useful 

information about the actual field status, and about its 

different historical stages. In general, this profile can be 

divided into two periods: a period in which NDVI values 

increase, corresponding to the vegetative development of 

the field crop, and another period with steady or 

decreasing values, corresponding to the maturation phase. 

Fig.1 shows an example of the temporal profile of a 

sugarcane field NDVI, extracted from a time series of 

SPOT5 images acquired with high temporal repeatability. 

                                                 
2
 Centre National d'Etudes Spatiales ; French Spatial Agency. 

3
 Direction Départementale de l'Agriculture et de la Forêt ; 

Departmental Directorate of Agriculture and Forestry. 
4
 Centre de coopération Internationale en Recherche 

Agronomique pour le Développement ; French Agricultural 

Research Centre for International Development. 

3.2 Sugarcane growth model 

To cope with missing data or cloudy images, the 

sugarcane growth model MOSICAS [16] was used. It 

provides information on the field harvest possibility that 

is independent of the satellite images and based 

essentially on climatic data. This information is 

particularly interesting when the gap between two cloud-

free satellite images is more than two months. 

MOSICAS is a dynamic model that estimates the growth 

of the sugarcane on a daily time scale by using climatic 

and biophysical data of the environment of the sugarcane 

field. It allows the simulation of LAI (Leaf Area Index) 

profiles (Fig.1) that can be converted into NDVI profiles 

using a linear model [17]. An illustration of such a 

simulated profile is plotted in Fig.1. From the simulated 

NDVI temporal profiles, we build a helpful indicator for 

harvest detection: this indicator represents the nominal 

time required (in days) to reach a given threshold of 

NDVI starting with a given harvest date. 

 

Figure 1: Example of temporal profiles of a sugarcane 

field NDVI extracted from SPOT5 time series, as well as 

NDVI and LAI temporal profiles simulated using the 

sugarcane growth model MOSICAS. 

3.3 Expert Knowledge 

The third source of information is the knowledge about 

phenological stages of the sugarcane, as well as its 

cropping system. This knowledge allows a better 

understanding of the relationship between the dynamics 

of the signals extracted from the satellite image time 

series and the sugarcane field status; it offers also very 

useful temporal constraints that particularly help in 

making decisions when there is a lack of satellite data. 

Examples of parameters defining these temporal 

constraints are the nominal length of the sugarcane cycle 

and the dates of opening and closing of the sugar factories 

which determine the harvest campaigns, as illustrated in 

Fig.2. 

Various variables are built from the three information 

sources and used as inputs of the decision system. The 

inputs are divided into three main groups: 

- The first group (4 inputs) is based on the NDVI and 

SWIR values calculated at field scale using each 

satellite image. 

- The second group (5 inputs) relates to the dynamics in 

the temporal profiles of NDVI and SWIR. 

- The third group (5 inputs) represents the temporal 

constraints resulting from the sugarcane growth model 

and the expert knowledge. 
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Figure 2: Temporal intervals used for the classification of 

image acquisition dates. TLO, TLC, TO and TC are opening 

and closure dates of the preceding and the current 

campaign respectively. 

A thorough description of the inputs can be found in [18]. 

 

4 Decision system 

The information coming from the three sources (SPOT5 

time series, sugarcane growth model and expert 

knowledge) is heterogeneous and of different nature. The 

information extracted from the SPOT5 images is based on 

reflectance “measurements”. The sugarcane model 

provides “estimates” using parameters that are not 

directly connected to the studied phenomenon (i.e. the 

field harvest). Expert knowledge contribution is neither 

“measurements” nor “estimates”. Another important 

characteristic to highlight is that the sources are not 

redundant but complementary. That means that none of 

them is able to make a decision on its own; the 

cooperation is needed within the decision process. This 

discards usual aggregation techniques such as votes, 

OWA or fuzzy integrals. The general framework used to 

combine the different and complementary information 

sources is a fuzzy inference system.  

The rules are of the following form: “if X Then Y”, e.g. 

