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Abstract

Flowering time is a key life-history trait in the plant life cycle. Most studies to unravel the genetics of flowering time in
Arabidopsis thaliana have been performed under greenhouse conditions. Here, we describe a study about the genetics of
flowering time that differs from previous studies in two important ways: first, we measure flowering time in a more complex
and ecologically realistic environment; and, second, we combine the advantages of genome-wide association (GWA) and
traditional linkage (QTL) mapping. Our experiments involved phenotyping nearly 20,000 plants over 2 winters under field
conditions, including 184 worldwide natural accessions genotyped for 216,509 SNPs and 4,366 RILs derived from 13
independent crosses chosen to maximize genetic and phenotypic diversity. Based on a photothermal time model, the
flowering time variation scored in our field experiment was poorly correlated with the flowering time variation previously
obtained under greenhouse conditions, reinforcing previous demonstrations of the importance of genotype by
environment interactions in A. thaliana and the need to study adaptive variation under natural conditions. The use of
4,366 RILs provides great power for dissecting the genetic architecture of flowering time in A. thaliana under our specific
field conditions. We describe more than 60 additive QTLs, all with relatively small to medium effects and organized in 5
major clusters. We show that QTL mapping increases our power to distinguish true from false associations in GWA mapping.
QTL mapping also permits the identification of false negatives, that is, causative SNPs that are lost when applying GWA
methods that control for population structure. Major genes underpinning flowering time in the greenhouse were not
associated with flowering time in this study. Instead, we found a prevalence of genes involved in the regulation of the plant
circadian clock. Furthermore, we identified new genomic regions lacking obvious candidate genes.
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Introduction

Flowering time is a major trait in the plant’s life cycle, as it

corresponds to the transition from the vegetative growth phase to

the reproductive phase. At flowering, resources accumulated in

storage tissues during the vegetative growth phase are reallocated

to the production of seeds. Optimizing reproduction requires that

the flowering date matches environmental conditions so that seeds

can mature and disperse when conditions are appropriate. Natural

variation in flowering time is related to latitude in many species

[1–5], suggesting that factors such as photoperiod and tempera-

ture, that vary over large geographical scales, are likely involved in

selecting for this trait. At the same time, environmental factors

such as herbivory that act on a smaller spatial scale have been

implicated [6]. Flowering time is, thus, a complex trait shaped by

selective pressures acting on very different spatial scales.

A major goal in evolutionary biology is to identify the genetic

basis of adaptive trait variation. For flowering time, many such

studies have focused on the model species Arabidopsis thaliana. This

species is a convenient choice because it is an annual plant with a

worldwide distribution and, as such, encounters a variety of

ecological conditions. Not surprisingly, diverse flowering time

phenotypes have been described that likely result from different

selective events across its range [3,7]. In A. thaliana, flowering time

is regulated by a complex genetic network composed of four main

converging pathways [8]: the vernalization pathway, the photo-

period pathway, the autonomous pathway and the gibberellin

pathway. These pathways integrate environmental and physiolog-

ical factors such as photoperiod variation, ambient temperature,

vernalization, and plant growth in order to trigger the transition to

flowering at an appropriate time [9].

Most studies aiming to unravel the genetics of flowering time

variation were performed in greenhouse conditions [10 for a

complete review]. The polymorphisms revealed in such studies are

likely to be, at least in part, specific to greenhouse conditions that

plants do not experience in nature. For example, Weinig et al. [11]

used a recombinant inbred line (RIL) family to show that a

substantial number of quantitative trait loci (QTL) detected in

natural conditions could not be detected under controlled

conditions. In Li et al. [12], another RIL family was phenotyped
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in growth chambers simulating climatic conditions in Sweden or

Spain and significant QTL6environment interactions were found.

Ecologically realistic conditions expose plants to a great number of

signals from their environment; this might lead to the identification

of genes other than those responsible for flowering time variation

under greenhouse conditions.

Conventional linkage mapping can be an effective tool for

identifying genes underlying natural variation. However, the genes

identified by this method are restricted to the ones segregating in

the cross under consideration. Genome-wide association (GWA)

mapping overcomes this limitation, and has recently been shown

to successfully reveal common variants responsible for the

variation in 107 phenotypes in a set of A. thaliana natural

accessions [13]. However, GWA mapping suffers from the

limitation that it generates false positives due to population

structure [14–16]. As shown in Atwell et al. [13], the expected false

positive rate varies greatly depending on the phenotype. Flowering

time-related phenotypes, for example, exhibit the highest number

of significant associations across a range of thresholds, and most

likely include a high number of false positives due to clear

geographical structure in these phenotypes. Statistical methods to

control for population structure have been developed to reduce the

inflation of false positives associations [13,17,18], but an

alternative is the complementary use of traditional linkage

mapping in controlled crosses and the use of near-isogenic lines

[10,18,19]. The complementarity of GWA mapping and classical

linkage mapping was particularly well demonstrated in a mouse

GWA mapping study where the Lasc1 gene, suggested by GWA to

be a functional element associated with susceptibility to lung

tumors, could not be validated in two independent intercross

mouse populations containing both Lasc1 alleles [20].

The aim of this study is to identify the polymorphisms

underlying natural variation of flowering time in A. thaliana. To

achieve this objective, we phenotyped nearly 20,000 plants over 2

winters under field conditions, including 197 worldwide natural

accessions, 4366 RILs derived from 13 independent crosses chosen

to maximize genetic and phenotypic diversity [21], and near-

isogenic lines (NILs) derived from one of the 13 RIL families. The

use of 4366 RILs provides unprecedented power for dissecting the

genetic architecture of flowering time in A. thaliana. Additional

resolution is achieved by combining GWA statistical methods that

control for population structure with coarse mapping using RILs

and NILs. Together, these methods enhance our ability to

distinguish true from false associations finely mapped by GWA

mapping. Flowering time-related pathways are some of the best-

characterized genetic networks in plants; we, thus, made use of this

information to validate our method by detecting candidate genes

determined a priori.

More than 60 additive QTLs, all with relatively small to

medium effects, were detected in the field experiment. QTLs

found by linkage mapping efficiently validate GWA results.

Regions of the genome validated by QTLs are clearly enriched

with highly associated SNPs as compared to the rest of the

genome. This allows us to propose a list of candidate genes, most

of which have never or rarely been detected to be associated with

natural variation in flowering time under laboratory conditions

[13].

Results

Natural variation of flowering time in ecologically realistic
conditions

Photothermal time is a temporal measure that integrates

climatic conditions. Because flowering time may result from

sensing climatic cues in A. thaliana, flowering time was scaled in

photothermal units (PTU) using a phenology model that integrates

both photoperiod length and temperature. To test the hypothesis

that photothermal time is a better predictor of flowering time than

Julian days [22], we grew 192 accessions in a field experiment over

2 consecutives winters. General patterns of daily mean tempera-

ture, daily photoperiod, accumulation of PTU, and accumulation

of chilling degrees are presented for both years in Figure 1. In both

years, the first natural accession (Pa-1 from Sicilia) flowered when

photoperiod started to increase under short day conditions (,8h

and ,9h photoperiod in the 2007/08 and 2008/09 experiments

respectively). The last accessions (i.e. originating from Scandina-

vian regions) flowered when photoperiod reached approximately

14h photoperiod in both years (respectively on the 2008/04/19

and 2009/04/15), with the flowering peak occurring at around

12h photoperiod. The temperature curves indicate that plants

endured much colder temperatures, over a longer period during

winter 2008/2009 than during the previous year. January 2009

was continuously colder (mean temperature = 1.11uC) than

January 2008 (mean temperature = 6.66uC); natural accessions

therefore accumulated more chilling degrees (i.e. temperatures

considered to vernalize the plant efficiently), and slightly less PTU

during the second year. Accessions flowered later during the

2008/2009 experiment (median = March 28th 2009) compared

with the 2007/2008 experiment (median = March 21th 2008)

when flowering time is expressed in Julian days, although they

accumulated less PTU (Figure 1).

