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A new compact model coupling rainfall-runoff and routing model to support reservoir releases management

The article proposes a model for integrated management of a regulated watershed. In such systems, it is important to take into account not only the discharge released at the reservoir, but also the natural flows due to rainfall. The proposed model incorporates both inputs, and can be refined by considering different numbers of sub-basins corresponding to tributaries of the river. We discuss the parameter identification and show that the validation is improved when the discharge transfer inputs are used in the model. These upstream discharge inputs correspond to reservoir releases in the case of a regulated watershed. The model is tested on data from the Tarn river in South-Western France.

Introduction

In many regulated watersheds, the reservoirs are used to release water in order to simultaneously satisfy withdrawals along a river reach and guarantee flow at certain critical points. When these points are distant from the reservoir, the managers must account for the transfer time as well as the possible contributions of the catchment area. For the design of real time regulation tools, it is necessary to elaborate compact models for the flow routing so as to predict the behavior of the river during various events (dam release for example). However this transfer can be influenced by lateral inflows, in particular the contributions due to the rainfall, which are generally underestimated in the existing routing methods. The purpose of this paper is to establish a compact model of flow routing integrating the contributions due to the rainfalls. This model results from the coupling of a flow routing model and a rainfall-runoff model. The flow routing model is a physical model, based on the linearized Saint-Venant equations transposed in the Laplace domain. The downstream discharge is then expressed analytically with respect to the upstream discharge (dam release), and to lateral inflows distributed along the river reach. The lateral inflows result from a rainfall-runoff model applied to the catchment area, which is divided into sub-basins whose runoff ends in a point of the principal river. The flow resulting from the rainfallrunoff model is then distributed between the sub-basins according to their respective surfaces, and is introduced into the river in the form of lateral inflow located at each subbasin mouth. In that way, the flow routing model takes the catchment contributions into account. The integrated model is applied to a catchment area presenting a dam at the upstream end, a set point (reserved flow) at the downstream and intermediate tributaries.