Rule1: if x1 is A1
1
 and x2 is A2

1
 … and xn is An

1
 then y is B

1
 

Rule2: if x1 is A1
2
 and x2 is A2

2
 … and xn is An

2 
then y is B

2
 

    : 

Ruler: if x1 is A1
r
 and x2 is A2

r
 … and xn is An

r 
then y is B

r
 

(2) 

 

where Ak
r
 is the fuzzy set of the k

th
 input variable 

involved in the rule r, and B
r
 is the conclusion of the r

th
  

rule. 

 

The rule conclusion is a symbolic label, related to the 

field status. Two are possible: H (harvested) or NH (not 

harvested). 

For each input universe a partition is defined. Some of the 

input partitions are crisps (see Fig.2), the other are fuzzy. 

In this case, we built standardized partitions according to 

expert knowledge. Fig.3 illustrates the fuzzy sets of 

NDVI and an example of NDVI profiles plotted 

according to thermal time for several sugarcane fields. 

NDVI fuzzy sets were designed according to expert 

knowledge about the phenology and field status of 

sugarcane as well as about its NDVI temporal profiles. 

Linguistic labels are related to the NDVI: 

- “Low” NDVI values (< 0.30) generally correspond to 

residues and bare soil after field harvesting. 

- “Medium” NDVI values (between 0.30 and 0.75) are 

observed in the growth and senescence phases. The 

growth phase is characterized by an accumulation of 

biomass and an increasing length of the stems. The 

senescence is caused by the sugarcane ageing, the 

reduction in the temperature and the lack of water. 

- “High” NDVI values (>0.75) are obtained at the end 

of the growth stage and before senescence. In this 

phase sugarcane fields are well developed and green 

covered. 

The inference technique used in our system is based on 

Mamdani's method [19]. The weight attributed to the 

conclusion of an activated rule is calculated by combining 

the membership degrees of rule premises in a conjunctive 

way using the min operator. The aggregation of the 

distinct conclusions of the activated rules is done in a 

disjunctive way using the max operator. 

Once system inputs and output as well as inference 

parameters are defined, the last step is reasoning rule 

description. In a previous version [18], the rules were 

defined according to expert knowledge. 116 rules were 

needed to cover all possible situations. The system proved 

to be accurate. A comparison between fuzzy and crisp 

partitions showed that the former ones increase a 15% the 

overall accuracy. The rules can also be generated by an 

automatic procedure. A fuzzy decision tree induction 

algorithm, which is a fuzzy extension of the well known 

ID3 algorithm [20], is used. The main advantage of the 

decision trees is to generate incomplete rules, only 

defined by a subset of the available input variables. The 

generated rules are informative for experts to the 

condition that the partitioning is carefully defined. The 

Fispro [21] implementation is used with the partitions 

proposed by the experts, those which proved efficient in 

the expert fuzzy system. 

 
Figure 3: NDVI profiles plotted according to thermal time 

for several sugarcane fields. On the right are the fuzzy 

sets of NDVI-defined inputs. 

  

5 Results and discussion 
The learning process includes a cross validation. It has 

been carried out with various configurations to assess the 

system sensitivity to important parameters:  the size of the 

training set and the number of satellite images per year. 

Finally, the contribution of each of the information 

sources is evaluated. 

The data set has been randomly split to build training and 

test sets. For each proportion, the given result is the 



 4 

Figure 4: System performances using different 

percentages of training set (OA:  overall accuracy; PA 

Harvested and PA Not Harvested:  producer's accuracy 

for the two classes "Harvested" and "Not Harvested" 

respectively). These performances are obtained from 

confusion matrices. 

 

average of ten runs. Nine percentages have been tested 

for the training set: 10%, 20%, 30%, 40%, 50%, 60%, 

70%, 80% and 90%. The performance is measured over 

the test set. 