A regression coefficient equal to 1 is expected if there is a perfect

match of flowering time between the 2 years. This year-to-year

comparison indicated that photothermal time seems to be a better

predictor of flowering time than the number of Julian days (Figure

S1): the regression coefficient for flowering time expressed in

Julian days (slope = 0.63, CI = 0.60–0.65; intercept = 70.06,

P,0.001; R2 = 0.93) is significantly smaller than the regression

coefficient for flowering time expressed in PTU (slope = 0.89,

CI = 0.85–0.93; intercept = 272.32, P,0.001; R2 = 0.91). Express-

ing flowering time in PTU improves the repeatability of the

experiment, as the slope is closer to 1, but we can also note that the

intercept for PTU is lower than zero. This earlier flowering when

expressed in PTU might result from the colder period in January

Author Summary

Dissecting the genetic bases of adaptive traits is of primary
importance in evolutionary biology. In this study, we
combined a genome-wide association (GWA) study with
traditional linkage mapping in order to detect the genetic
bases underlying natural variation in flowering time in
ecologically realistic conditions in the plant Arabidopsis
thaliana. Our study involved phenotyping nearly 20,000
plants over 2 winters under field conditions in a temperate
climate. We show that combined linkage and association
mapping clearly outperforms each method alone when it
comes to identifying true associations. This highlights the
utility of combining different methods to localize genes
involved in complex trait natural variation. Most candidate
genes found in this study are involved in the regulation of
the plant circadian clock and, surprisingly, were not
associated with flowering time scored under greenhouse
conditions. While rapid advances have been made in high-
throughput genotyping and sequencing, high-throughput
phenotyping of complex traits under natural conditions
will be the next challenge for dissecting the genetic bases
of adaptive variation in ‘‘laboratory’’ model organisms.

Linkage and Association Mapping of Flowering Time
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during the second year (2008/2009), resulting in a higher

accumulation of chilling degrees in 2008/2009 compared to the

2007/2008 (Figure 1, see Discussion). Therefore, all flowering data

from the set of 2007/2008 and 2008/2009 experiments were

expressed in photothermal units (PTU).

Highly significant variation was observed among the set of 197

natural accessions (Table 1), with flowering time per accession

averaging 457.37 PTU and ranging from 268.05 to 583.44 PTU

(Figure S2). The distribution of flowering times for these natural

accessions is roughly normal, mostly due to the transformation in

photothermal units. When expressed in days, the distribution is L-

shaped with a tail of early-flowering accessions (Figure 1). The

shape of this distribution contrasts with other observations made

for 16 flowering time related traits scored in various constant

greenhouse conditions for the same set of natural accessions used

in our study. In particular, Atwell and colleagues [13] found that a

range of conditions including both long and short days combined

with and without vernalization resulted in flowering related traits

with either bimodal distributions or with L-shaped distributions

containing a tail of late-flowering accessions. These 16 flowering

time related traits scored in constant greenhouse conditions are

more correlated with one another than with flowering time scored

in our study [13].

A significant positive relationship was found between flowering

time and latitude (Figure S3; latitude regression coefficient 6

SE = 3.1960.40, P,0.0001). As previously noted [3], functionality

at the flowering time gene FRIGIDA affected this positive

relationship: accessions carrying a functional allele at FRI revealed

a stronger latitudinal cline in flowering time (Table 1 in Dataset

S1; latitude regression coefficient 6 SE = 3.3360.54, P,0.001)

relative to accessions bearing a non-functional allele of FRI

(latitude regression coefficient 6 SE = 2.2860.59, P,0.001).

Indeed, the presence of this latitudinal cline in accessions carrying

a non-functional allele was primarily due to Cvi-0, from the Cape

Verde Islands, which is an outlier in the latitudinal distribution; if

this outlier is removed, the relationship is no longer significant

(latitude regression coefficient 6 SE = 1.1660.69, P = 0.097).

The parents of the RILs showed flowering times averaging

433.29 PTU and ranging from 291.83 (Cvi-0) to 517.10 PTU

(Nok-3). These values span the distribution of natural accessions

Figure 1. Distribution of natural variation for flowering time. For all frames of this figure, the x-axis gives the calendar dates from the 06th of
October (,mean germination date) to the 06th of June. The four panels in the figure are described from top to bottom. The top panel corresponds to
the distribution of flowering time scored for the 184 natural accessions in 2007/2008 (blue) and 2008/2009 (red). The next panel gives the curves for
photoperiod (in red), and the daily mean temperatures for 2007/2008 (blue solid line) and for 2008/2009 (blue dashed line). The next panel gives the
photothermal units (PTU) accumulated from the beginning of germination to the end of the flowering season for 2007/2008 (red solid line) and for
2008/2009 (red dashed line). The accumulation of chilling degrees is represented over the same period (2007/2008: blue solid line, 2008/2009: blue
dashed line). The equivalent accumulation in chilling degrees to 4, 8 and 12 weeks in a growth chamber at 4uC is indicated by blue dotted lines. The
bottom panel gives the distribution of flowering time for each of the RIL families. For each RIL family, red bars extend from the minimum to the
maximum values observed, with the larger ticks demarcating the median of the distribution and the smaller ticks indicating the flowering times for
the parental lines.
doi:10.1371/journal.pgen.1000940.g001
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(Figure S2). Variation among the RIL parental lines covered

71.43% of the range observed among the 197 natural accessions.

Twelve accessions are common to the parental lines and the

natural accessions. Even though seeds from parental lines and

natural accessions were produced in different environments, a

highly significant correlation was observed for flowering time

between these groups (Pearson correlation coefficient = 0.99,

P,0.0001), suggesting that maternal effects do not impact

flowering time in this study. The late-flowering behavior of the

lab reference strain Col-0 (in our experiment 66.33% of all

accessions flowered earlier than Col-0) is consistent with the results

of Wilczek et al. [22], although it is generally described as an early-

flowering accession when phenotyped under common laboratory

conditions [13].

Highly significant variation for flowering time was observed

among RILs within each RIL family (Figure S2, Table 2 in

Dataset S1), with heritability of flowering time in RIL families

averaging 0.82 and varying from 0.70 to 0.94 (Table 1). The range

of observed flowering times among the 4366 RILs exceeds that

observed among the 197 natural accessions at both sides of the

distribution (Figure S2 and Figure S4). This was mainly due to

significant extensive phenotypic transgression observed for each

RIL family. Interestingly, only individuals from the RIL family

Cvi-06Col-0 started flowering under decreasing photoperiod. The

intensity of phenotypic transgression was not related to the genetic

relatedness of the corresponding parental lines (regression

coefficient = 21.068, P = 0.957).

Genetic architecture of flowering time
Sixty-two additive QTLs and 16 epistatic interactions were

detected among the 13 RIL families (Tables 3 and 4 in Dataset S1,

Figure S5), with each RIL family contributing between 2 (Ri-

06Col-0) and 8 (Bay-06Shahdara) additive QTLs. The percent-

age of genetic variation explained by additive and epistatic QTLs

in these RIL families averaged 66.46% and ranged from 39.71%

(Blh-16Col-0) to 78.5% (Yo-06Col-0) (Figure 2). Each of the 8

additive QTLs detected in the Bay-06Shahdara RIL family could

be validated by 1 to 6 independent pairs of NILs, known as

Heterogeneous Inbred Families (HIFs) (Figure 3, Tables 5 and 6 in

Dataset S1), suggesting that additive QTLs detected by the mixed-

model composite interval mapping approach are largely true

positives. When more than one HIF was available, the allelic effect

of each allele was consistent, except for QTL5.11 (Figure 3). In this

case, a delay in flowering was associated with the Shadhara allele

in HIF397 but with the Bay-0 allele in HIF48. Because QTL5.11

has been found to be in epistasis with another additive QTL

(Figure 3: QTL5.16, Table 5 in Dataset S1), this inconsistency

might be a consequence of the genetic background.

Given the large population size of each RIL family and the high

heritability associated with flowering time, we were able to detect

QTLs that account for a small percentage of phenotypic variation

within each RIL family. The percentage of phenotypic variation

explained by an additive QTL averaged 9.08% and ranged from

below 1% (Tsu-06Col-0, Ct-16Col-0 and Bay-06Shahdara) to

45.6% (Cvi-06Col-0) (Figure 4). In a comparison of the 12 RIL

families that have Col-0 as a common parental line, we found that

the additive effects of Col-0 alleles range, in absolute values, from

4.19 to 48.09 photothermal units. As expected from the

transgressive segregation observed within each RIL family, the

distribution of the effects of the Col-0 allele is clearly bimodal, the

first mode corresponding to QTLs having negative effects (the Col-

0 allele makes plant flower earlier), and the second mode

corresponding to QTLs having positive effects (the Col-0 allele

makes plant flower later). A less stringent significance level for

QTL detection and QTL effects (P = 0.10) did not affect the

bimodal distribution of the Col-0 allele effects. Among the 54

additive QTLs detected in these 12 RIL families, 19 have negative

effects (,35.2%) and 35 have positive effects (,64.8%).

