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Abstract— This article presents a method to estimate flow
variables for an open channel network governed by first-order,
linear hyperbolic partial differential equations and subjected to
periodic forcing. The selected external boundary conditions of
the system are defined as the model input; the flow properties
at internal locations, as well as the other external boundary
conditions, are defined as the output. A spatially-dependent
transfer matrix in the frequency domain is constructed to relate
the model input and output. A data reconciliation technique
efficiently eliminates the error in the measured data and results
in a reconciliated external boundary conditions; subsequently,
the flow properties at any location in the system can be
accurately evaluated. The applicability and effectiveness of the
method is substantiated with a case study of the river flow
subject to tidal forcing in the Sacramento-San Joaquin Delta,
California. It is shown that the proposed method gives an
accurate estimation of the flow properties at any intermediate
location within the channel network.

I. INTRODUCTION

Hydrodynamic flows in complex networks subjected to
tidal forcing have been widely explored in environmental
engineering. A reliable characterization of flow properties in
the network generally demands a complex nonlinear model,
for example, Delta Simulation Model II (DSM2) [1], Shallow
Water Equation (SWE) solver package TELEMAC [2], and
the software Mike21 developed by Danish Hydraulic Institute
(DHI) Group [3]. Constructing and utilizing these state-of-
the-art mathematical computer models is very important for
decision support in operations, planning, and managing water
supply and water quality.
However, the construction of such large-scale nonlinear mod-
els is usually a complex task. It requires detailed information
of network geometry, as well as precise measurements at
the boundaries, which is, unfortunately, often unavailable.
Also, the resulting nonlinear models are constructed referring
to a specific river channel, and hardly transferable to other
networks.
For networks of open-channels, one-dimensional unsteady
flow model can be used to simulate the flow. Numerous
1-D river hydraulics models are based on the Saint-Venant
Equations, using either an implicit or explicit finite difference
scheme [4] [5] or finite-element method [6]. The main advan-
tage of these models is that they can be easily constructed by
numerical simulations with standard schemes, and that they
are suitable to any flow configurations. However, considering
the system in a frequency domain leads to a linear model

which is easier to simulate [7].
For channels in the uniform flow regime, in which the
geometry is uniform and the water depth is constant along
the channel, it is well known that an analytical solution to
the Linearized Saint-Venant equations (LSVE) exists in the
frequency domain [8] [9] [10]. However, realistic channels
hardly exhibit uniform flows. To better represent realistic
flow conditions, the backwater curve model is introduced
[11]. A transfer matrix function corresponding to LSVE and
characterizing the more realistic flow conditions has been
presented [12].
The present article extends the transfer matrix function into
a channel network. A spatially dependent transfer matrix is
constructed, relating a selected set of model inputs to the
output variables. This transfer matrix is a function of channel
width, channel length, bed slope, mean discharge, mean stage
and Manning coefficient, since set of parameter needs to be
chosen carefully to characterize the geometry of the channel,
since the uncertainty of the parameters contribute to the error
in model output.
Another concern regarding the model accuracy is the validity
of the measured data. Numerous factors could lead to mea-
surement errors, for example, the limitation of instruments,
the human errors, etc. It is imperative to minimize these
measurement errors to improve the performance of our
channel model. Static data reconciliation, as an effective
method to tune-up the measurement data [13] [14] [15] [16],
has been applied in several engineering fields [17] [18] [19].
In this article, we ”reconstruct” the boundary conditions
using static data reconciliation, and use them in the channel
network model for an accurate simulation of the flow. As
a result, we obtain a new set of boundary data which are
consistent with the model and are consistent with statistical
assumptions on measurement errors. Finally, we use this data
to obtain the flow inside of the domain.
This paper is organized as follows, Section II introduces the
LSWE in the frequency domain, along with the discussion
of spatially-dependent transfer matrix. A channel network
model featuring one-dimensional non-uniform flow is subse-
quently described. Section III presents the model to a channel
network system in the Sacramento - San Joaquin Delta in
California. Static data reconciliation is applied to eliminate
the error in the measurements. The effectiveness of the model
is verified by correlating the model estimations with the field



data at three intermediate locations in the network. Section
IV summarizes the studies and presents the scope of our
future work.