Fig.4 shows the average values and the standard 

deviations (for ten iterations) of the overall accuracy 

(OA) of the system and the producer’s accuracy for the 

classes “Harvested” and “Not Harvested” (PA Harvested 

and PA Not Harvested, respectively). Let's notice that the 

performance for the Not Harvested decision is quite 

independent from the size of the training set, while the 

Harvested one increases with the sample size. This is due 

to the respective proportions of both cases in a given 

image:  the not harvested fields are much more numerous 

than the harvested ones. So, only a small number of 

images is needed to learn the not harvested case. 

The other key parameter related to system robustness, is 

the number of available images. It is likely to vary from a 

year to another because of the lack of acquisition or 

cloudy weather which makes unusable the satellite 

images. 

Fig.5 shows the selected images for each of the studied 

years. The selection takes into account the campaign 

organisation. For instance, in the case of 3 images per 

Figure 6: System performances according to the number 

of satellite images per year.  (OA:  overall accuracy; PA 

Harvested and PA Not Harvested:  producer's accuracy 

for the two classes "Harvested" and "Not Harvested" 

respectively). 

 

year, one is chosen before, the other between and the last 

one after the harvest campaign. 

Fig.6 shows that the system performance is still 

acceptable even when the number of images per year 

drops to 3. 

The number of generated rules also evolves with the 

number of images per year. It reaches an average of 38 

for the 5 image configuration as shown in Fig.7. 

 

 
Figure 7: Number of induced rules according to the 

number of satellite images per year. Histogram bars 

represent the average values for the different training sets, 

and error bars the standard deviation. 

 

 

Figure 5: Acquisition dates selected at different stages of the assessment of system robustness with respect to the number of 

images per year. 
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To assess the information source contribution three sets 

of input variables have been considered: 

- SAT:  the set of input variables that are related to the 

information extracted from the satellite images; 

- MOD:  the set of input variables built using the 

sugarcane growth model; 

- EXP:  the set of some input variables dealing with 

expert knowledge. Although the expert knowledge is 

difficult to isolate since it contributes to the design of 

the whole system, some variables are only related to 

this sources. They are encoding agronomic knowledge 

such as the nominal cycle length. 

 

Four combinations have been tested and the results are 

reported in Fig.8. The best ones are the closest to the 

origin. As expected, all of them include SAT and MOD, 

and in most cases, the best one is SAT+MOD+EXP. 

The sugarcane growth model contribution is interesting to 

analyze for each of the two classes “Harvested” and “Not 

Harvested”. Fig.9 shows that it is higher in the harvested 

case. This result was expected:  there is no need of a 

growth model to label a field as not harvested. The 

essential role of the model is to remove potential 

ambiguity concerning harvested fields. 

6 Conclusions 
This paper presented a novel approach for dealing with 

time series of optical satellite images used for crop 

monitoring. Data extracted from time series were 

combined with information from crop model output and 

expert knowledge, in order to make credible decisions. 

The description of the approach was done using an 

application example of sugarcane harvest monitoring with 

a SPOT5 time series. A decision system designed and 

implemented for automatic harvest detection was 

described. 

Results obtained when evaluating the system were in 

substantial agreement with ground truth data; the overall 

accuracy reached 96.07%. The next step concerning the 

sugarcane application consists in examining the 

robustness of the automatically generated rules by testing 

the system at other sites and in other years. 

The approach outlined in this paper is generic and very 

promising. Many models that simulate the growth of the 

main annual crops exist (e.g., STICS [22]), and expert 

knowledge about these crops could be obtained easily 

either from farmers or from agronomic knowledge bases 

[23]. 

 

 

 

Figure 8: System performances obtained for different image frequencies by using different combinations of  information 

sources. 

 



 6 

 
Figure 9: Crop growth model contribution in the system 

performances (PA Harvested and PA Not Harvested:  

producer's accuracy for the two classes "Harvested" and 

"Not Harvested" respectively). Histogram bars represent 

the average values for the different training sets, and error 

bars the standard deviation. 

 

The combination of crop model outputs and expert 

knowledge with time series of high spatial-resolution 

satellite-images seems to be an excellent tool for crop 

monitoring. 
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