Sixteen epistatic interactions were detected in 10 out of 13 RIL

families, with each RIL family contributing 1 to 3 pairs of

interacting QTLs. Epistatic interactions mainly involved QTLs

with single-locus effects (10/16); only 1 epistatic interaction (Nok-

Table 1. Summary statistics.

Plant material Cross
RIL CRB
code Size Mean

Range Days
(min-max)

Range PTU
(min-max) H2 V(G)/V(P)

Natural accessions - - 197 457.37 91.99–196.61 268.05–583.443 0.97 -

RIL parents - - 14 433.29 108.70–184.69 291.83–517.10 0.92 -

RIL families Bla-16Col-0 2RV 259 409.22 94.88–194.97 264.08–566.81 0.88 0.62

Tsu-06Col-0 3RV 276 469.85 153.73–208.77 414.58–662.74 0.84 0.62

Nok-16Col-0 4RV 223 505.35 145.87–199.12 388.32–590.31 0.79 0.52

Ri-06Col-0 6RV 286 446.30 143.42–194.69 379.39–565.29 0.71 0.33

Ct-16Col-0 7RV 377 441.58 123.41–193.37 326.12–558.43 0.73 0.51

Cvi-06Col-0 8RV 366 314.39 41.23–180.92 190.96–509.20 0.94 0.70

Sha6Col-0 13RV 345 483.67 119.09–209.64 319.39–701.78 0.86 0.60

Ge-06Col-0 17RV 338 446.04 146.97–185.15 392.88–521.33 0.76 0.52

Can-06Col-0 19RV 371 420.50 104.64–182.40 280.68–522.84 0.86 0.63

Bur-06Col-0 20RV 343 489.67 154.79–212.13 416.79–685.34 0.85 0.55

Blh-16Col-0 21RV 315 478.57 154.10–216.94 417.81–700.04 0.77 0.31

Yo-06Col-0 23RV 456 460.53 140.72–188.14 371.00–534.14 0.79 0.62

Bay-06Sha 33RV 411 436.78 105.24–205.71 285.18–649.46 0.82 0.56

For each RIL family, the table gives the population phenotypic mean, the broad sense heritability (H2), the proportion of phenotypic variation explained by the detected
QTLs (V(G)/V(P)).
doi:10.1371/journal.pgen.1000940.t001
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16Col-0) involved 2 QTLs without single-locus effects. The

amount of phenotypic variation explained by epistatic QTLs

ranged from 3.42 to 13.23 PTU. The proportion of phenotypic

variation explained by these interactions averaged 2.42% and

ranged from 0.09% to 7.8%; this is lower than the proportion of

phenotypic variation explained by additive QTLs (Figure 2).

Our results were compared to those obtained for 5 RIL families

common between this study and one by Simon et al. [23] (Blh-

16Col-0, Bur-06Col-0, Ct-16Col-0, Cvi-06Col-0 and Shahdar-

a6Col-0) by reanalyzing the flowering time data. Among those 5

RIL families, Simon et al. [23] found 22 additive QTLs when

phenotyping plants under long days in a greenhouse experiment

Figure 2. Broad-sense heritability, number of QTLs, and percentage of phenotypic variation explained by additive or epistatic QTLs
for each of the 13 RIL families. H2: broad-sense heritability (light grey bars). The percentage of phenotypic variation explained by additive and
epistatic QTLs is illustrated by black and dark grey bars, respectively. The number of additive QTLs is indicated on the black bars.
doi:10.1371/journal.pgen.1000940.g002

Figure 3. Validation of additive QTLs found in the Bay-06Shahdara RIL family by NILs. Each of the 8 additive QTLs detected in the Bay-
06Shahdara RIL family is supported by 1 to 6 independent pairs of NILs (i.e. heterogeneous inbred families).
doi:10.1371/journal.pgen.1000940.g003

Linkage and Association Mapping of Flowering Time
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after a seeds vernalization period of 3 weeks. In the present study,

considering the same 5 RIL families, 26 additive QTLs were

detected, of which 10 (,39%) have support intervals that overlap

with support intervals of QTLs found in Simon et al. ([23], Table 7

in Dataset S1). Although the direction of the Col-0 allelic effect is

consistent for all overlapping QTLs (Table 7 in Dataset S1), large

differences in the predicted genetic position were observed for

overlapping QTLs (mean = 3.44 cM65.18 cM). This last result

indicates that one cannot rule out different genetic bases for

overlapping QTLs (see subsection Combining GWA mapping and

traditional linkage mapping).

Population structure and minor allele frequency
dependence

The p-value distribution from the Wilcoxon rank-sum analyses

showed an excess of low p-values, suggesting a potentially high rate

of false positive associations. As expected for an excess of low p-

values due to confounding by population structure, a mixed model

approach that takes genetic similarity among natural accessions

into account (EMMA method, Figure S6) effectively eliminated

the excess of low p-values. While it might be tempting to consider

p-values that remain extreme after EMMA correction as true

associations, we need to keep in mind that minor allele frequency

(MAF) also influences p-values [13,24]. EMMA demonstrates

enrichment in low p-values for rare alleles, whereas the Wilcoxon

test showed weak power to detect associations for SNPs with low

MAF (Figure S7). Comparison of the distribution of the p-values

obtained by EMMA to a theoretical uniform distribution showed

that the confounding remaining after the correction for population

structure is likely to come from the bias due to rare alleles (Figure

S6). Therefore, following Kang et al. [24], only SNPs with

MAF.10% were considered further.

Combining GWA mapping and traditional linkage
mapping

We initially inspected our data by identifying genomic regions

in which highly significant SNPs within 20 kb of known a priori

candidate genes for flowering time overlapped with QTL regions.

These plots revealed several interesting features (additive QTLs:

Figure 5 and Figure S8; epistatic QTLs: Figure S9). First, the 62

additive QTLs identified in the 13 RIL families are organized in 5

major clusters: cluster 1 is at the end of chromosome 1, cluster 2 is

at the top of chromosome 4, cluster 3 is near the centromeric

region of chromosome 4 (Figure 5), cluster 4 is at the beginning of

chromosome 5, and cluster 5 is at the end of chromosome 5. In a

similar field experiment, QTLs belonging to clusters 1, 3, and 5

have also been found in the Columbia6Landsberg erecta RIL

family when scored for bolting time in fall in North Carolina and

Rhode Island [11]. Second, allelic effects for QTLs in clusters 1, 2,

and 5 were consistent among RIL families, whereas allelic effects

for QTLs in clusters 3 and 4 were not. Third, p-values for SNPs

within QTL regions were significantly smaller than p-values for

SNPs located outside QTL confidence intervals; this was true for

both the EMMA method (Kruskall-Wallis chi-squared = 23.30,

P,0.001) and the Wilcoxon test (Kruskall-Wallis chi-

squared = 71.64, P,0.001). Fourth, it was common for several

association peaks to aggregate within a QTL region (Figure 5).

Finally, as illustrated by the centromeric region of chromosome 1

(see Figure S8), some association peaks detected by the Wilcoxon

test that are strongly associated with flowering time and fall within

QTL regions were poorly associated when using the EMMA

method; this result suggests the existence of false negatives after

controlling for population structure.

Enrichment of candidate genes for highly significant
associations validated by QTLs

We investigated the number of top SNPs that can be considered

as true associations by looking at the enrichment ratios for

progressively larger sets of top SNPs (Figure 6). The enrichment

ratio for top SNPs validated by QTLs never differed from what

would be expected randomly. This result underlines the fact that

QTLs detected using the RILs are far too coarse to be informative

by themselves. For top SNPs within 20 kb of candidate genes, the

enrichment ratio dropped with the number of top SNPs,

demonstrating that candidate genes are overrepresented among

top-ranking SNPs. The enrichment ratio was clearly increased for

SNPs close to candidate genes and overlapped by QTLs. For the

50 top SNPs, consideration of candidate genes overlapped by

QTLs almost doubled the enrichment ratio relative to consider-

ation of all candidate genes (7.4 vs 4.1). This suggests that

combining QTLs with candidate genes is much more informative

than using either approach separately.