II. CHANNEL NETWORK MODEL

A. The Saint-Venant model

The Saint-Venant equations are quasi-linear hyperbolic
partial differential equations (PDEs), which are widely used
in open-channel hydraulic systems [20],[21]. For a rectangu-
lar cross-section, these equations are given by:

TYt + Qx = 0 (1)

Qt +
(

Q2

TY
+

gTY 2

2

)
x

+ gTY (Sf − Sb) = 0 (2)

for (x, t) ∈ (0, X) × <+, where X is the river reach
(m), Q(x, t) is the discharge (m3/s) across cross-section
A(x, t) = TY (x, t), Y (x, t) is the stage (m), T is the free
surface width (m) which is a constant for rectangular cross-
section, g is the gravitational acceleration (m/s2), Sb is
the bed slope (m/m), Sf (x, t) is the friction slope (m/m)
modeled by Manning-Strickler’s formula (3), with n is the
Manning’s roughness coefficient (sm−1/3).

Sf =
Q2n2(T + 2Y )4/3

(TY )10/3
(3)

The boundary conditions for this system are discharge at up-
stream Q(0, t) = Q0(t) and stage at downstream Y (X, t) =
YX(t). The initial conditions are given by Q(x, 0) and
Y (x, 0) for x ∈ [0, X].
Equations (1,2) admit a steady state solution under constant
boundary conditions. Let the flow variables corresponding
to the steady state condition be denoted by Q0(x), Y0(x).
where x ∈ [0, X]. The steady state equations are:

dQ0(x)
dx

= 0 (4)

dY0(x)
dx

=
Sb − Sf0

1− F0(x)2
(5)

with C0 =
√

gY0 is the wave celerity, F0 = V0/C0 is the
Froude number and V0 = Q0/A0 is the steady state velocity.
While the first equation indicates Q0(x) = Q0 = QX , the
second equation is solved for Y0(x) with boundary condition
Y0(X). In this article, we assume the flow to be sub-critical,
i.e., F0 < 1.

B. Linearized Saint-Venant model

Equation (2) in the Saint-Venant model is nonlinear in
the flow variables Q and Y . Each term f(Q,Y ) in the
Saint-Venant model can be expanded into Taylor series
around the steady state flow variables Q0(x) and Y0(x).
Considering only the first-order perturbations, each term can
be approximated as: f(Q,Y ) ≈ f(Q0, Y0)+ (fQ)0 q(x, t)+
(fY )0 y(x, t) where, the first order perturbations in discharge
and stage are given by q(x, t) = Q(x, t) − Q0(x) and
y(x, t) = Y (x, t)− Y0(x) respectively.

From [22], the linearized Saint-Venant model for the per-
turbed flow variables q and y reads:

T0yt + qx = 0 (6)
qt + 2V0(x)qx − β0(x)q + α0(x)yx − γ0(x)y = 0 (7)

where α0(x), β0(x) and γ0(x) are given by:

α0 = (C2
0 − V 2

0 )T0 (8)

β0 = −2g

V0

(
Sb −

dY0

dx

)
(9)

γ0 = gT0

[
(1 + κ0)Sb − (1 + κ0 − (κ0 − 2)F 2

0 )
dY0

dx

]
(10)

with κ0 = 7/3− 8Y0/(3(2Y0 + T )). In the above equations,
a uniform width at the free surface is assumed (denoted as
T0). The upstream and downstream boundary conditions are
featured by the upstream discharge perturbation q(0, t) and
the downstream stage perturbation y(X, t), respectively. The
initial conditions are given by y(x, 0) = 0 and q(x, 0) = 0
for all x ∈ [0, X].
The linearized Saint-Venant model (6,7) can also be written
in the following form:

ut = A(x)u (11)

where u is defined by the two-dimensional vector function
as:

u(x, t) =
(

u1(x, t)
u2(x, t)

)
:=

(
q(x, t)
y(x, t)