Problem statement and methodology

We consider the watershed of a river stretch where the upstream discharge Q u (t), function of time t, may be controlled thanks to releases from a reservoir dam. At the downstream end of the river stretch, the discharge Q d (t) is measured and must always be superior to a critical threshold Q min , also called reserved discharge, thanks to dam releases. Water withdrawals for irrigation or domestic use may occur along the river, that dam releases must compensate for in order to ensure the reserved discharge. Therefore, it is essential to accurately evaluate the transit time in the river. For the reservoir manager, it is also essential to avoid releasing too much water. A rainfall in the watershed could lead to reduce the required release, provided its effect on the flow dynamics and amount are well considered. The present article proposes a new method of coupling a production function (e.g., rainfallrunoff function) to the flow routing process in a stream. The considered system is composed of two types of inputs: the upstream discharge Q u (t) and the climate data, P (t) (rainfall) and P E(t) (potential evapotranspiration). The system output is the downstream discharge Q d (t). In the dam release control framework, Q u (t) can be adjusted by the dam manager according to management objectives. To this end, the manager needs transfer functions to evaluate the flow routing in the river stretch and the influence of the rainfall on the downstream discharge. In the context of real-time operation, the simulations must be quick. Here, we analyze how the transfer functions of the two types of input interact. We first consider the flow routing model (Q u (t) → Q d (t)). Then, we establish the transfer function of a distributed flow along the river stretch, which is referred to as the lateral inflow in the following (q l (x, t)). Finally, the transfer function P (t) -P E(t) → q l (x, t) is established using a rainfall-runoff model. To calibrate such a model, a set of parameters has to be identified, based on the minimization of the error between simulated output (Q s (t)) and measured output (Q m (t)). The identifiability of such a system is generally a problem since several sets of parameters may give the same response (see e.g. Beven, 2001). The basis of the approach is to derive the flow routing model from simple and easily accessible characteristics of the river stretch. Modeling of flow routing in a river stretch has been the subject of numerous publications since the 1950s. A comprehensive review of approximate flow routing methods has been presented by [START_REF] Weinmann | Approximate flood routing methods: A review[END_REF]. Different linear models have been developed for flow routing simulation purposes (e.g. (Dooge et al., 1987a;Tsai, 2003)). Most of them are based on an analysis of the linearized Saint-Venant equations around a reference flow. The downstream boundary condition is usually neglected by considering a semi-infinite channel (see e.g., Dooge et al., 1987a) because it greatly simplifies the equations. This point may be questionable in the context of dam release management which has generally to be done in low flow. In such a context, the natural of artificial cross structures (weirs) may induce backwater and feedback effects. [START_REF] Munier | Linear approximation of flood routing method with backwater effects[END_REF] proposed a method to take these effects into account in the transfer function. This transfer function is based on a simplification of the water surface profile and the linearization of the Saint-Venant's equations. The Laplace transform of the equations leads to the transfer function in the Laplace domain. Coupled with a cross structure discharge equation, one gets a transfer function taking account of the backwater and feedback effects due to the cross structure. The same framework is adopted here, since the transfer function can be easily calculated based on a few characteristics of the river stretch: mean slope, mean discharge, mean river width and roughness coefficient. When available, information about the cross structures (usually weirs) can also be used. The effect of a lateral inflow on the river dynamics has been studied by a few researchers. The methods are generally based on the linearization of a transfer model (Saint-Venant or a simplification) and the transfer function in the Laplace domain. [START_REF] Moussa | Analytical Hayami solution for the diffusive wave flood routing problem with lateral inflow[END_REF] analyzed the effect of a uniform lateral inflow on the flow dynamics established from the linearized diffusive wave equation. An extension of this study on the complete Saint-Venant's equations is proposed by [START_REF] Moramarco | Analytical solution for channel routing with uniform lateral inflow[END_REF]. More recently, [START_REF] Fan | Diffusive wave solutions for open channel flows with uniform and concentrated lateral inflow[END_REF] studied the influence of localized or uniformly distributed in a finite channel. The main limitations of these approaches is the use of the convolution product to calculate the transfer in the temporal domain, which is time-consuming and represent a limitation in the context of real-time operation. In this paper, we propose an approximation of the transfer functions of the lateral inflow in the Laplace domain, which leads to first order plus delay transfer functions. These functions lead to input delayed first-order differential equations in the time domain, which are calculated more quickly than the convolution product. Still, there are multiple manners to consider the inflow due to rain: this inflow can be considered as uniformly distributed, distributed according to the drained area, considered as punctual (case of a well identified tributary) or a combination of these methods. This point is discussed in section 4 with an illustration on a 82km long stretch of the upper Tarn River (South of France).

3 Theoretical framework 3.1 The Linear Lag-an-Route (LLR) transfer model

The transfer model is set to provide the discharge at any point in the channel with respect to several localized lateral inflows. This section presents the methodology.

General methodology

We consider a semi-infinite rectangular channel with localized lateral inflows q l (see Fig. 1). The full one-dimensional Saint-Venant equations are linearized around a reference uniform steady state regime. These equations are then rewritten in the Laplace domain, which leads, under the considered assumptions, to one Saint-Venant transfer function per lateral discharge linking the discharge at any point in the channel to the corresponding lateral discharge. Because of the difficulty to inverse the obtained discharge back to the time domain, the moment matching method is applied in order to simplify the transfer functions. This method ensures a low frequency approximation, well adapted to the free surface transfer, and provides simplified transfer functions T F i of the form of a first order plus delay (attenuation plus delay), corresponding in the time domain to a simple first order ordinary differential equation. The obtained model is referred to as LLR for linear lag-and-route model.

Linearized Saint-Venant equations

We consider a stationary regime and small variations around it. The stationary regime (reference flow) is characterized by constant discharge Q 0 and corresponding normal water depth Y 0 along the channel, and no lateral inflows. The following notations are used: x (m) is the abscissa along the channel, B the channel width, S b the bed slope and g the gravitational acceleration (ms -2 ). The following variables represent the reference flow: A 0 the wetted area (m 2 ), P 0 the wetted perimeter (m), Q 0 the discharge (m 3 /s) through section A 0 , Y 0 the water depth (m), S f 0 the friction slope, V 0 = Q 0 /A 0 the mean flow velocity (ms -1 ), T 0 the top width (m), F 0 = V 0 /C 0 the Froude number with C 0 = gA 0 /T 0 the wave celerity (ms -1 ). Throughout the article, the flow is assumed to be subcritical (i.e., F 0 < 1). The friction slope S f 0 is modeled using the Manning formula (see [START_REF] Chow | Open-channel Hydraulics[END_REF]:

S f 0 = Q 2 0 n 2 A 2 0 R 4/3 0 (1)
with n the Manning coefficient (sm -1/3 ) and R 0 the hydraulic radius (m), defined by R 0 = A 0 /P 0 . Let us denote q(x, t), y(x, t) and q l (x, t) the variations in discharge, water depth and lateral inflow at abscissa x and time t, compared to the reference steady state regime.

The linearized Saint-Venant equations are given by (see Litrico and Fromion (2004a) for details):

T 0 ∂y ∂t + ∂q ∂x = q l (2) ∂q ∂t + 2V 0 ∂q ∂x -µ 0 q + C 2 0 -V 2 0 T 0 ∂y ∂x -ν 0 y = 0 (3)
where the dependency on x and t is omitted for readability.

In the general non-uniform case, parameters ν 0 and µ 0 , which are functions of x, are defined by the following equations:

ν 0 = V 2 dT dx + gT (1 + κ)S b -(1 + κ -(κ -2)F 2 ) dY dx (4) µ 0 = - 2g V S b - dY dx (5) 
with κ = 7/3 -4A/(3T P )(∂P/∂Y ).

The boundary conditions are given by the upstream discharge q(0, t) and the lateral inflow denoted q l (x, t). The lateral inflow is considered as the sum of n lateral discharges q li (t) localized at different longitudinal positions x li , i = 1 . . . n (Eq. 6). One may note that the upstream discharge can be considered as a lateral discharge localized at the upstream end of the channel (x = 0).

q l (x, t) = n i=1 δ(x -x li )q li (t) ( 6 
)
where δ is the Dirac function.

Saint-Venant Transfer Function

Since the model is linear, the contribution of each lateral inflow q li can be computed separately and finally added to obtain the discharge at any point in the channel. The Saint-Venant equations are expressed in the frequency domain using the Laplace transform. A time function expressed as f (t) in the time domain is expressed as f (s) in the Laplace domain, where s is the Laplace variable. The transposition to the Laplace domain allowed us to solve these equations analytically, leading to a closed-form expression of Saint-Venant transfer functions T F i (x, s) corresponding to each lateral inflow. These transfer functions lead to analytical expressions of the contribution q i (x, s) of the lateral inflow q li (s) localized at x i to the discharge q(x, s) at any point in the channel.

q(x, s) = n i=1 q i (x, s) (7) 
q i (x, s) = T F i (x, s)q li (s), i = 1..n (8) 
The Saint-Venant transfer function relative to one particular localized lateral inflow is computed following the method developed in [START_REF] Munier | Linear approximation of flood routing method with backwater effects[END_REF]. The Saint-Venant transfer function T F i (x, s) at the relative distance x corresponding to the lateral inflow q li (s) localized at x i , is given by Eq. ( 9).

T F i (x, s) = (λ 2 -2bs)e -λ 1 x i -(λ 1 -2bs)e -λ 2 x i λ 2 -λ 1 e λ 1 x (9) 
where 9) provides a linear distributed model for lateral inflow transfer in a semi-infinite open-channel. This model is expressed analytically in the frequency domain by a transcendental transfer function which depends on the pool characteristics.

λ j = a + bs + (-1) j (2ad + c 2 )s 2 + 2acs + a 2 and a = ν 0 2T 0 (C 2 0 -V 2 0 ) , b = V 0 C 2 0 -V 2 0 , c = V 0 ν 0 -(C 2 0 -V 2 )T µ 0 ν 0 (C 2 0 -V 2 0 ) , d = 1 2a C 2 0 (C 2 0 -V 2 0 ) 2 -c 2 . Eq. (
One may remark that the Hayami transfer model is a particular case of the one presented here. Indeed the Hayami model is based on the diffusive wave equation, which is deduced from the complete Saint-Venant equations by neglecting the inertia terms. This last assumption leads to a simplified expression of the eigenvalues

λ 1 = Ce- √ C 2 e +4Des 2De
and

λ 2 = Ce+ √ C 2 e +4Des 2De
(C e = -ν 0 /µ 0 T 0 and D e = -gA 0 /µ 0 T 0 ) which correspond to the ones of the Hayami model. Additionally, the transfer function corresponding to an upstream inflow (x l = 0) is given by T F (x, s) = e λ 1 x . Consequently, the channel transfer model presented here is an extension of the Hayami model allowing us to take the complete Saint-Venant equations with localized lateral inflows into account.