Patterns are more difficult to interpret when not controlling for

population structure. Indeed, enrichment in SNPs validated by

both candidate genes and QTLs in the Wilcoxon analysis did not

differ significantly from random, in particular for small sample

sizes, indicating that a large proportion of the best associations are

likely to be false positives (Table 8 in Dataset S1, Figure S10).

Based on the results from EMMA, we consider the 500 top SNPs

from both EMMA and Wilcoxon for plausible associations with

candidate genes. This sample size corresponds to the limit of

significance of enrichment ratio in EMMA (Figure 6).

Plausible associations
Forty-two candidate genes, out of a list of 282 a priori candidate

genes, were detected (Table 2). Among these, only 4 were detected

with both EMMA and Wilcoxon, and were confirmed by a QTL:

TSF, AT4G23340, ELF5, and ETC3. Eleven genes were detected

with EMMA only and were overlapped by QTLs: TOC1,

ATHAP2B, YAP169, LD, FCA, PHYD, AT2G39540, KIN1,

CDF3, KIN2, and COL1. Ten genes were detected with Wilcoxon

only and were overlapped by QTLs: SRR1, AT5G59570, FY, GA1,

MMP, ATGA2OX7, LKP2, CUL4, DDF1, and FPA, suggesting that

they are potentially false negatives generated by EMMA. These 10

genes represent a large fraction (i.e. 40%) of the 25 genes

overlapped by QTLs. Finally, 17 candidate genes (40%) were

Figure 4. Distribution of the Col-0 additive allelic effect in the
2007–2008 field experiment. Histogram of additive allele estimates
for the flowering time for all the 12 RIL families that have Col-0 as a
common parental line relative to Col-0.
doi:10.1371/journal.pgen.1000940.g004
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detected by EMMA and/or Wilcoxon but were not overlapped by

QTLs, suggesting that they are potentially false positives.

Seventeen of these associated candidate genes were found for at

least one of the 16 flowering time-related greenhouse phenotypes

measured by 6 different teams, in different greenhouse conditions,

and published in Atwell et al. (Table 9 in Dataset S1, [13]). Among

these candidate genes, only 9 are supported by QTL confidence

intervals.

FRI functionality did not associate significantly with the

flowering time measured in the field over winter (with EMMA,

2log10 p-value,2.4 in a 20 kb region on both side of FRI). To

control for allelic heterogeneity [13], the GWA mapping analyses

were also performed separately for accessions carrying functional

FRI alleles and non-functional alleles (‘Ler’ allele or ‘Col’ allele).

However, associations within a 40 kb window centered on FRI

were not improved, and the maximum 2log10 p-values using

EMMA were 2.3 and 2.2 for the ‘Ler’ and ‘Col’ alleles,

respectively. This is consistent with our failure to validate a role

for FRI in RIL families for which the parents were segregating for

functional and non-functional alleles (Table 1 in Dataset S1).

Furthermore, the QTLs detected at the beginning of chromosome

4 in the Bay-06Shahdara family were validated by 6 independent

HIFs (Figure 3 and Table 5 in Dataset S1). Those 6 HIF lines

segregate for only one common region between 0.41 and 2.58 Mb,

which does not overlap with FRI. In this genomic region, only

ETC3, shown to have an effect on flowering development [25],

was detected among the top SNPs in EMMA (rank = 163), and

could therefore be proposed as a candidate gene for natural

variation of flowering time. Two major FLC haplogroups (FLCA

and FLCB) have previously been found to be associated with

Figure 5. Comparison of GWA and traditional linkage mapping (additive QTLs) results for flowering time for chromosome 4. The x-
axis indicates the physical position along the chromosome. Top panel: Position of the 52 a priori candidate genes located on chromosome 4. Mid-
panel: 2log10 p-values from a chromosome 4-wide scan using either the Wilcoxon model or the EMMA method (blue and red dots, respectively).
Bottom panel: QTL regions for each of the 13 RIL families. For each RIL family, green bars represent the 95% confidence interval for QTL position, with
the bigger tick representing the QTL position. QTL clusters 2 and 3 are highlighted below the corresponding QTL regions.
doi:10.1371/journal.pgen.1000940.g005
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flowering time variation in A. thaliana under field conditions [26],

but only in the presence of putatively functional FRI alleles. In this

study, we first excluded 40 accessions with a weak or non-

functional FLC allele from the analyses (Table 1 in Dataset S1).

When taking into account population structure, no significant

haplogroup effect was detected when considering all accessions

with an active FLC allele (2log10 p-value = 0.07) or when

considering accessions with both an active FLC allele and a

functional FRI allele (2log10 p-value = 0.62). A haplogroup effect

was similarly not detected in an outbred population of A. thaliana

that was phenotyped for flowering time in growth chambers

simulating fall conditions [27,28]. As for FRI, the absence of a

haplogroup effect is consistent with our failure to validate a role of

FLC in RIL families for which the parents segregate for FLCA and

FLCB (Table 1 in Dataset S1). PHYC, another gene believed to be

important based on greenhouse experiments [29], was not

significantly associated with flowering time, and no QTL has

been found in RIL families whose parental lines are polymorphic

for PHYC (Figure S8, Table 1 in Dataset S1).

Flowers et al. [30] sequenced 52 candidate genes for flowering

time in 24 natural accessions, all with the exception of Kas-2 were

included in our 184 natural accessions used for GWA mapping

analysis. Among these 52 genes, 5 are included in the set of 25

genes detected by GWA and overlapped by QTLs in our study:

TSF, ELF5, LD, PHYD, and GA1. In ELF5, 3 common non-

synonymous polymorphisms were detected among the 24

accessions sequenced by Flowers et al. [30]. The top SNP

associated with flowering time in our study and close to ELF5

(Chromosome 5, position = 25,175,269bp) is in strong linkage

disequilibrium (LD) (r2 = 0.82, Fisher’s exact test: P,0.001) with

the polymorphism responsible for the change of the amino-acid

(AA) in position 503 (AlaRThr). The Alanine residue in position

503 is conserved in the ELF5 orthologous gene in Arabidopsis lyrata,

suggesting that the Threonine residue is the derived state (The

Arabidopsis lyrata genome project, http://genome.jgi-psf.org/

Araly1/Araly1.home.html). LD between the significant marker

and the other two polymorphisms (AA in position 364 and 393)

are not significant (respectively, r2 = 0.38, P,0.027; and r2 = 0.07,

P,0.526). AA in position 393 is in complete LD with SNP

markers at positions 25,167,440 and 25,168,305 on chromosome 5

that were not found to be associated with flowering time.

Unfortunately, the two RIL family founders that are common

with Flowers et al.’s set of accessions, i.e. Cvi-0 and Ct-1, are not

polymorphic for those 3 common ELF5 non-synonymous

polymorphisms. For PHYD, GA1, and LD, no significant LD was

found between common non-synonymous polymorphisms detect-

Figure 6. Enrichment ratios as a function of the number of top SNPs chosen in the GWA mapping results using the EMMA method.
The mean and the corresponding 95% confidence interval from the null distributions are represented by the dotted line and the colored areas,
respectively. CG: candidate gene.
doi:10.1371/journal.pgen.1000940.g006
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ed by Flowers et al. [30] and the top SNPs detected in our study. In

TSF, only 4 rare non-synonymous polymorphisms were found,

making their detection by GWA mapping unlikely. Whereas

QTLs detected in the RIL families Cvi-06Col-0 and Ct-16Col-0

did overlap with TSF, no amino-acid change was found between

the founders. Recently, a causal polymorphism mediating natural

variation in flowering time has been identified in the promoter of

the closest homolog of TSF, FLOWERING LOCUS T [31],

Table 2. List of candidate genes associated with flowering time scored in the field.