)
, (x, t) ∈ <+ (12)

A(x) denotes the linear operator as:

A(x) =

(
0 1

T0
α0(x) 2V0(x)

)
∂

∂x
+

(
0 0

γ0(x) β0(x)

)
(13)

The boundary conditions of (11) are:

u1(0, t) and u2(X, t) (14)

and initial conditions are:

u(x, 0) = 0,∀x ∈ [0, X] (15)

C. Transfer matrix representation of Saint-Venant model for
uniform flow case

The application of Laplace transform to the linear PDE
system (11) leads to the ordinary differential equations
(ODEs) in the variable x, with a complex parameter s.

u(x, s)x = As(x)u(x, s) (16)

Remark 1 (Uniform flow): In the case of uniform flow,
the flow variables are constant along the length of the
channel, i.e., the discharge Q0(x) = Q0 = QX and the
stage Y0(x) = Yn (normal depth).
A closed-form solution of the linearized Saint-venant equa-
tions in the uniform flow case can be obtained, relating the
flow variables at any point x of the river reach u(x, s) to the
boundary conditions u1(0, s) and u2(X, s) (referring to [22]
for details).(

u1(x, s)
u2(x, s)

)
=

(
gu
11(x, X, s) gu

12(x, X, s)
gu
21(x, X, s) gu

22(x, X, s)

) (
u1(0, s)
u2(X, s)

)
(17)



Fig. 1. Backwater curve approximation

where,

gu
11(x, X, s) =

λ2e
λ1x+λ2X − λ1e

λ2x+λ1X

λ2eλ2X − λ1eλ1X

gu
12(x, X, s) = T0s

eλ1x − eλ2x

λ2eλ2X − λ1eλ1X

gu
21(x, X, s) =

λ1λ2

T0s

eλ2x+λ1X − eλ1x+λ2X

λ2eλ2X − λ1eλ1X

gu
22(x, X, s) =

λ2e
λ2x − λ1e

λ1x

λ2eλ2X − λ1eλ1X

Here, λ1 and λ2 are the eigenvalues of the ODE system (16),
and are given by:

λi(s) =
2T0V0s + γ0

2α0

+ (−1)i

√
4C2

0T 2
0 s2 + 4T0(V0γ0 − α0β0)s + γ2

0

2α0
(18)

In the following sections, the transfer matrix for the uniform
case is denoted as Gu(x, X, s) = (gu

ij(x,X, s)).

D. Transfer matrix for backwater approximation in non-
uniform flow

For realistic cases, the backwater approximation is as-
sumed to study flow regimes, in which the water elevation
is not constant along the reach [11]. Following the method
in [11], and further modified in [12], the backwater curve
defined by equation (5) is approximated by two straight lines,
as shown in Figure (1).

The river reach is then decomposed into two parts: a
uniform part and a backwater part. The intersection of the
two parts is denoted by x1. Let xu denote the location
in the uniform part, xb = x − x1 denote the location in
the backwater part, Xu = x1 denote the length of the
uniform part, and Xb = X − x1 denote the length of
the backwater part. Gb(xb, Xb, s) denotes as the transfer
matrices for the backwater parts, which has the same form as
the transfer matrix in the uniform case Gu(xu, Xu, s). The
transfer matrix for the non-uniform case compromises the
transfer matrices in both uniform and backwater parts and is
denoted as Gn(x, X, s) = (gn

ij(x,X, s)):

(
u1(x, s)
u2(x, s)

)
=

(
gn
11(x, X, s) gn

12(x, X, s)
gn
21(x, X, s) gn

22(x, X, s)

) (
u1(0, s)
u2(X, s)

)
(19)

E. Transfer matrix model for channel networks

The previous model (19) can be readily applied to channel
networks. For simplicity, we consider a channel network

Channel 3

Channel 1
Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Fig. 2. Representation of basic strategy for channel network.

comprising three channels, as presented in Figure 2. Channel
1 is the upstream channel; Channels 2 and 3 are the down-
stream channels.
In each channel i (i = 1, 2, 3), ui(x, s) is defined as the
two-dimensional flow vector in frequency domain, and Xi

denotes the length of channel i:

ui(x, s) =

(
ui,1(x, s)
ui,2(x, s)