Low frequency approximate transfer function

The method provides a simple expression of the discharge q(x, s) at any point in the channel in the Laplace domain. To express it in the time domain (q(x, t)), one usually uses the convolution operation. Then, Eqs. (7-8) can be represented by:

q(x, t) = n i=1 T F i (x, t) * q li (t) ( 10 
)
where f * g represent the convolution of the two functions f and g, and is defined by

(f * g)(t) = +∞ -∞ f (t -τ )g(τ )
dτ . The convolution can be implemented numerically, but its execution can be very time consuming. Another possibility is to simplify the expression of the transfer function in the frequency domain. It is well-known that the flow routing in a channel is a delayed process, and that there is some attenuation of the peak flow. Such phenomenon can be accurately described by a rational transfer function with delay. To enable analytical computations, we restrict ourselves to a first order with delay model (Eq. ( 11)), as it is classically done in the literature [START_REF] Malaterre | Modélisation analyse et commande optimale LQR d'un canal d'irrigation[END_REF]; [START_REF] Rey | Contribution à la modélisation et la régulation des transferts d'eau sur des systèmes de type rivière/baches intermédiaires[END_REF]). We show in the following that using the classical moment matching method (see Dooge et al. (1987a); [START_REF] Rey | Contribution à la modélisation et la régulation des transferts d'eau sur des systèmes de type rivière/baches intermédiaires[END_REF]), one may identify the parameters of a first order with delay that matches the low order moments of the full Saint-Venant transfer function given by Eq. 9.

T F i (x, s) = G i (x)e -τ i (x)s 1 + K i (x)s (11) 
The R-th cumulant (i.e., logarithmic moment) of a transfer function h is given by:

M R [h(x, t)] = (-1) R d R ds R [log h(x, s)] s=0 (12) 
The purpose of the moment matching method is to match the cumulants of the exact transfer function to those of the approximate one. Equating the first n cumulants of the exact transfer function and the approximate one ensures a good representation for the low frequency range. M i0 (x), M i1 (x) and M i2 (x) denote the first three cumulants of the transfer function T F i (x, s) given by Eq. ( 9), computed using the Taylor series expansion at s = 0. One may note that M i0 (x) = 1, which is in agreement with the mass conservation law.

Equating the first three cumulants of the approximate transfer function T F i (x, s) to M i0 (x), M i1 (x) and M i2 (x) leads to:

     G i (x) = 1 K i (x) = M i2 (x) τ i (x) = M i1 (x) -M i2 (x) (13) 
One may note that other approximate models can be set with the present method, since it simply requires to solve the system obtained by equating the first cumulants of the transfer function and its approximation. In particular, adding a zero in the transfer function may lead to a better approximation for short canals (see Litrico and Fromion (2004a)).

In any case, this method leads to analytical and distributed expressions of the model parameters (τ i , K i , i = 1..n). These expressions provide a low frequency approximation of the flow transfer. Parameters are obtained analytically as functions of the physical parameters of the pool (geometry, friction, discharge). Since the approximate model T F i (x, s) is a first order with delay, the contribution q i of lateral inflow q li to the discharge at any point in the channel verifies the following ordinary differential equation:

K i (x) d dt q i (x, t) + q i (x, t) = q li (t -τ i (x)) (14) 
using a numerical scheme to solve this equation (e.g. with a Runge-Kutta algorithm) is generally less time consuming than computing the convolution.

