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Jean—Louis Merrien Tomas Sauér

March 30, 2010

Abstract

Vector and Hermite subdivision schemes both act on vecttr, dat since
the latter one interprets the vectors as function valuescandecutive deriva-
tives they differ by the “renormalization” of the Hermitehg&mne in any step. In
this paper we give an algebraic factorization method in arteseveral variables
to relate any Hermite subdivision scheme that satisfiestheadled spectral con-
dition to a vector subdivision scheme. These factorizatame natural extensions
of the “zero atr” condition known for the masks of refinable functions. More-
over, we show how this factorization can be used to invesgid#ferent forms of
convergence of the Hermite scheme and why the multivaritataton is concep-
tionally more intricate than the univariate one. Finallg give some examples
of such factorizations.

Keywords: Subdivision, Hermite, Taylor expansion, Factorization.
AMS Subiject classification: 41A60, 65D15, 13P05.

1 Introduction

Subdivision algorithms are iterative methods for producing curves aifaces with a
built-in multiresolution structure. They are now used in curve and surfackeimy

in computer-aided geometric design, video games, animation and many othea-app
tions. Stationary and homogeneous subdivision schemes iterate thessbdnasion
operatorand use rules that, independently of the location, compute new values of a
refined discrete sequence only from a certain amoutia andneighboringdata.

This data can be scalar or vector even matrix valued, the matrix case beerbylo
doing vector schemes columnwise, and the stationary, i.e. local and neighbade

is always acting on a vector sequenrcas

Sac= > A(-—2a) c(a),

aEels
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where the finitely supported sequence of coefficients is referred teasabdkof the
subdivision scheme. This operator is iterated, leading to a sequ&peen € N,
of vector valued sequences, which, when related to the finer and filk2 giZ?,
converges to a limit vector field with certain properties. Such schemes keaveit-
vestigated for example in [4, 13, 16, 20, 21] and there exists quite a stibstamount
of literature on vector subdivision schemes in one and several variael@swhile, in-
vesting convergence as well as smoothness of the limit functions or the nallities
structures generated by these functions.

If the vector data to be processed represents the value and consetfiffidikences
of a function in the so—calledermite subdivision schemeke situation changes sig-
nificantly due to the particular meaning of the vector’s coefficients. Hermiidigi
sion schemes have also been studied by many authors, for example,13, 17, 19].
As a consequence, a Hermite subdivision scheme is a so caliestationaryscheme
with a mask at step given by A,, = D~""1 AD", see (6), whered is a usual mask
andD is a diagonal matrix with diagonal entrigs’, j € {0, ..., d} coming from the
derivatives ofy)(-) = ¢(2-). This matrix creates a new problem since the successive
powers of D~! have no limit whenn goes toco and almost all the components of
D" goes to0. So it is interesting to transform a Hermite subdivision scheme into a
Stationary Subdivision Scheme using a Taylor operator which comes fremstial
Taylor expansion.

2 Notation and basic concepts

Vectors inR" will be labeled by lowercase boldface lettersgas= [y;],_; . In
particular,e;, j = 1,...,r, stands for the canonical unit vectors for whi@y), =
ejr = Ok, k = 1,...,7, holds true. Matrices ilR"*" will be written as uppercase

boldface letters, liked = [a;p],,_; .

By A € (7" (Z*), we also denote a multindexed sequence of matrices, that is,
for all a € Z° the sequence elemed(a) = [aju(a)],;,_, . € R isanr xr
matrix. Any such sequence will be calledreskprovided that it is finitely supported,
that is, there existd/ € N such that

supp A:={ae€Z’ : A(a) #0} C[-N,NJ]*.
To any maskA we associate thetationary subdivision operatofs : ¢" (Z°) —
(" (Z7), defined as

€L’

Sacla) =Y A(a—2p)c(B), cel (Z°). 1)
B

Polynomials and Laurent polynomials play a fundamental role in the studybsf su

division schemes, so we recall the definitionsIbf= R [z] = R[zy,...,z,] and

A =R [z,z7!], respectively, where, using the monomiafs:= z{"* ... 2%,
f@)=Y" faz®e€ll,  flx)= > faa® €A, ©)

aENG Qs



but in both cases onlfinitely manyof the coefficientsf,, are different from zero so
that we are dealing with finite sums in (2). Though polynomials and Laurdgt po
nomials appear to be almost the same — after all, any Laurent polynomial iseabtain
by multiplying a polynomial of the formx®, @ € Z°, which is a unit inA — they
are of surprisingly different algebraic structure, cf. [22]. By we denote the finite
dimensional vector space of all polynomialstofal degreeat mostk, that is

s
f(SC)Z Z fa'CCQEHk, |Oé| = Zaj, OéENs,
j=1

laf<k

wheredim IT;, = ry := (¥%),
Recall thats denotes the number of variables and write, faf N, s;, := (

for the dimension of the space

s+k—1
s—1 )
Y .= span{z® : |a| =k}

of homogeneous polynomials of degrke Obviously, the dimensiom, of 11, =
@;?:0 119 satisfies), = sg + - - - + s