)
:=

(
qi(x, s)
yi(x, s)

)
, x ∈ [0, Xi] (20)

The linear model (19) is applied to each branch in the
channel network, and flow compatibility is examined at every
interior junction.(
ui,1(Xi, s)
ui,2(0, s)

)
=

(
gn

i,11(Xi, Xi, s) gn
i,12(Xi, Xi, s)

gn
i,21(0, Xi, s) gn

i,22(0, Xi, s)

) (
ui,1(0, s)

ui,2(Xi, s)

)
i = 1, 2, 3

u1,2(X1, s) = u2,2(0, s) = u3,2(0, s)

u1,1(X1, s) = u2,1(0, s) + u3,1(0, s) (21)

Given the external boundary conditions:

u1,1(0, s), u2,2(X2, s), u3,2(X3, s) (22)

all the other flow variables in the system (21) can be uniquely
determined . The system is determinant.
Alternately, the system (21) can be expressed as:

Y = HX (23)

where vector X comprises of all the given external
boundary conditions; vector Y contains all the undetermined
external boundary conditions, concatenated with the internal
boundary conditions:

X =(u1,1(0, s), u2,2(X2, s), u3,2(X3, s))
T

Y =(u1,2(0, s), u1,2(X1, s), u1,1(X1, s),

u2,2(0, s), u2,1(0, s), u2,1(X2, s),

u3,2(0, s), u3,1(0, s), u3,1(X3, s))
T

The matrix H is a 9 × 3 matrix. The non-trivial element
gn

i,jk (while i = 1, 2, 3, j = 1, 2, k = 1, 2) is a function of
the parameter vector (Θ) of the system, which is defined as:

Θ := (T0,i, Sb,i, n,Q0,i, Y0,i(X))T
, i = 1, 2, 3 (24)



For each channel i, Q0,i is average discharge, Y0,i(X) is
average depth, T0,i is average width, Sb,i is bed slope, and
n is the corresponding manning coefficient.
This method can be extended to more complex networks.

F. Model calibration

Before we use this model, the principal procedure for
model calibration are model parameter adjustment and data
reconciliation. The first step identifis the qualify parameter
set; the second step removes measurments errors.

1) Parameter adjustment: The parameter vector Θ as
defined in equation (24) has to be adjusted carefully to
characterize the system.
In this study, the measurable parameters Q0,i and Y0,i(X)
are evaluated based on the measurements at the stations, the
bathymetry parameters T0,i and Sb,i are derived from the
geometry of the experiment field. The Manning coefficient
n is optimized to let the the model output consistent with
the measurement, following the method in [7].

2) Data reconciliation: Since the uncertainty in the input
data would introduce errors in the model output, data rec-
onciliation is applied to achieve the reconciliated boundary
conditions, which are close to the measurements, and satisfy
the Linearized Saint-Venant model.
The objective of the optimization problem is to minimize
the total difference between measured flow vector Mobv and
balanced flow vector M̃ , which are weighted by the variance
of the measurements W using the least square method. This
can be expressed as:

f = (M̃ −Mobv)T [diag(W )]−1(M̃ −Mobv) (25)

One of the main advantages of our model decomposition
is to transform a dynamic constraint into a static one in the
frequency domain, which is easier to solve.
Rewrite the static model Y = HX in the following form:

C M = 0 (26)

with

M =
(

X
Y

)
, C =

(
H − I

)
(27)

Here, I is an Identity Matrix with the same dimension as H.
This reconciliation problem now becomes a least square
problem with static constraints. It reads:

min f = (M̃ −Mobv)T [diag(W )]−1(M̃ −Mobv)

s.t. C M̃ = 0 (28)

We use the method suggested by [23] to solve the above
data reconciliation problem. This constrained optimization
problem can be further transferred into an unconstrained
optimization problem using the Lagrange multiplier [24]:

L(M̃, λ) = (M̃ −Mobv)T [diag(W )]−1(M̃ −Mobv) + 2λ C M̃
(29)

Channel 1

Channel 2

Channel 3

Channel 5

Channel 4

SDC

DLC

GSS
GES

Fig. 3. Experiment field at Sacramento River and Georgiana Slough.