Genes Gene ID Chromosome Overlapping QTLsa EMMAb Wilcoxonb Top50c

TSF AT4G20370 4 7,8,13,20,21,33 X X X

AT4G23340 AT4G23340 4 4,13,19 X X

ELF5 AT5G62640 5 2,17 X X X

ETC3 AT4G01060 4 2,33 X X

TOC1 AT5G61380 5 2,6,7,8,19,23,33 X

ATHAP2B AT3G05690 3 13,17,23 X X

YAP169 AT5G07200 5 13,19,21 X

LD AT4G02560 4 3,17,19 X X

FCA AT4G16280 4 7,23 X

PHYD AT4G16250 4 7,23 X

AT2G39540 AT2G39540 2 3,17 X

KIN1 AT5G15960 5 20 X

CDF3 AT3G47500 3 33 X

KIN2 AT5G15970 5 20 X

COL1 AT5G15850 5 20 X

SRR1 AT5G59560 5 2,6,7,8,13,23,33 X

AT5G59570 AT5G59570 5 2,6,7,8,13,23,33 X

FY AT5G13480 5 7,8,19,20 X

GA1 AT4G02780 4 3,17,19 X

MMP AT1G70170 1 2,13,19 X

ATGA2OX7 AT1G50960 1 3 X

LKP2 AT2G18915 2 13 X

CUL4 AT5G46210 5 33 X

DDF1 AT1G12610 1 20 X

FPA AT2G43410 2 33 X

AT2G30810 AT2G30810 2 - X X

AGL 18 AT3G57390 3 - X X

AT2G47310 AT2G47310 2 - X X

ATH1 AT4G32980 4 - X X

KNAT5 AT4G32040 4 - X X

AT4G33280 AT4G33280 4 - X X

AT3G57300 AT3G57300 3 - X X

CKB1 AT5G47080 5 - X

DDF2 AT1G63030 1 - X

CCA1 AT2G46830 2 - X

AP1 AT1G69120 1 - X X

TOR1 AT4G27060 4 - X

GI AT1G22770 1 - X

PMI15 AT5G38150 5 - X

GASA5 AT3G02885 3 - X

AGL16 AT3G57230 3 - X

AGL17 AT2G22630 2 - X

a Numbers refer to the RIL CRB code of the 13 RIL families (see Table 1).
b ‘‘X’’ indicates that the gene was detected among the 500 best associations with EMMA and/or Wilcoxon.
c ‘‘X’’ indicates that the gene was detected among the 50 best associations with EMMA.
doi:10.1371/journal.pgen.1000940.t002
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suggesting that the causal polymorphisms in TSF might also be

located in its promoter region.

Regions overlapped by QTLs but presenting no obvious

candidate were graphically checked for neat association peaks in

the EMMA and the Wilcoxon outputs. Nine regions showing neat

peaks were selected and checked for obvious candidate genes that

might have been missed when establishing our list of 282 a priori

candidate genes (Table 10 in Dataset S1, Figure 7). Among those

regions, only the region of 20 kb around position 18,617,347 on

chromosome 5 included two genes of potential interest: DOG1

involved in the dormancy processes and SAG12 associated with leaf

senescence. No obvious candidates were found in the other 8

regions, even when those regions were expanded to 50 kb (Figure 7).

Discussion

Natural variation and genetic architecture
In our simple model, photothermal units (PTU) significantly

outperformed Julian days in terms of the reproducibility of the

measure of flowering time. We chose to keep our model simple,

rather than applying the genetically informed model of Wilczek

et al. [22] that includes information about flowering requirements,

such as critical day length, temperature, and winter chilling

temperatures during vernalization. While consideration of vernal-

ization could improve our photothermal model, the vernalization

requirements are difficult to address for three reasons. First, the

amount of vernalization required is likely to vary among natural

accessions according to both the length of period to cold exposure

[32] and the vegetative stage at which plants are exposed to cold

[33, personal observation, F. Roux]. Second, Shindo et al. [32]

showed that levels of FLC, a floral repressor responsive to

vernalization that decreases with vernalization and thus releases

initiation of flowering, may return to initial expressions levels when

vernalization is not saturated. In our experiment, temperatures

fluctuated within years such that cold exposure was not constant

(Figure 1). This succession of vernalizing and non-vernalizing

temperatures is very different from what plants may experience in

growth chambers, and FLC expression may be reactivated when

temperatures transitionally reach non-vernalizing levels. Third,

compensatory effects between the different pathways determining

Figure 7. Peaks of associations with no candidate genes within a 20 kb region on either side of the top SNP (plotting window
400 kb).
doi:10.1371/journal.pgen.1000940.g007
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flowering time have been showed in A. thaliana and in other plant

species [34,35], particularly between the photoperiod and the

vernalization pathway. In the iteroparous herb Beta vulgaris ssp.

maritima, a linear relationship was found between the photoperiod

on flowering date and the vernalization duration; i.e. extra

vernalization allowed the plants to flower under a shorter

photoperiod [35]. In our experiment, plants flowered with fewer

PTU in 2008/2009 than in 2007/2008, although they flowered

slightly later in the season. This result suggests that other

mechanisms might have compensated for the lack of accumulated

PTU, such as stronger vernalization in 2008/2009. In these

conditions, it is very difficult to make any assumptions about the

amount of vernalization required for each natural accession but

this possible explanation certainly deserves further exploration.

Great variability in flowering time was observed among the 14

accessions that served as parents in the RILs. This is not surprising

because parents were chosen to maximize genetic and phenotypic

diversity observed under greenhouse conditions [21]. An interesting

point about these 14 crosses is the amount of transgressive

segregation observed in each of the RILs. Transgression, defined

as the generation of extreme phenotypes relative to the parental

lines, could have originated due to 3 different phenomena [36]: (i)

Expression of over- or under-dominance; (ii) epistatic interactions;

or (iii) the complementarity of additive alleles that are dispersed

between the parental lines. The first phenomenon is unlikely due to

the low residual heterozygosity expected after 5–6 generations of

selfing in the RILs. While epistatic interactions have been detected

in some RIL families, the epistatic genetic variance is low compared

to the additive genetic variance. This suggests that the transgression

detected in this study most likely originates from the recombination

of alleles with opposite effects. The absence of a negative

relationship between the intensity of phenotypic transgression and

the genetic relatedness between pairs of founders is inconsistent with

the observed phenotypic transgression resulting from the break up

of population structure but rather suggests that natural accessions

contain locally co-adapted gene complexes. The absence of a

negative relationship between the intensity of phenotypic transgres-

sion and the genetic relatedness between pairs of founders has also

been found for 3 flowering time related traits in maize (data not

shown; [37]). Assessing the extent of transgression in different

species, and different traits that show contrasting patterns with

regard to population structure, is needed to allow generalization

about the cause of transgressive segregation.

The use of 4,366 RILs divided into 13 families provides a great

opportunity to almost completely dissect the genetic architecture

of flowering time in A. thaliana under our field conditions. Our field

study revealed many QTLs of relatively moderate effect. This

environmental dependence of the distribution of QTL effects

might originate from the relatively larger number of environmen-

tal signals in outdoor conditions as compared to the greenhouse.

The QTLs detected in the present study are nevertheless of greater

effect than the QTLs detected in field trials on 25 RIL families in

maize [37], and in mice, flies, and humans [38]. Perhaps a genetic

architecture of small-effect QTLs is favored in outcrossing species

as a means of ensuring synchronous flowering among plants within

a local population [37]. Selfing species such as A. thaliana, on the

other hand, do not require synchronous flowering. A comparative

assessment of FRI further suggests that selfing species can tolerate

large QTL effects on flowering. While non-functional FRI alleles

are associated with additive effects on flowering time of up to 19.7

days for A. thaliana in greenhouse conditions (B. Brachi and F.

Roux, unpublished results; [28]) a length difference of 14 AAs

between the 2 FRI variants detected in the self-incompatible

species Arabidopsis lyrata only conferred an 8-day difference in

flowering time when these variants were transformed into A.

thaliana [39]. Additional comparative analyses of flowering time

genes in species with varying reproductive systems are needed to

test the generality of this pattern.

Advantages of combining association and traditional
linkage mapping

The combination of linkage and association mapping clearly

outperforms each method used in isolation. For example, QTL

mapping increases our ability to distinguish true from false

associations finely mapped by GWA mapping with a candidate

gene enrichment of up to 7.4. This empirical result supports the

notion that linkage and association mapping are complementary

methods [20,40]. Another advantage of a dual mapping strategy,

rarely highlighted in the literature of GWA mapping, is related to

the occurrence of false negatives. Controlling for population

structure is necessary for reducing the false positive rate, but this

approach also introduces false negatives. This may be a problem

that is especially great for quantitative traits such as flowering time,

the variation of which overlaps with population structure. While

GWA mapping analyses on a less structured sample of natural

accessions may solve this problem, it may also prevent detection of

the genetic basis of natural variation occurring at the scale of the

species. In contrast, our study shows that the use of QTL mapping

in combination with GWA mapping on a worldwide sample of

natural accessions may be an excellent alternative for detecting false

negatives. In this study, 40% of the detected candidate genes

overlapped by QTLs could be considered to be false negatives when

analyzed by EMMA. We hypothesized that such a large fraction of

false negatives could also occur for traits with a strong correlation

between genetic relatedness and phenotypic similarity, for example,

latitude related phenotypic traits like cold tolerance or relative

growth rate [41]. A potential benefit of dual linkage and association

mapping would be narrowing QTL intervals in RIL families. This

might be achieved by using recently developed plant material such

as advanced intercross RILs (AI RILs) [42] or multiple advanced

generation inter-cross (MAGIC) lines, which would allow QTL

intervals to be narrowed down to 300 kb [43]. On the other hand,

the ongoing 216,509 SNP genotyping of the 14 parental lines will

soon enable the nested association mapping (NAM) strategy to be

undertaken [44]. Projecting the 216,509 SNP genetic information

from parental lines onto the 4366 RILs included in this study will

provide a powerful genetic resource for the scientific community.

