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Introduction

Planar 3-RPR manipulators have been extensively studied because they meet
several interesting features such as potential industrial applications, relative
kinematic simplicity and nice mathematical properties [1-11]. Moreover, the
study of the 3-RPR planar manipulator may help better understand the kine-
matic behaviour of its more complex spatial counterpart, the 6-dof octahedral
manipulator, as reported in [3]. An important feature of these manipulators is
their ability to change assembly-mode without encountering a singularity [1-6].
Since a parallel manipulator becomes uncontrollable on a singular configura-
tion, this feature is interesting as it can enlarge its usable workspace. Knowing
whether a parallel manipulator, or, more interestingly, a family of manipulators
has this feature or not is of interest for both the designer and the end-user. De-
termining the number of aspects (singularity-free domain) may help answering
this question.

Recently [6], M. Husty announced a proof that a generic 3-RPR manipulator
has two aspects. Since, in the same time, there are up to 6 assembly-modes, this
shows that a generic manipulator has more than one assembly mode in one of its
aspects, thus showing that non-singular assembly-mode changing motions are
possible. His proof is rather technical and involved, and the details of the proof
are yet to appear in a joint paper with J. Schicho. We propose here a much
simpler proof of Husty’s result. This new proof is based on a parameterization of
the singular surface different from the one used by M. Husty and on arguments
of a simple topological nature.

The rest of this paper is organized as follows. Section 1 describes the new
parameterization of the singular surfaces. Section 2 is devoted to the proof; we
also discuss briefly the non-generic cases.

The author thanks Philippe Wenger for his useful advice.
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Figure 1: Parameters and coordinates

1 The parameterization of the singular surface

1.1 Notations and coordinates
In order to describe the manipulator, we use here the following notations:

e The base triangle is A; A2 Ao (with the direct orientation). We take by =
Ay Ay as the base of this triangle; the coordinates of the point Az in
the direct orthonormal frame F with origin A; and first coordinate axis
directed and oriented by m are denoted by (ha,da) (h for height and
d for “déport” meaning offset).

e The platform triangle is denoted by B Bs B3 where B; is linked to A; by a
leg of the manipulator (B B2Bs may be in indirect orientation). We use
the parameters (bp, hp,dp), analogous to the ones defined above for the
base triangle, to encode the geometry of the platform triangle. Note that
hp may be negative.

We encode the position of the platform triangle with respect to the base
triangle by means of the coordinates (¢,6,r1) € [—7, 7| X [=7/2,7/2] x R which
are defined in the following way:

e ¢ measures the angle (A; As, B Bs),
e the coordinates of B; in the frame F defined above are (r; cos 6, 71 sinf).

Note that r1 may be negative; its absolute value is the length of the first leg of
the manipulator, usually denoted by p; in the literature. Of course, we make
identifications: (¢, —m/2,r1) is identified with (¢, 7/2, —r1) and (—m,r1, ) with
(m,71,0). The angle ¢ is an oriented angle of vectors and it is measured modulo
2m. The angle 6 is an oriented angle of lines and it is measured modulo 7.

It is in order here to comment the use of these coordinates for the group
of plane motions. Usually, the group of plane motions would be described by
using a rotation part (encoded by the angle ¢) and a translation part (the vector
A[A;), as S' x R2. The coordinates we shall use have the peculiarity that all
triples (¢,60,0) with ¢ fixed and 6 varying correspond actually to the same
position of the manipulator (in some sense, we fix arbitrarily a direction for



the first leg of the manipulator, although its length is null). From the algebro-
geometric point of view, we have blown-up the origin 0 € R?, getting thus the
Moebius strip [—7/2,7/2] x R where (—m/2,71) is identified with (7/2, —ry).
The use of these coordinates may look awkward at first sight, but it will enable
us to obtain a useful parameterization of the singular surface in our blown-up
workspace, with 71 as a function of ¢ and 6.

We denote by W the blown-up workspace with coordinates (¢, 6,71) and by
T the torus R/27Z x R/nZ with coordinates (¢,0). We denote by p: W — T
the projection defined by p(¢,0,r1) = (¢,0). Note that, for each point (¢,0)
of the torus T, the fiber p~1(¢,0) of the projection is a line, but W is not
homeomorphic to the product 7" x R; the blown-up workspace W is actually a
nontrivial line bundle over T'.