In order to obtain the unknown variables, the partially
deviations are calculated and set to zero:

∂L

∂M̃
= 2(M̃ −Mobv)T [diag(W )]−1 + 2λ C = 0

∂L

∂λ
= 2λ C M̃ = 0 (30)

This system of equations can be expressed in the matrix form
using Gauss-Jordan method:(

[diag(W )]−1 CT

C 0

) (
M̃
λ

)
=

(
[diag(W )]−1Mobv

0

)
(31)

Thus,

M̃ =
(

I 0
0 0

) (
[diag(W )]−1 CT

C 0

)−1 (
[diag(W )]−1Mobv

0

)
(32)

where, matrics I and 0 have the same dimension as C.
With the reconciliated boundary condition X̃ = (I 0)T M̃ ,
this model is ready to simulate the flow in the network
system.

III. CASE STUDY IN SACRAMENTO DELTA

A. Field measurements

The Sacramento-San Joaquin Delta in California, is a
valuable resource and an integral part of California’s water
system. This complex network covers 738,000 acres inter-
laced with over 1150 km of tidally-influenced channels and
sloughs. The area of interest for our experiment is around
the junction of Sacramento River and Georgiana Slough,
as shown in Figure 3. The direction of mean river flow is
specified with arrows; during tidal inversion the water would
flow opposite way.
Four USGS stations, namely SDC, DLC, GES, and GSS,

are located at the external boundary of this experiment field.
The stations are marked as blue squares in Figure 3. Both
discharge and stage were measured every 900 second at these



stations. The field data was collected between 10/23/2007
and 11/13/2007.
The following assumptions were made in this study:
• the flow is one dimensional;
• the channel geometry is fixed since the effects of

sediment deposition and scour are negligible in the
experiment period;

• the channel geometry can be modeled by a rectangular
cross-section;

• the lateral and vertical accelerations are negligible;
• the pressure distribution is hydrostatic;
• there is no big jump along the channel, and the bed

slope is smooth and small;
• the water surface across any cross-section is horizontal;

The input variables are the discharge perturbation at SDC
(u1,1(X1, t)), the stage perturbation at DLC (u2,2(X2, t)),
GSS (u4,2(X4, t)) and GES (u5,2(X5, t)). The output vari-
ables are the other four external boundary conditions, which
are stage perturbation at SDC (u1,2(X1, t)), discharge per-
turbation at DLC (u2,1(X2, t)), GSS (u4,1(X4, t)) and GES
(u5,1(X5, t)), as well as other flow variables within the
channel network.
The parameters in this model are the average free sur-
face width T0i, the average bottom slope Sbi, the average
Manning’s coefficient n, the average discharge at upstream
Q0i, and the average downstream stage YXi of channel i
(i = 1, 2, 3). The data at three intermediate locations in
the field is chosen to validate the model (marked in orange
triangles).

B. Spectral analysis

The fundamental idea behind the model (19) is to decom-
pose the input variables u1,1(0, t), u2,2(X2, t), u4,2(X4, t)
and u5,2(X5, t) into a finite sum of N dominant oscillatory
modes. In the case of a channel network influenced by the
ocean at the downstream end, these modes can be thought as
the principle modes produced by the tidal forcing. The input
variables are therefore expressed as:

u1,1(0, t) u
N∑

k=0

[
d
(1,1,0)
k ejωkt + d

(1,1,0)
k e−jωkt

]
(33)

u2,2(X2, t) u
N∑

k=0

[
d
(2,2,X2)
k ejωkt + d

(2,2,X2)
k e−jωkt

]
(34)

u4,2(X4, t) u
N∑

k=0

[
d
(4,2,X4)
k ejωkt + d

(4,2,X4)
k e−jωkt

]
(35)