A convenient way of studying masks, well used in signal processinggisitsider
its symbolwhich is the — in our case matrix valued — Laurent polynomial

A*(z):= > A()z", z€C;, C,=C\{0}.

a€ZS

Moreover,A* (z‘l) is the well-knownz—transformfrom signal processing, cf. [14,
15, 28]. In particular, foe € ¢" (Z*) we have the identity

(Sac)* (z) = A*(2) c* (&%)

If ¢; is thej-th vector of the canonical basiskr, we will use theforward differ-

ence operators);, j = 1,..., s, defined byA;c = c (- + ¢;) — c and the difference
operator
Alc
A 0T (Z%) — T (2, Ac=| : (3)
Age

which plays the role of a discrete gradient.

We will first state and prove the Taylor factorization in one variable in Se@&ion
to explain its basic idea and then turn to the notationally and conceptionally more
intricate multivariate situation later (Section 4).

One key argument is the following factorization result:alfe ¢(Z?), satisfies,
for all o € Z*, the condition)_ ;. a(a — 28) = 0, then there exisk; € ¢ (Z°),
j=1,...,s,suchthat

a*(2) =3 (Z;Q — 1) b (2), (4)



see [1, 23] for a proof. This is a generalization of the well known réswhe dimen-
sion,s = 1, that

dal@-28)=0, acZ, =  d'(z)=E7-1b(). (5)

BEZ

Now we define thédermite subdivision schemié 4. In dimensions with d deriva-
tives, starting withf, € ¢"4(Z*), forn = 0, ..., we definef,, ., € ("¢(Z*) by

D" foa(a) =Y A(a—28) D" f,(8), cel(Z%),  (6)

BezZs

where

1
5181

is the diagonal matrix with diagonal entries’ repeateds; times, respectivelyj =
0,...,d.

For the iterated application of the Hermite subdivision scheme, we decompose th
vector into the block form

£0) =90 . oser, P e @),

5=0,..,

and the first componerﬂ?) (8) can be interpreted as the value of a functignat
(3/2™, while thes; following ones,fﬁf)(ﬁ), describe the gradient or first total deriva-
tive D'¢,,(3/2"), and so on, up to the lasg ones,f'? (3) which areDd, (3/2"),
whereD/’ := [DO‘:% ,Jj=0,...,d.

al=j

The main goal of this paper is to prove that, under suitable hypotheseslyrtame
spectral conditiona Hermite subdivision operator can be transformed into an equiva-
lent stationary subdivision operator which we will call fFeeylor subdivision operator
associated tdf 4 (Section 3 for the dimension= 1 and Section 4 fog > 1).

Then, in Section 5, fog = 1, we will prove that if the Taylor subdivision operator
is convergent as a stationary vector subdivision scheme, Ahgis convergent in the
sense of Hermite subdivision schemes. §or 1, when adding further hypothesis, we
will give a generalization of the previous results.

In the last Section, we give examples of interpolatory and non interpolstbgmes
and their transformation into stationary subdivision schemes.

3 The Taylor factorization in one variable, s = 1

We will use a function and itg derivatives, but since = 1, we are in the special
situation that, forany € N, s, = landr = ry =d + 1.

In this section, we will show that any subdivision operator that satisfiesgbe-
tral conditionwill admit a factorization in terms of operators. In fact, this result was



already proved in [10]. We give a new proof using different opesatmd a more
algebraic approach.

To introduce the definition of the spectral condition, we associate to aryidumn
f € C4(R) the vector sequenag; € (4+1 (Z) with

f(@)
vi(a) = d (:04) , o € Z. @)

(@)

Definition 1 A maskA or its associated subdivision operatép satisfies thespectral
conditionof orderd’ < dif there exist polynomialg; € I1;, degp; = 7,7 =0,...,d’,
such that

bj
1 Pj
Sav; = gvj, vj = vy, = : , (8)
(d)
D;

where we will always assume thatis normalized such that;(z) = %xﬂ +-.