1.2 Parameterization of the singular surface

The equation of the singular locus in the blown-up workspace W is obtained by
expressing the fact that the legs (A1 B1), (A2B2) and (A3Bs) are concurrent or
parallel. There is of course a factor r; in this equation (a result of the blowing-
up of the origin of R?). The other factor (which is actually the equation of the
strict, transform of the singular surface by the blowing up) has the form

N(¢50)_D(¢79)T17

where N(¢,60) and D(¢,0) are polynomials in the trigonometric functions of ¢
and 0. Precisely, we have:

N(¢,0) = bg ((bA dp — hahp —dadp) (sind)? — baha sine
+ (hadp +bahp —dahp) sing cosd)) cos 6

+ (bA (hadp —dahg) cosé+ba(dabs —dadp — hahp) sine
+babphp +bp (dahp —bahp —hadg) (cos ¢)?
4 by (hahp +dadp —badg) coso sinqs) sinf

(1)
and
D(6,0) = ((bA dp —dabp) (sin)? + (habp —bahg) cosd sin e) cos ¢
+ ((dA bgp —badpg) sinf cosf — habp (0059)2 —bshp (sin9)2)
(2)
In the following, we shall call singular surface the surface with equation

and singular locus the union of this surface with 1 = 0.

Solving the equation (3) in 7, we get the parameterization 5" %(¢,6) =
N(op,0 . )
Dgi’ 9;. Observe that we have 58 (¢, 0 +7) = —r}"8(¢, §), which agrees with

the identification made in the description the blown-up workspace.

The parameterization gives an infinite value for 7% when D(¢,6) = 0, and
the zero value when N(¢,0) = 0. These two equations describe curves on the
torus T which is the space of the angular coordinates (¢, 0).

sin ¢ .



Considering the formula (1) for N(¢,0), it appears that N(¢,0) = 0 can be
solved (in generic cases) in tan 6 = v(¢), where v is a rational fraction in cos ¢
and sin ¢. This can be explained from a geometric point of view : the angle 0 is

the angle from the line (A;As) to the line joining A; to the intersection point
of the legs (A2Bs) and (A3 Bs3)

On the other hand, the formula (2) for D(¢,6) shows that D(¢#,6) = 0 can
be solved in tan ¢ = 7(0), where 7 is a rational fraction in tan 6; this gives two
values of ¢ which differ by 7 for each value of #. This is again clear from a
geometric point of view, since the “asymptotic” singular situations (i.e., those

with 7™® infinite) are characterized by the fact that

((A)l(Az) _ €(B1)¢(B2)

((A)l(Az)  €(B1)¢(Bs)

)

where ¢ is a projection parallel to the common direction of the infinite legs,
which is given by 6; this is realized by two orientations of the platform with
respect to the base (encoded by the angle ¢) which differ by 7.

Actually, the curve D(¢, 8) = 0 has two branches (or connected components)
one of which is obtained from the other by the translation ¢ — ¢ + w. This
point, which will be of importance later, is not a priori clear, since there could
be only one branch possessing the translation symmetry ¢ — ¢+ 7. But indeed
the equation cos ¢ = 0, together with D(¢,6) = 0, is an equation of degree 2 in
tan 6, precisely

bahg (tan6)® + (badp —bpda) tanf +bgha = 0.

This equation has 0 or 2 solutions in 8. The fact that this number is even implies
that, if one follows continuously a determination of ¢ along D(¢,0) = 0 when
0 varies from —m/2 to m/2, one returns to the same determination of ¢ modulo
27r. Hence, there are two disjoint branches of the curve D(¢,6) = 0.

1.3 Indetermination points

For a generic 3-RPR manipulator, the two curves N(¢,0) = 0 and D(¢,0) =0
on the torus 7' have no common component and intersect transversally in
finitely many points which are the indetermination points of the parameteri-
zation. Locally around an indetermination point, the two curves N(¢,0) = 0
and D(¢,0) = 0 cut out four “quadrants” on T

The indetermination points can be computed using the resultant of N (¢, )
and D(¢,0) with respect to tan . This resultant has four factors

Fi(¢) = babpsing,
Fy(¢) (dahp —hadp)cosd+ (hahp +dadp)sing
= AjA3 X B1Bs xsin(¢p — a1 + 1),
F5(¢) = (dahp —hadg+bpha—bahp)cosd
4 (dadp +babp +hahp —bgda—badg)sing
= AyA3 X ByBs x sin(¢ + as — 32)
Fy(¢) = (~bahp—bpha)cos¢+ (~badp+bpda)sing+baha+bphp,



where we use the angles oy = (A, Ay, A1 43), 1 = (B1Ba, B1B3), as = (A3 43, A3 A7)
and B2 = (B2Bs, B2 B1).

The vanishing of the first three factors corresponds to the parallelism of the
sides [A41 4] and [By Bs] (respectively [A1As] and [B;Bs], [A2As] and [B2Bs)).
The fact that this gives rise to situations where the singular value of r; is not
determined has an easy geometric interpretation: this is for instance the case if
the two sides [A1 As] and [B1 B3] are on the same line.