The joint analysis of data sets from the natural accessions and the

4366 RILs should greatly increase our power to finely map genomic

regions associated with phenotypic variation.

Although flowering time is an easily scored quantitative trait, we

must acknowledge that many other phenotypic traits will be

challenging to score on 4,366 genetic lines. Two alternatives to

phenotype a smaller number of lines while keeping enough

statistical power to detect significant phenotype-genotype associ-

ations might be considered. First, we propose the use of the core-

collections designed for every RIL family used in this study. Each

core-collection contains 164 RILs and maximizes the genetic

diversity and recombination observed within the RIL family of

interest [23]. Second, the use of only 459 MAGIC lines might still

provide a high enough resolution to fine map candidate genes

within roughly 300kb [43].

Identifying genes associated with flowering time natural
variation

A striking, but not unexpected, result is the limited overlap

between the genomic regions detected in our field experiment and
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the genes detected under greenhouse conditions. Large QTL6en-

vironment interactions for flowering time have already been

demonstrated with RILs grown either in (natural or simulated)

outdoor conditions versus controlled conditions [11,12]. Only the

ETC3 and ATGA20X7 genes supported by QTL regions in this

study have also been proposed as candidate genes for flowering

time phenotypes in GWA mapping studies scored under

greenhouse conditions [13]. It is important to note that different

phenotypic traits (number of leaves, bolting date) have been used

as proxies for flowering time in these other studies; although these

traits are generally highly correlated, the virtual absence of overlap

between genes detected among experiments might result, at least

in part, from the identity of the phenotypic traits scored as

flowering time. For example, both bolting date and flowering date

were scored in this study for the 2008/2009 experiment. While

these traits are highly correlated, GWA mapping analyses indicate

specific genetic bases for the time between bolting and flowering

(our unpublished results). Taken together, these results confirm a

strong role of genotype by environment interactions for flowering

time in A. thaliana and reinforce the idea that varying environ-

mental signals may reveal new genetic loci associated with

flowering time variation.

Many candidate genes identified in this study are related to the

photoperiod pathway and, more specifically, to circadian clock-

related genes (TOC1, CDF3, COL1, SRR1, AT5G59570, and LKP2).

The enrichment in circadian clock-related genes is in agreement

with the experimental demonstration in A. thaliana of a fitness

advantage to plants with a clock period that matched the

environment [45,46]. A significant enrichment of differentially

expressed circadian clock-related genes has been found between

early- and late-flowering Capsella bursa-pastoris [47], a co-occurring

species and close sister group of A. thaliana, hence suggesting a

parallel evolution of similar regulatory differences. Compared to

stable greenhouse conditions, the difference in the candidate genes

identified in natural conditions might originate from the plants

experiencing new and/or less predictable environmental signals in

outdoor conditions, such as decreasing and increasing photoperiod

length or day-to-day fluctuation in temperature or light quality.

For example, TOC1, part of the central oscillator of the Arabidopsis

thaliana circadian clock [48], is entrained by photoperiod and

thermocycles [49] and this drives rhythmic outputs, including

seasonal control of flowering. For the light input to the clock, LKP2

has been proposed as a candidate to serve as circadian

photoreceptor [49], and SRR1 activity is required for normal

oscillator function via phytochrome-B-mediated light signaling

[50]. Recently, COL1 was found to be regulated by the circadian

clock at warm temperatures [51]. Promoters of COL1 contains

motifs required for cold induction and might be thus proposed as a

thermoreceptor. LKP2 recognized COL1 with an LOV domain

[52] suggesting that the light and temperature signaling pathways

might interact with each other.

Natural polymorphisms altering flowering time have been

functionally validated in greenhouse studies for several flowering

time genes: CRY2, FRI, FLC, FLM, HUA2, PHYA, PHYB, PHYC,

and PHYD [53]. With the exception of PHYD, none of these

candidates was confirmed by GWA mapping in our field study. A

polymorphism in PHYD was previously found to be associated with

bolting time in both natural accessions and the MAGIC lines [10].

Flowers et al. [30] hypothesized that an excess of replacement

polymorphisms in PHYD may reflect either a recent relaxation of

the selective constraints on this gene or adaptation to some

environments. The detection of PHYD by GWA-mapping tends to

support the second hypothesis. Two explanations might explain

the absence of associations of the other functionally validated

genes in our genome scan. First, the causative mutation may be

rare, thus decreasing the power to detect an association through

GWA. This might be the case for the HUA2 loss-of-function allele,

found only in a subset of lines [54], and CRY2 and FLM with

accession-specific mutations [55,56]. CRY2 is a particularly useful

illustration of the ‘rare allele’ effect; a CRY2 point mutation

conferring early flowering to plants grown in short photoperiods

has only been detected in Cvi-0 in a worldwide survey [55], yet its

importance is evident by a strong QTL in the Cvi-06Col-0 RIL

family in this study (bottom of chromosome 1). Second, the allelic

effect might be sensitive to the environment, being determined by

the timing of germination as demonstrated for FRI loss-of-function

alleles [22]. In this example, a shift in germination date of a few

days in early autumn (from mid- to late-September) cancelled the

early-flowering phenotype associated with non-functional FRI

alleles. Our failure to detect FRI in our study is consistent with the

sowing period being performed in late September. Although this

period coincides with natural germination flushes in A. thaliana

populations in the North of France, it might be worth testing

different germination dates.

GWA mapping has been shown to be powerful for detecting

candidate genes associated with a quantitative trait [13]. On the

other hand, GWA mapping should also be powerful at identifying

genes that have not previously been described as candidates. In

this study, 9 association peaks far from candidate genes and

supported by QTL mapping and/or NILs were found to be

associated with natural variation in flowering time. One of these

association peaks has also been found by GWA mapping for

different flowering time traits scored in the greenhouse [13]. DOG1

(DELAY OF GERMINATION 1), first described in seed dormancy

processes [57], is close to this association peak and has been

proposed as a new candidate gene for flowering time [13].

However, SAG12 (SENESCENCE-ASSOCIATED GENE 12), locat-

ed 20 kb away from DOG1 and closer to the association peak,

might be a better candidate flowering gene. Indeed, SAG12

accelerates rosette leaf senescence [58] and might induce early-

flowering.

Functional validation of candidate genes found in this field

experiment will certainly help complete our knowledge of the

flowering time genetic network, as well as of the ecological and

evolutionary significance of the genetic bases underlying flowering

time natural variation. However we must keep in mind that

functionally validating QTLs explaining less than 10%, as was the

case for most of the QTLs detected in this study, might require

appropriate genetic material like the Cre-lox transgenic lines

developed for estimating a 9% fitness cost associated with the

resistance gene RPM1 [59].

Materials and Methods

In this study, we combined genome-wide association (GWA)

mapping based on 197 natural accessions genotyped for

approximately 216,509 SNP markers (see section ‘‘Genome-Wide

Association mapping’’) with QTL mapping based on 13 RIL

families for a total number of 4366 RILs. We also included 81

pairs of near-isogenic lines, and the parents of the RIL families. In

total, 19,884 plants were phenotyped in a 2-year field experiment.

Plant material
Four different groups of plant material were used in this study:

Natural accessions. A worldwide set of 197 natural

accessions were phenotyped for flowering time in order to

perform GWA mapping. All the accessions are listed in Table 1

in Dataset S1 and have been described elsewhere [60]. To reduce
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maternal effects prior to phenotyping, natural accessions were

grown for one generation during 2007 under controlled

greenhouse conditions (16 h photoperiod, 20uC) at the

University of Lille 1 and their seeds collected. Of these, 184

accessions were genotyped for 216,509 SNPs evenly spaced across

the genome [61]. The design of the Affymetrix genotyping array

and genotyping protocols have been detailed elsewhere [13].