It was proved in [10] that the spectral condition is also equivalent tostima rule
introduced by Bin Han et al [16, 17].

Definition 2 TheTaylor operatofl}; of orderd, acting on¢?*! (Z), is defined as

JAN T i —

T, = _'1 . ©)

The name “Taylor operator” is easily explained:flE C¢(R) then, for anyn € Z,

d—
(Tovg), (@) = F9) (a4 1) -

.

| =

f9 (@),  j=0,....d-1,  (10)

il

0

are precisely the terms appearing in the Taylor expansignag well agTyvy) , (o) =

7 ().

Remark 3 An alternative version of the Taylor operator, namely

A —1 ..~y O]
A
Ty:= —1 :
A 0
L 1_

was introduced and investigated in [10].
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To transform the Hermite subdivision scheme into a stationary subdivishemss,
we will also need a slight modification of the Taylor operator from (9), nantedy
complete Taylor operataacting on/(?+1) ()

JANE U —

@1 ~a
B A
Ty := q
A -1
L A .

We notice thaflf (z) = 2! — 1 and fork = 1,...,d,

N (k-&il)'
~ T (z —w 2
Ty (2) = [ ké ) 51 _kl] ) Wy, 1= k:' . (11)
1

To simplify notation, we will writel and0 for identity and zero matrices of appropriate
size whenever their dimensions are clear from the context.

Theorem 4 If the maskA ¢ ¢(d+1)x(d+1) (7) satisfies the spectral condition of order
d, then there exist two finitely supported ma&ksB ¢ ¢(¢+1)x(d+1)(7) such that

TySa = 2_dSBTd and TVdSA = 2_dS§fd. (12)

We will split the proof of Theorem 4 into several pieces, beginning with alkemp
observation ofy.

Lemma 5 For p € 114, we have thaf v, = e4p(®(0) andT,v, = 0.

Proof: Making use of (10), we see that for anyc Z there exist, ..., &;—1 € (0,1)
such that

1 .
(Tqvp), (a):mp(dH) (a+&5) =0, J=0,...,d—1,

and that(T,v,) ; (o) = p¥(a) = p'9(0), sincep € I1,.

The proof ofT;;v,, = 0 is similar. O

Expanding, at first, any € II;_; with respect to the basip, . ..,ps—1}, and

taking into account thqt&d) = 1, the following result is an immediate consequence of
Lemma 5.

Corollary 6 If the maskA satisfies the spectral condition of ordérthen
TdSA’Up =0, pelly, TySavg = 27ded (13)

andT;S av, = 0 foranyp € I, .



Proposition 7 If Scv, = 0 for all p € I}, & < d, then there exists a (finitely
supported) masB;, € ((#+1)x(d+1)(z) such that

B T, 0
Sc = 5B, [0 I} : (14)
Proof: Writing C*(z) = [¢{(2)--- cj(%)] in terms of its column vectors, we shall
prove thatScv,, = 0, p € II;, implies the existence @i, . . ., b;, such that
* * * * * Tv* 2 0
€)= [B5(2) -+ By i) eia)] [T 9 as)

which defines
B (2) := [by(2) -+ bj(2) €y (2) - - en(2)] - (16)

This will be done by induction oR.
In the casé: = 0 the assumption implies thatis a constant polynomial, hence

0= (Scep)(x ZCO a—20),
BEZ

so that, by (5), there existg(z) such thaic(z) = (272 — 1) bj(z). Consequently,
272 —
C'(z) = [(2_2 — 1) bo(z) ci(z) - - C;;(z)] = B}(2) |: o 1 2:|
- ) [0 9.

which shows the validity of (15) fok = 0.
Now, let us assume that (14) is satisfied for sgme 0 and thatScv,, = 0 for all
p € IIgy1. A simple computation based on (10), like in the proof of Lemma 5, shows

that forp = pi.1 we get forv), = [(vp)j} - € (*1(Z) that
=

Tk’U; = w, p* T (0) = wy,

wherewy, is defined in (11). By the induction hypothesis and our assumption,
v, wy,
1|=8g,|1
0 0

ZZ +1_ bj(a —28) + cpyr(@—26) =0, a€l,

BEL j= 0

0 = Sc’vp = SBk

That is,

and the same argument as before shows that
k
2 Griog) k+1— bj(2) + €iy1(2) = biya(2) (7 = 1),
]=0