There is clearly another situation where the singular value of r; is not de-
termined : when the three legs of the manipulator are parallel. The conditions
for the parallelism of the second and third legs with the first one are as follows:

basind = bpsin(d — ¢)
da sinf —hy cos® = dpsin(f — ¢) — hp cos(d — @) .

Writing these equation in tan@ and taking the resultant with respect to tan@
gives indeed the fourth factor, up to sign.

Each of these first three factors has two solutions in ¢ which differ by .
The last factor may have or not two solutions in ¢. The value of 6 for the
indetermination points is given by tanf = v(¢). Hence, for a generic 3-RPR
manipulator, the parameterization has 6 or 8 indetermination points.

1.4 Examples

The first example corresponds to the manipulator with parameters by = 7,
hg =3,d4s = -2, bp =1, hg = 2, dp = 1. The figure 2 shows the curve
N(¢,0) = 0 in red, the two branches of the curve D(¢,0) = 0 in blue and six
indetermination points in green.

0/5 1

-1,5

Figure 2: Example with 6 indetermination points



Recall that the space of (¢,0) is actually a torus T' obtained by gluing the
left side of the picture with the right side, and the bottom side with the top side.
The complement of the union of the curves in T has six connected components
(two of which are very small).

The second example shown on figure 3 has parameters corresponding ap-
proximately to the Innocenti—-Merlet manipulator: by = 15.9, hy = 10, d4 = 0,
bp =17, hg = 16.1, dp = 13.2. It exhibits eight indetermination points. There
are eight connected components in the complement of the union of the curves
D(¢,0) =0 and N(¢,0) =0 in T, among which two represent almost all of 7.

Figure 3: The Innocenti-Merlet manipulator with 8 indetermination points

The fact that there are respectively 6 and 8 connected components in the
complement of the curves is not just a coincidence. Let I be the number of
indetermination points. It can be checked that the curves N(¢,0) = 0 and
D(¢,0) = 0 induce a cellular decomposition of the torus T, having I 0O-cells
(the indetermination points) and 2I 1-cells which are intervals of the curves
between indetermination points. Consequently, since the Euler characteristic of
the torus is 0, there are I 2-cells which are precisely the connected components
of the complement of the curves.

2 Proof that there are generically two aspects

The blown-up workspace has been obtained by blowing up the locus r; = 0 in
the usual workspace, and this locus is contained in the singular locus. Hence,
the complement of the singular locus in the usual workspace is the same as the
complement of the singular locus in the blown-up workspace W. (Recall that
this singular locus is the union of r1 = 0 and the singular surface N(¢,0) —



D(¢,0)r1 = 0.) We now proceed to prove that a generic 3-RPR manipulator
has two aspects, i.e. that the complement of the singular locus in W has two
connected components.

Outside of the curves N(¢,0) = 0 and D(¢,0) = 0 on the torus T, the
value of rfing((b, 0) is different from 0 and infinity, and the line p~1(¢, #) above
(¢, 0) is divided into three intervals by rfing((b, ) and 0, each one contained in a
connected component of the complement of the singular locus in the blown-up
workspace W.

The complement of the union of the curves N(¢,0) = 0 and D(¢,0) = 0
in the torus T has finitely many connected components (six or eight as we saw
above, but the precise number does not matter here). If C' is any of these
connected components in T, the complement of the singular locus in p~1(C) C
W has three connected components: the one which is bounded by r1 = 0 and
by the graph of 7} the one which is bounded by 7, = 0 on one side and
unbounded on the other side and the one which is bounded by the graph of
™8 on one side and unbounded on the other side.

The topological proof that there are two aspects will consist in examin-
ing how these connected components glue together when crossing the curves
N(¢,0) =0 and D(¢,0) = 0.

2.1 Turning around an indetermination point

The main step in the proof is to realize how the three intervals cut on the line
p~1(¢,0) vary when one turns around an indetermination point of the parame-
terization. The two curves N(¢,0) = 0 and D(¢,6) = 0 intersect transversally
in such a point. The value 5 "%(¢,0) changes sign by going through 0 when
one crosses the curve N(¢,0) =0, and it changes sign by going through infinity
when one crosses the curve D(¢,60) = 0. We label a,b, ¢ the three intervals of

the line p~1(¢,0) in a local quadrant (the upper-left one on figure 4).

rﬂSing b
c b
0 0 ) 0
d a
a r1Smg
N=0
r Sing
C 1
b c
) 0 ) 0
a d
r Sing d

Figure 4: Connected components around an indetermination point



When we go to the lower-right quadrant counterclockwise, the interval b
between r?mg and 0 is squeezed when crossing N (¢, ) = 0, and then the interval
a is squeezed when crossing D(¢,0) = 0. When we go clockwise, the interval
¢ between rfing and oo is squeezed when crossing D(¢,0) = 0, and then the
interval a is squeezed when crossing N(¢,6) = 0.