u5,2(X5, t) u
N∑

k=0

[
d
(5,2,X5)
k ejωkt + d

(5,2,X5)
k e−jωkt

]
(36)

with d
(1,1,0)
k , d

(2,2,X2)
k , d

(4,2,X4)
k and d

(5,2,X5)
k , k = 0, . . . , N ,

are respectively the Fourier coefficients of the spectral
decomposition of u1,1(0, t), u2,2(X2, t), u4,2(X4, t) and
u5,2(X5, t). ωk is the set of frequencies used for the modal
decomposition.
Figure 4 shows the spectral analysis for the discharge data at
station SDC: There are three dominant tidal frequencies in
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Fig. 4. Spectrum analysis of discharge at SDC Station

the system: ω1 = 0.0001407 s−1 (or period 12.4 hrs tide,
corresponding to the M2 tide generated by the Moon), ω2 =
0.0000727 s−1 (or period 24 hrs tide, corresponding to the
K1 tide generated by the Sun) and a ω3 = 0.000068 s−1

(or period 25 hrs tide). The power spectrum is cut-off
at 70dB/Hz to determine the 30 dominant frequencies.
The second plot in Figure 4 indicates that 30 modes are
sufficient to capture the signal. The amplitude at 0 Hz is
essentially the nominal stage. Similar arguments hold for
other measurements.

C. Transfer matrix for channel network system

This open-channel network system has five simple chan-
nels as shown in Figure 3. Four given external boundary
conditions are: the discharge at SDC: u1,1(X1, s), the stage
at DLC: u2,2(X2, s), stage at GSS: u4,2(X4, s), and stage at
GES.
Following the method described in Section II-E, the network
system can be expressed as:

Y = P−1QX (37)

where,

X =(u1,1(0, s), u2,2(X2, s), u4,2(X4, s), u5,2(X5, s))T

Y =



u1,2(0, s)
u2,1(X2, s)
u4,1(X4, s)
u5,1(X5, s)
u1,2(X1, s)
u1,1(X1, s)
u2,1(0, s)

u3,2(X3, s)
u4,1(0, s)
u5,1(0, s)


, Q =



gn
1,11 0 0 0

gn
1,21 0 0 0
0 gn

2,12 0 0
0 gn

2,22 0 0
0 0 0 0
0 0 0 0
0 0 gn

4,12 0
0 0 gn

4,22 0
0 0 0 gn

5,12
0 0 0 gn

5,22





P =



1 0 0 0 −gn
1,12 0 0 0 0 0

0 0 0 0 −gn
1,22 1 0 0 0 0

0 0 0 0 1 0 −gn
2,11 0 0 0

0 1 0 0 0 0 −gn
2,21 0 0 0

0 0 0 0 −1 gn
3,11 −gn

3,11 gn
3,12 0 0

0 0 0 0 0 gn
3,21 −gn

3,21 gn
3,22 −1 −1

0 0 0 0 0 0 0 1 −gn
4,11 0

0 0 1 0 0 0 0 0 −gn
4,21 0

0 0 0 0 0 0 0 1 0 −gn
5,11

0 0 0 1 0 0 0 0 0 −gn
5,21


D. Adjustment of model parameters

In this study, the elements of the parameter vector are
tabulated in Table I.

TABLE I
PARAMETERS FOR SACRAMENTO RIVER AND GEORGIANA SLOUGH

Channel Q0,i YX,i T0,i Sb,i n

i = 1 186.73m3s−1 5.61m 115m -0.00004 0.0323m−1/3s
i = 2 83.89m3s−1 4.04m 110m -0.00009 0.0323m−1/3s
i = 3 113.08m3s−1 7.74m 110m -0.00004 0.0323m−1/3s
i = 4 58.07m3s−1 4.02m 56m -0.00019 0.0323m−1/3s
i = 5 65.24m3s−1 5.27m 89m -0.00004 0.0323m−1/3s

The mean discharge (Q0,1) of the channels 1,2,4,5 are
calculated using the measured discharge at SDC, DLC,
GSS, GES respectively. It is clear that the measurement
data are inconsistent, since Q0,1 6= Q0,2 + Q0,4 + Q0,5.
To partially compensate the measurement error, the mean
discharge at channel 3 is set to be: Q0,3 = [(Q0,1−Q0,2) +
(Q0,4 +Q0,5)]/2. The model outputs u1,2(0, s), u2,1(X2, s),
u4,1(X4, s), and u5,1(X5, s) are shown in Figure 5, along
with the measurement data for comparison. It is observed
that the model gives a good estimation in Sacramento river
(SDC and GES) but performs poorly at DLC and GSS. This
may be due to measurement error in the boundary conditions.