RILs and parental lines. Thirteen RIL families, including a

total of 4,366 RILs (mean per family ,336, range: 223–456) were

obtained from the Centre of Ressources Biologiques (CRB, INRA

Versailles; Table 11 in Dataset S1). The creation of the 13 RIL

families was based on 14 natural accessions (i.e. 14 parental lines,

namely Bay-0, Bla-1, Blh-1, Bur-0, Can-0, Col-0, Ct-1, Cvi-0, Ge-

0, Nok-1, Ri-0, Shahdara, Tsu-0 and Yo-0) issued from a core

collection designed to maximize both the genetic and phenotypic

diversity in A. thaliana [21]. All but one RIL family (Bay-

06Shahdara) share the same recurrent parent Col-0 (Table 1).

RILs resulted from 2 generations of intercrosses, followed by 5–6

generations of single seed descent. RIL families were genotyped for

,82 genetic markers (range: 69–90; Table 11 in Dataset S1). To

reduce maternal effects, the seeds were produced in the same

controlled environment [23]. Further details on the creation of the

13 RIL families are available at the following website, http://

dbsgap.versailles.inra.fr/vnat/.

NILs. Major additive QTLs found in the Bay-06Shahdara

RIL family were confirmed in NILs, following the heterogeneous

inbred families (HIFs) strategy [62]. All 81 HIFs used in this study

were developed from individual F7 RILs of the Bay-06Shahdara

cross to segregate in a single and limited genomic region [63]. For

each RIL, several seeds were sown and genotyped individually for

markers across the segregating region (Table 5 in Dataset S1). One

to three independent fixed plants for each allele (i.e. NILs; F8) were

chosen and allowed to self-fertilize. Depending on the RIL, F9

seeds from one or two independent plants fixed for each allele

were then phenotyped to identify the phenotypic effect of Bay-0 vs.

Shahdara alleles in the segregating region. Every genomic region is

covered by at least 2 independent HIFs. NIL seeds distributed by

the CRB were produced in the same controlled environment as

the RIL seeds.

Experimental design and growth conditions
2007–2008 field experiment. For the first year of the field

experiment, a total of 18,696 plants were phenotyped for flowering

time. The experiment was organized in three blocks, each block

being an independent randomization of 1 replicate per RIL, 2

replicates per natural accession, 4 replicates per NIL and 7

replicates per parental line of the RIL families. Each block, thus,

included 6232 plants.

Seeds were sown half a block per day between from 24–29

September 2007 on damp standard culture soil (Huminsubstrat

N3, Neuhaus) in arrays of 66 individual wells (Ø4 cm, vol.

,38 cm3) (TEKU, JP 3050/66). This period coincides with

natural germination flushes in A. thaliana populations in the North

of France (personal observation, F. Roux). The experiment

included 95 arrays per block for a total of 285 arrays. Two

control accessions, Bg-2 (early flowering) and Lov-5 (late flowering)

were placed in the same positions within each array in order to

correct for micro-environmental variation. Seeds were stratified

for 4 days at 4uC in the dark, in order to promote germination,

and 3 seeds were placed in each well. In each block, the remaining

38 wells were left empty.

After the 4-days cold treatment, plants were placed in the

greenhouse to protect seeds from rainfall. The conditions

mimicked the outdoor conditions (no additional light or heating).

While in the greenhouse, the arrays were rotated every day in

order to reduce micro-environmental variation: half a block was

moved from one end of the greenhouse to the other. In this way,

all the plants experienced the same set of conditions during their

early development. Plants were watered daily and no fertilizer was

added.

Germination was monitored daily and the number of seedlings

in each well scored. Most of the germination occurred 3–5 days

after the cold treatment. The germination date considered in all

analyses is the date of the first germination that occurred in a well.

Seedlings were thinned to one per well (17 days after the cold

treatment) when most of the seedlings had reached the 4-leaf stage.

On the day they were thinned, arrays were placed outside in a

common garden located at the University of Lille 1, France. The 3

blocks (each of 4624 arrays stuck some on the others) were

arranged at 2-m spacing in the common garden. The density of

plants was 576 plants/m2. This density corresponds to natural

densities that seeds may experience when they are dispersed far

from the maternal plant [64]. Soil had been tilled so that arrays

could be slightly buried. Because the bottom of the wells was

pierced, roots were able to reach the soil easily. The plants were

watered for a week to ease the acclimatizing to outdoor conditions.

Vertebrate herbivores were excluded by two successive fences.

Molluscicide (PhytorexJ, Bayer Jardin) was added around

experimental blocks to prevent slug attacks. Insects (mainly Myzus

persicae) were biologically controlled by planting Vicia faba and

Tagetes patula seedlings among the experimental blocks.

Plants were monitored every 3 days (1 block per day) or when

non-freezing temperatures allowed it. Flowering date was scored

as the number of days between germination and the appearance of

the first open flower. Most studies aiming at studying natural

variation of flowering time in A. thaliana scored bolting date

(differentiation of the inflorescence from the apical meristem) or

rosette leaf number as proxies for flowering time [3,11,22,65].

While bolting date indicates the initiation of the reproductive

structures, flowering date clearly indicates the beginning of

offspring production.

2008–2009 field experiment. Because climatic conditions

vary annually at a specific geographical location, we re-grew a

subset of plants in the following year to measure the

reproducibility of flowering time scored in 2007–2008. For this

second year of the field experiment, a total of 1188 plants were

phenotyped for flowering time, including 6 replicates of 192 of the

197 accessions phenotyped in the 2007–2008 field experiment (see

Table 1 in Dataset S1). The experimental design for the 2008–

2009 experiment was exactly the same as for the 2007–2008

experiment. Seeds were sown on 24 September 2008, stratified for

4 days, and placed outside in the same common garden on 15

October 2008.

Data analysis
We aimed to predict flowering time using temporal measures

that incorporate fluctuating climatic conditions (see Text S1). In

this study, flowering time was scaled in photothermal units (PTU)

using a phenology model that integrates both photoperiod length

and temperature [66]:

PTT~
Xft

g~i

li ( mi{mb )

where PTT stands for ‘‘photothermal time’’ and is expressed in

photothermal units (PTU, uC?daylight); g is the germination date;

ft the flowering date; i spans the germination date to the flowering

Linkage and Association Mapping of Flowering Time

PLoS Genetics | www.plosgenetics.org 13 May 2010 | Volume 6 | Issue 5 | e1000940



date, counting only the days with a mean temperature above 3uC;

mb is the optimal base temperature (3uC) for the developmental

rate of the natural accession Col-0 [67]; mi is the mean daily

temperature during daylight and li is the daily photoperiod as a

proportion of 24 h.

Accumulation of chilling degrees was calculated as follows:

CHILLING~
Xft

g~i

Dmc{mvD

where CHILLING stands for the accumulation of chilling degrees

across the winter; mv is the threshold temperature below which

vernalization occurs (i.e. 6uC, [22]); and mc is the mean daily

temperature, counting only days with a mean temperature below

6uC.

Statistical analysis
Flowering time measured in units of PTT was analyzed with the

general linear model (GLM) procedure in SAS9.1 (SAS Institute

Inc., Cary, North Carolina, USA) according to the following

model:

flowering time~meanzblockzgenotypezblock|genotype

zcov Bg{2ð Þzcov Lov{5ð Þzerror

where ‘mean’ is the constant, ‘block’ accounts for differences in

micro-environment among the 3 experimental blocks, ‘genotype’

measures the effect of genetic background (i.e. ‘‘natural accession’’,

‘‘RIL’’, ‘‘parental line’’ and ‘‘NIL’’), ‘block6genotype’ was only

considered for parental lines and NILs, cov(Bg-2) and cov(Lov-5)

are covariates that represent trait values obtained for each array

for the control accessions and accounts for array effects within

block, and ‘error’ is the residual term. For NILs, data obtained

from each of the 2 independent fixed plants for each allele are

represented by a ‘family’ factor nested within ‘genotype’. All

factors were treated as fixed effects because levels of no factor were

random samples from a population to which we intended to

extrapolate.