We label d the third interval over the lower-right quadrant, i.e. the interval
between 0 and 0o not containing 3 "¢. This interval survives in the lower-left
and upper-right quadrants.

Summarizing, we have proved that the singular locus cuts out four connected
components in p~(U), where U is a small neighborhood of an indetermination

point.

2.2 Following a branch of D(¢,6) = 0, and conclusion

We follow now closely one of the two branches of the curve D(¢,0) = 0 by
letting 6 vary from —7/2 to w/2. The identification of (¢,0,71) with (¢,0 +
m, —7r1) shows that Tfi“g has to change sign an odd number of times during this
loop. Hence, the branch we follow will have an odd number of indetermination
points, precisely 3 or 5 (we have seen before that there are at least three pairs
of indetermination points, each stable under the translation ¢ — ¢ + m, plus
possibly two other indetermination points).

So after one loop we have to identify the two pictures on the right hand side
of the curve D(¢,0) = 0 in figure 4, modulo ry — —ry. This identification yields
a = c and b = d. (The same would be obtained by identifying the two pictures
on the left hand side of the curve.) This shows that the singular locus cuts out
only two connected components in p~1(B), where B is a small band around a
branch of the curve D(¢,6) = 0 in the torus 7.

Since the curve N(¢,0) = 0 and the two branches of D(¢,6) = 0 all con-
tain indetermination points, all connected components of the complement of
these curves in the torus 7' contain indetermination points in their boundaries.
Moreover, there is an interval of the curve N(¢, ) = 0 joining indetermination
points on different branches of D(¢,0) = 0; this is enough to glue together the
two connected components above a band around one branch of D(¢,6) = 0 to
the corresponding two connected components above a band around the other
branch.

We completed the proof of the result of M. Husty:

Theorem 1 A generic planar 8-RPR manipulator has two aspects.

2.3 Non-generic cases

We made in the proof genericity assumptions at several places. We now discuss
briefly the non-generic cases. We shall only consider manipulators where neither
the base triangle nor the platform triangle are flat (i.e. bahabghy # 0).

The most severe failure to genericity is the case when the two curves N (¢, 6) =
0 and D(¢,0) = 0 have a common component. This case can be determined by
computing resultants, and it occurs for the following peculiar geometries of the
manipulator :



e “Similar” manipulators where the platform triangle and the base triangle
are similar (i.e bg = Aba, hg = Mha and dp = Ad4 for some A > 0).

1.5

0.5

_0.5_

Figure 5: Example of a “similar” manipulator

An example is given in Figure 5, where the common components (two
vertical lines at ¢ = 0 and ¢ = +7 are indicated in green. It is known
there there are four aspects in this case, and this can be checked on the
figure by easy topological arguments of the kind we used above.

e “Symmetric” manipulator where the platform triangle is the image of the
base triangle by an indirect isometry of the plane (i.e bg = ba, hg = —hga
and dp = dj).

An example is given in Figure 6. Here the common component indicated
in green is described by ¢ — 20 = £m. It is known [13] that there are two
aspects in this case.

Other possibilities for non-genericity are :

e when the curve N(¢,6) = 0 has components which are vertical lines (on
such a line we don’t have 6 as a function of ¢). This happens when
A1A2 = B1B2 or A1A3 = BlBg or Z(A1A27A1A3) = Z(BlBQ,BlBg) or
the height from vertex A; in A3 A3 Az is equal to the height from vertex
B in B1 B3 Bs. In most cases (except of course the two mentioned above),
the non-genericity is only apparent and disappears when one changes the
choice of the privileged leg A; By, but we have not investigated all possi-
bilities.

e when the curves N(¢,0) = 0 and D(¢,0) = 0 have non transverse inter-
sections. The topological arguments are a little more intricate in this case,
but this is not a serious problem.
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Figure 6: Example of a “symmetric” manipulator

In conclusion of this incomplete discussion, we conjecture that the only case
where there are four aspects is the case of “similar” manipulators.

Conclusion

The coordinates (¢,0,r1) we used for the workspace enabled us to express 71
as a function of the angular coordinates ¢ and 6 on the singular surface. This
description of the singular surface was then used in simple topological arguments
to prove that, for a generic 3-RPR manipulator, the complement of the singular
locus in the workspace has two connected components, i.e. the manipulator has
two aspects. We also conjecture that the only case where there are four aspects
instead of two is when the platform triangle is similar to the base triangle
(assuming neither triangle is flat).
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