E. Boundary condition reconciliation

The method developed in Section II for the data reconcilia-
tion problem has been implemented to solve the reconciliated
boundary conditions of this case. The static model (37) can
be rewritten in the following form:

C M = 0 (38)

with

M := (u1,1(0, s), u2,2(X2, s), u4,2(X4, s), u5,2(X5, s),

u1,2(0, s), u2,1(X2, s), u4,1(X4, s), u5,1(X5, s))
T (39)

C = [(I4×4 04×6)P−1Q − I4×4] (40)

A least square problem similar to (28) is solved. The solution
are shown in Figure 6 and 7. Clearly, the reconciliated data
are very close to the measurements

F. Model validation

Flow variables at three locations are chosen from the
network to further validate the model. The locations are
marked as orange triangles in Figure 3, and data are col-
lected between 11/01/2007 and 11/12/2007. Location A is at
downstream of the junction of Sacramento river and Delta
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Fig. 5. Comparison of model output and measurement data at external
boundaries of the network.

Cross channel; Location B is at downstream of GSS branch;
Location C is at downstream of Sacramento Branch. The
discharge at Location A, along with the stage data at three
locations, are used to test the model. The simulation results
are shown in Figure 8.

Model calibration and validation are further evaluated
using standard statistical metrics. The primary evaluation
measure is the coefficient of efficiency, E [25]:

E = 1−

[∑N
1 (ûi − ui)2∑N
1 (ui − ui)2

]
(41)

where ûi is the simulated flow (or other variables of interest),
ui is the observed flow, and ui is the mean of ui, for i =
1 to N measurement times (or events). If a model predicts
observed variables perfectly, E = 1. If E < 0, the model’s
predictive power is worse than simply using the average of
observed values.
Another statistic evaluation of the analysis is the correlation
coefficient (λ), given by:

λ =
∑N

1 (ui − ui)(ûi − ûi)√∑N
1 (ui − ui)2

∑N
1 (ûi − ûi)2

(42)
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Fig. 6. Reconciliated oundary condition v.s. measurement.

where, ui and ûi represent the mean of measured and simu-
lated flow for i = 1 to N measurement times, respectively.
Table II enlists the values of λ and E in the validation sets.

TABLE II
λ-VALUE AND E-VALUE FOR MODEL VALIDATION

Location A A B C
Variables discharge stage stage stage

E 0.9775 0.9643 0.9768 0.9612
λ 0.9895 0.9876 0.9897 0.9875
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Fig. 7. Model output using reconciliated boundary conditions v.s. mea-
surement.

Both λ-values and E-values are close to unity. The re-
sults in Table II and Figure 8 indicate that our model can
accurately simulate the channel flow.

IV. CONCLUSION

This article proposes a new model to estimate the
flow variables in a channel network system subjected to
periodic forcing. A spatially-dependent channel network
model in frequency domain is constructed using transfer
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Fig. 8. Validate the model output with measurement.

matrix for the non-uniform steady state case. The model
decomposition allows the output response to be expressed
in terms of the spectral coefficients of the input variables
and the transfer matrix coefficients evaluated at appropriate
locations. Parameter adjustment and static data reconciliation
efficiently select the desired parameter vector and remove
the error of the measurement data. Subsequently, the flow
properties at any location in the system can be readily
predicted.
The approach proposed in this study has been successfully
applied to a channel network in the Sacramento-San Joaquin
Delta, with the flow prediction being successfully validated
at three locations intermediate the channel system.
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