Transforming data did not improve normality in the ‘‘natural

accessions’’ data set, and did so in only a few RIL families. To be

consistent across analyses of all plant groups, we chose not to

transform any data sets. Least-square means were obtained for

each ‘‘genotype’’ and were subsequently used for GWA and QTL

mapping analyses. Broad sense heritabilities (H2) were estimated

for the 13 RIL families from the mean square (MS) of GLM using

the formula adapted from [68]. Phenotypic transgression was

considered significant when the lowest or highest genetic value

observed among RILs was more extreme than that observed for a

parent, plus or minus twice the standard deviations [28,69]. We

estimated the intensity of phenotypic transgression for each RIL

family by dividing the range of PTU values observed among RILs

by the absolute difference of PTU between the corresponding

parental lines. Kinship coefficients based on 189 informative SNPs

[70] were used to calculate the genetic relatedness among the

parental lines.

Genome-wide association mapping
GWA analyses were based on a subset of the 197 natural

accessions included in the experiment (184 for the 2007–2008

experiment). Two different analyses were performed [13]. In the

first analysis, a Wilcoxon rank-sum test was run to test the

association between phenotypes and genotypes for each marker.

The second analysis, EMMA [24], is based on a mixed model that

includes a matrix of genotype similarity among the accessions to

control for population structure [13]. EMMA uses the following

mixed model:

Y~bXzuze

where Y is the vector of flowering time, X the vector of flowering

time, b is the fixed phenotypic effect for the locus tested, and

u,Nn(0, s2
g K) and e,Nn(0, s2

e I) are random effects meant to

capture the variance due to background genetics and environ-

ment, respectively.

QTL mapping
QTL mapping analyses were performed independently for each

of the 13 RIL families. The large size of each RIL family allowed us

to simultaneously detect additive and epistatic QTLs using the

QTLNetwork-2.0 software based on a mixed-model composite

interval mapping (MCIM) method [71,72]. Epistatic QTLs with or

without single-locus effects were mapped. One- and two-dimen-

sional genome scans for QTLs were performed using a 10 cM

testing window, a 0.1 cM walk speed and a 0.5 cM filtration

window size. To control the experimental type I error rate, a critical

F value using the Satterthwaite method was estimated by

performing a permutation test with at least 1000 permutations of

the original data for each RIL family. QTL effects and QTL

confidence intervals were estimated with a Bayesian method via the

summary of the Gibbs samplers (Gibbs sample size = 20,000).

In order to compare the genetic architecture of flowering time

between 2 environments, the MCIM method using the QTLNet-

work-2.0 software was also applied on flowering time data scored

under greenhouse conditions for 5 RIL families common to this

study [23].

Enrichment for a priori candidate genes
An a priori list of 266 candidate genes was primarily retrieved

from Atwell et al. [13] (Table 12 in Dataset S1) who searched

TAIR8 (The Arabidopsis Information Resource, at http://

arabidopsis.org/) for genes with annotations related to flowering

time. In addition, a few genes were added following our literature

searches, resulting in a list of 282 candidate genes in total.

When considering GWA mapping results, we focused on the

SNPs presenting the highest association (top SNPs) with flowering

time for each GWA mapping analysis (EMMA and Wilcoxon, for

the 2007–2008 field experiment). We checked whether those top

SNPs were located within the confidence interval of a QTL and

whether they were located within 20 kb of one of the 282 candidate

genes. The 20 kb window is conservative given that linkage

disequilibrium in A. thaliana decays per 10 kb on average [61].

As described in Atwell et al. [13], enrichment was then

calculated for SNPs within QTL confidence intervals and/or

within 20Kb of an a priori candidate gene.

To determine the threshold number of top SNPs above which

additional top SNPs would behave like the rest of the genome,

enrichment was calculated for progressively more selective sets of

top SNPs (3000, 2000, 1000, 500, 400, 300, 200, 100, 50). For

each set of top SNPs, a null distribution of enrichment was

generated to determine a 95% confidence interval (see Text S2 for

description of the algorithm).

Genotyping candidate genes
Common polymorphisms previously found to be associated with

flowering time were genotyped for the 197 natural accessions and
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the 14 parental lines. Functionality of the FRIGIDA allele was

determined according to sequencing data [60]. FLOWERING

LOCUS C functionality was determined according to Caicedo et al.

[26]. Weak FLC alleles were determined by genotyping either the

Ler miniature inverted repeat transposable element (MITE)

1224 bp insertion or the Da (1)-12 transposable element

4009 bp insertion. Shahdara and C24 accessions have also been

reported to contain a functional FRI allele and a weak or

nonfunctional FLC allele [73]. The two major FLC haplogroups

(FLCA and FLCB) previously suggested to be associated with

flowering time variation in A. thaliana under field conditions were

determined by using the PCR primers described in Caicedo et al.

[26]. A promoter indel upstream of the start codon of

PHYTOCHROME C was genotyped according to Balasubrama-

nian et al. [29].

Supporting Information

Dataset S1 Supplementary tables.

Found at: doi:10.1371/journal.pgen.1000940.s001 (0.82 MB PDF)

Figure S1 A year-to-year comparison of flowering time

expressed in Julian days (left panel) and photothermal units (right

panel).

Found at: doi:10.1371/journal.pgen.1000940.s002 (0.06 MB TIF)

Figure S2 Distribution of flowering time expressed in photo-

thermal units (PTU) for the 2007–2008 field experiment. Top:

distribution of flowering time for the 197 natural accessions.

Below: distribution of flowering time for each of the 13 RIL

families. For each RIL family, red bars extend from the minimum

to the maximum values observed, with the larger ticks demarcat-

ing the median of the distribution and the smaller ticks indicating

the flowering times for the parental lines.

Found at: doi:10.1371/journal.pgen.1000940.s003 (0.14 MB TIF)

Figure S3 Relationship between flowering time and latitude.

Accessions bearing non-functional and functional FRI alleles are

depicted by empty and filled dots, respectively. Drawn lines

correspond to regression lines for accessions with a functional FRI

allele (dotted line), a non-functional FRI allele (dashed line), a non-

functional FRI allele excluding Cvi-0 (i.e., latitude,20uC; dashed-

dotted line).

Found at: doi:10.1371/journal.pgen.1000940.s004 (0.12 MB TIF)

Figure S4 Distribution of flowering time for each RIL family.

Found at: doi:10.1371/journal.pgen.1000940.s005 (0.69 MB TIF)

Figure S5 Network of additive and epistatic QTLs for flowering

time for each RIL family.

Found at: doi:10.1371/journal.pgen.1000940.s006 (0.38 MB PDF)

Figure S6 Quantile-Quantile plot of p-values (raw and negative

logarithm) in genome-wide scans for flowering time. The different

curves correspond to different analyses of GWA mapping. Dashed

black line: expected; dashed red line: Wilcoxon; solid red line:

Wilcoxon with minor allele relative frequency (MARF).0.1;

dashed blue line: EMMA; solid blue line: EMMA with

MARF.0.1.

Found at: doi:10.1371/journal.pgen.1000940.s007 (0.13 MB TIF)

Figure S7 The distribution dependence of p-value distributions

on minor allele relative frequency (MARF) for EMMA (top panel)

and Wilcoxon (bottom panel).

Found at: doi:10.1371/journal.pgen.1000940.s008 (0.51 MB TIF)

Figure S8 Comparison of GWA and traditional linkage

mapping (additive QTLs) results for flowering time for chromo-

somes 1, 2, 3, and 5.

Found at: doi:10.1371/journal.pgen.1000940.s009 (1.94 MB PDF)

Figure S9 Comparison of GWA and traditional linkage

mapping (epistatic QTLs) results for flowering time for chromo-

somes 1, 4, and 5. No epistatic QTLs were found on chromosomes

2 and 3.

Found at: doi:10.1371/journal.pgen.1000940.s010 (0.77 MB PDF)

Figure S10 Enrichment ratios as a function of the number of top

SNPs chosen in the GWA mapping results using the Wilcoxon test.

The mean and the corresponding 95% confidence interval from

the null distributions are represented by the dotted line and the

colored areas, respectively. CG: candidate gene.

Found at: doi:10.1371/journal.pgen.1000940.s011 (0.10 MB TIF)

Text S1 Photothermal time.

Found at: doi:10.1371/journal.pgen.1000940.s012 (0.05 MB PDF)

Text S2 Enrichment and null distribution computation.

Found at: doi:10.1371/journal.pgen.1000940.s013 (0.01 MB PDF)
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