Rainfall-Runoff model

The GR4J model is a four parameters conceptual lumped rainfall-runoff model. Streamflows at the outlet of a catchment are calculated from rainfall and potential evapotranspiration (P E) time-series in seven steps: first, net rainfall P n and potential evapotranspiration P E n are determined with a zero capacity interception store:

P ≥ P E ⇒ P n = P -P E P E n = 0 P < P E ⇒ P n = 0 P E n = E -P (15) 
Second, in the case where P n is different from 0, a soil moisture accounting store (SMA) is filled by a part P s of the net rainfall determined by the following equation:

P s = X 1 1 -S X 1 2 tanh Pn X 1 1 + S X 1 tanh Pn X 1 (16)
Where X 1 is the capacity of the SMA store and S the water level in the same store. In the case where P n is null and E n > 0, an evaporation rate E s is computed to evaporate water from the SMA store with the following equation:

E s = S 2 -S X 1 tanh En X 1 1 + 1 -S X 1 tanh En X 1 (17) 
Third, leakages from the SMA store is finally calculated to account for slow contributions with the following equation:

P erc = S 1 -1 + 4 9 S X 1 (18)
The water level in the SMA store is finally updated with all the preceeding terms: S = S + P s -Es -P erc.

Four, effective rainfall P r is calculated as the remaining of the net rainfall after withdrawal from SMA store and addition of percolation: P r = P n -P s + P erc. This effective rainfall is then partitioned into two components: 90% of P r are routed by a unit hydrograph UH1 and a non linear routing store as a slow component, 10% of P r are routed with a second unit hydrograph UH2 as a fast component. UH1 has a time base of X 4 , UH2 of 2 × X 4 . The reader is referred to [START_REF] Perrin | Improvement of a parsimonious model for streamflow simulation[END_REF] for the exact formulation of unit hydrographs.

Five, an intercatchment groundwater flow function is computed to account for gain or losses due to interactions with neighboring catchments or groundwater:

F = X 2 R X 3 7/2 ( 19 
)
Where R is the water level in the routing store, X 3 the routing store capacity and X 2 the intercatchment groundwater flow parameter. Six, the routing store water level is updated with the output from the UH1 hydrograph Q U H1 and the gain or losses term F if the balance is positive: R ′ = max(0, R+ Q U H1 -F ).

Output Q r from the routing reservoir is calculated by the following equation:

Q r = R 1 -1 + R X 3 4/3 (20)
Seven, the final discharge at the catchment outlet is calculated as the sum of routing reservoir output Q r and the output of UH2 noted Q U H2 minus the gain and losses term applied on the fast component if the balance is positive:

Q = Q r + max(0, Q U H2 + F ) (21)
Figure 2 present the overall model scheme. The interested reader is referred to [START_REF] Perrin | Improvement of a parsimonious model for streamflow simulation[END_REF] for additional details. Finally, the four parameters to be calibrated are the following:

1. X 1 , the capacity of the soil moisture store (in millimeters), 2. X 2 , the exchange parameter that controls the intercatchment groundwater flows (in millimeters). Positive values traduce water imports from groundwater or neighbouring catchments, negative values imply water exports, 3. X 3 , the capacity of the routing store (in millimeters), 4. X 4 , the time base of the unit hydrograph (in days). This parameter controls the time lag between effective rainfall and runoff peaks. 

Compact integrated model

At this stage, two sub-models have been computed: the first one, the lag-and-route model, provides the downstream discharge from the upstream discharge and localized lateral inflows, and the second one, the rainfall-runoff model, transforms the rainfall over a basin into a discharge at its downstream end. These two sub-models are then coupled to get the integrated model: the sub-basins of the main tributaries and the remaining sub-basin are considered, the GR4J model takes the rainfall and potential evapotranspiration over each sub-basin as inputs and computes the discharge at their downstream end; the LLR model takes the upstream discharge and the outputs of the GR4J model as inputs and computes the discharge at the downstream end of the reach. The integrated model is then determined by eight parameters: four for the lag-and-route model and four for the rainfall-runoff model. Over-parametrization can occur when a model has too many degrees of freedom: many different sets of parameters can provide similar responses to a given input. In order to avoid this problem, we used the physical property of the lag-and-route model and reduced the calibration exercise to the identification of GR4J parameters. Since the parameters of this model are physically based, they can be estimated a priori. The reference discharge Q 0 is set to the mean value of the upstream discharge, the channel width B is set to the average width of the river, the bed slope S b can be deduced from the reach length and the altitude of the upstream and downstream stations and the Manning coefficient n can be determined from the characteristics of the river bed (see reference values in [START_REF] Chow | Open-channel Hydraulics[END_REF]. Then, the four parameters X 1 , X 2 , X 3 and X 4 of the rainfall-runoff model GR4J are chosen to maximize the Nash-Sutcliffe coefficient NS on a first temporal period:

Hourly rainfall and PE are available over the period from 01/01/96 to 31/12/04 in four different spatial configurations:

• GR: Mean areal rainfall and PE (MAR&PE) are calculated on the overall catchment.

• GR+LR, 0 sub-basin: MAR&PE are calculated on the intermediate catchment S 0 between the upstream and downstream stations.

• GR+LR, 1 sub-basin: MAR&PE are calculated on the catchment of the first tributary S 1 and on the remaining intermediate area S ′ 0 .

• GR+LR, 2 sub-basins: MAR&PE are calculated on the catchment of the first and the second tributary S 2 and on the remaining intermediate area S ′′ 0 .

For the considered reach, the parameters of the LLR model are resumed in table 1.

Q 0 B S b n 0.554 m 3 /s 100 m 7.8 10 -3 m/m 0.04
Table 1: LLR parameters for the considered reach.

In this study case, results of different models are compared. The first one is the GR4J model without accounting for the routing from the upstream end to the downstream end of the reach (classical lumped mode). The second one is the integrated model just with the intermediate basin S 0 . The third one is the integrated model accounting for the subbasin S 1 , and the last one is the integrated model accounting for S 1 and S 2 (intermediate area is then reduced to S ′ 0 and S ′′ 0 respectively). The identification step is done on the period from 01/01/96 to 31/12/99, whereas the validation step is done on the period from 01/01/01 to 31/12/04.

Parameter identification

The identification step is applied on the four models. Table 2 summarizes the sets of the GR parameters that maximize the Nash-Sutcliffe criterion for each model.

GR

GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin These parameters are classical values for GR4J. One will note the evolution of the parameter set when introducing additional tributaries. This traduces the strong impact of lateral inflow discretization on hydrological parameters.

X
For each model, the Nash-Sutcliffe criterion is reported in table 3. This criterion is better when the rainfall-runoff model is applied on the whole intermediate basin S 0 and the upstream discharge is routed through the river reach using the LLR model. The criterion decreases when accounting for one or two sub-basins.

GR GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin 86.2% 87.8% 84.0% 83.7%

Table 3: Nash-Sutcliffe criterion for the identification step. 

Validation step

The four models are then validated on a four years period, from 01/01/01 to 31/12/04. Table 4 summarizes the Nash-Sutcliffe criterion for each model on the validation period.

GR

GR+LR: 0 sub-basin GR+LR: 1 sub-basin GR+LR: 2 sub-basin 75.2% 77.9% 82.7% 82.2%

Table 4: Nash-Sutcliffe criterion for the validation step.

The table shows that, firstly, accounting for the routing of the upstream discharge through the river reach in the transformation of the rainfalls into the discharge at the downstream end of the basin, improves the reconstitution of the downstream discharge. Secondly, taking the sub-basin relative to the main tributary into account also improves the reconstitution. However, taking the sub-basin relative to the second tributary does not increase the Nash-Sutcliffe criterion. Fig. 5 shows the downstream discharge simulated by the GR model and by the integrated model without any sub-basin, compared to the measured downstream discharge. Fig. 6 shows the same graph, but the integrated model takes one sub-basin into account.

Nash GR = 75.2 % Nash GR+LR = 77.9 % 

Discussion

In the identification process, the performance of the model is quite similar between the different configurations: the quality of the prediction is almost unsensitive to the model structure. However, the validation step clearly shows an improvement when considering the upstream discharge in the downstream discharge prediction, even though the upstream basin is very small compared to the whole basin. This means that the upstream discharge brings an important contribution to the predicted discharge. When considering one subbasin, the Nash-Sutcliffe coefficient improves by 7.5% compared to the lumped model. Adding more sub-basins does not necessarily improve the prediction, as we can see from table 4. There may be many reasons why the performance is not improved with more sub-basins, such as uncertainties in data and model, but the results suggest that the key factors are not in the flow routing process. It is clear too that the method of identification favors the reconstitution of the rainy events, and the low flows seem to be rather poorly simulated (Fig. 5 and6). Different error coefficients may be used, according to the relative importance of the low flows and 

Conclusion

This paper proposed a new theoretical framework to take account of the lateral discharge in the flow routing process. The transfer functions are obtained in a closed form in the Laplace domain. A first-order approximate model leads to an ordinary differential equation in the time domain, which gives a quick computation method for the flow routing model. The method allows to evaluate the response of a watershed with known upstream discharge, rainfall and potential evapotranspiration. The lateral discharge is modeled by a four-parameter lumped rainfall-runoff model. The flow routing model can be parameterized with four physical parameters: mean discharge, mean slope, river width and Manning roughness coefficient. Therefore, the coupled model requires the calibration of only four parameters. An illustration of the model is presented on the upper Tarn River. The contribution due to rainfalls can be integrated by considering different sub-basins. The example also shows that it is not always useful to consider a large number of sub-basins to improve the model performance at the downstream end of the watershed, but that the knowledge of the upstream discharge brings a lot of information even if the corresponding basin area is small compared to the whole basin.

For dam release management, it is essential to correctly represent the flow routing process at low discharge too. In these conditions, backwater and feedback effects due to cross devices may have a significant effect on the flow dynamics. The same theoretical approach can be developed accordingly, using for example an approximate determination of the water surface profile [START_REF] Munier | Linear approximation of flood routing method with backwater effects[END_REF]. It may be necessary to have a good estimate of the water withdrawals also. These withdrawals can be integrated the same way as the rainfall contributions, either as punctual or as distributed withdrawals.
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 1 Figure 1: General scheme of the considered channel.
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 2 Figure 2: GR4J rainfall-runoff model scheme

Fig. 4 Figure 4 :

 44 Fig.4shows the downstream discharge simulated Q d by the GR4J model applied alone and by the integrated model without any sub-basin compared to the measured downstream discharge. This graph shows that the three discharges are very close (the Nash-Sutcliffe criterion is 86.2% for the GR model and 87.8% for the integrated model).

Figure 5 :

 5 Figure 5: Validation step. Discharge at the downstream end of the channel (on the whole validation period and zoom): (--) measurements, (• • • ) GR simulation, (--) GR+LR simulation without any sub-basin.

Figure 6 :

 6 Figure 6: Validation step. Discharge at the downstream end of the channel (on the whole validation period and zoom): (--) measurements, (• • • ) GR simulation, (--) GR+LR simulation with one sub-basin.

Table 2 :

 2 Parameter identification.

	1	306	304	380	350
	X 2 -0.16 X 3 190	0.058 181	-0.0031 93.1	0.083 94.9
	X 4	15.2	18.3	22.3	20.0

Tsai, C.W., 2003. Applicability of Kinematic, Noninertia, and Quasi-Steady Dynamic Wave Models to Unsteady Flow Routing. J. Hydraul. Eng.; 129(8): 613-627.

where N is the number of time samples of the identification period, Q s (t i ) and Q m (t i ) the simulated downstream discharge and the measured downstream discharge respectively, at time t i , and Q m the mean measured values of the downstream discharge. For validation, the obtained set of parameters is used to simulate the discharge on a second period. The quality of the prediction is evaluated by the Nash-Sutcliffe coefficient too.

4 Results and discussion on a case study

Presentation of the case study

The integrated model have been tested on the particular case of the upper Tarn basin. The area of this basin if 946 km 2 . The considered reach is defined by two measurement stations. The sub-basin relative to the upstream station is not considered, its area is 10 km 2 . The reach length is 82 km. The sub-basin between the upstream end and the downstream end of the reach is called intermediate basin S 0 . The two main tributaries are located at 23 km and 62 km, their relative sub-basins S 1 and S 2 have an area of 263 km 2 and 119 km 2 respectively. Fig. 3 shows a representation of the upper Tarn basin.