7



in other words,

or

e = B [F§ Y

0 I
I —w, 0] [T7 (%) 0 0
= Bi(z) |0 z2-1 0 0 10
o o0 I 0 01
Tk 2
k(z) —Wg 0 Tk 2
=BG | 0 =21 o =B 9.
0 0 I
which completes the proof. O

Corollary 8 For a maskC ¢ ¢(¢+1)x(d+1) (7) the following statements are equiva-
lent:

1. Scv, =0forallp e IIz_4,
2. there exists as madB’ such thatSc = Sg/ T,
3. there exists as madR such thatS¢c = SgTy.
Proof: By Proposition 7,
* * T 1 (22 0 *
c*() = Bia(e) | 1) Y] = B ().
hence,B’ = B,_; satisfies 2). To prove 3), we expand the above identity into
* * I w I —w 2
¢t =BG | Tl e T
* I w *
= B ,(») [ 0 1 ] Ty (22) = B*(2) Ty (2’2)
Conversely, since fop € II;_; we have thafljv, = T,v, = 0, it also follows that
SA’Up = SB’Tc/lvp = SBTd'Up =0 fOfp eIl;_. ]
Corollary 9 A maskC ¢ ((4+1)x(d+1) (7) satisfiesScv, = 0 for all p € TI, if and

only if there exists a mask such thatS¢c = SgTa.

8



With these observations in hand, the proof of Theorem 4 is now easily ctedple
Proof of Theorem 4: Defining C by C*(z) = 2T%(z) A*(z) and noting that for
p=pr €, k=0,...,d—1, we get that

1
Scvr = TaSave = pTavy =0, vk = vy,

Since{po, . ..,pa—1} form a basis ofl;_,, we have thaScv, = 0, p € II;_,, and
Corollary 8 tells us that there exisB suchSc = STy, hencel;Sa = 2-% STy
as claimed.

The equalitylySa = 27 4S5 T, is obtained withC* (z) = 29T (2) A*(2), k = d
andB = B, in Proposition 7. O

4 The multivariate case

In the multivariate case, the definition, theorems and proofs follow the sansedme
in the univariate situation, but are conceptionally slightly more intricate.

We still consider polynomials of total degree at mdsind to any functiory <
C?(R*) we now associate the vector valued sequence defined as

570
vV = . |, VEL,
D?f(y)
where we recall thab’ := [Da = %] ol stands for the total differential of order

Jj. The partial differenced;, j = 1,...,d, arenowdefined a&; f(y) = f (v + €;)—
f(v) for v € Z*. Again, we use a partial univariate Taylor expansion in the direction
of ¢;, to observe that fojo| < d

d—|a]—-1

Do (r ) = D)+ Y
k=1

gD‘”’“ﬂ'f(v) +Rf, €T,

with Rf = 0if f € II;_1, so that thej—th partial Taylor operatoroperating on
(r4(Z°) takes the form

Aj I Té,l T T(Jj',dq Tg,d
) Aj Il : :
17'7 = ] )
d Tfi—Q,d—l ,
Ajlgy Ty,
- Id -
wherel, € R**% k= 0,...,d, are identity matrices of dimensiaf x s; and the
matricesT’, , € R****, ( =k +1,...,d, have zero entries except
(Tj> Y =k =kt
kit a,o4(0—k)e; ([ — k)'

9



Thetotal Taylor operatoris then defined as
T
Ty:= | : a7

O+ &) = fOO() — FOO() — § O]
LO) (- 4 gy) — fBO () — f(20)()
oo FONG ) = FOD() = F00)
;(liO) ;(1:1)8
FO.1) 02
F={eo | B = | poo( s ey) - pom) — o) — L poay| <R
FD FAO( 4 eg) — RO () — LI
o2 FOD(+e2) = FOV() = FOI()
- FEO()
()
_ 7o) _
As in one variable we define the complete (partial and total) Taylor operagors
_Aj I Té,l Té,d—l Té,d ] B
_ Aj Il " le
Ta = Ti{—2,d—1 '5 ' Ta:= ~s
A]‘Id_l Tfi—l,d Td
I Ajla ]
Again for the example = 2 andd = 2, we obtain
OO ) = fON() = FOO) = 0]
FOO(. 1) — 00 — f200()
FONC 4 er) = FOD() = FAD()
RO (-4 1) = FRO()
FAD( ) — AN
- FO2 (4 gq) — pO02)(
TQf = f(O 0)( + 62) _ f((0,0) (61))_ f(O,l) (())_ lf(O,Q)(') S Ru.
FOO(. 1 ) — 000 — FLI()
JON( 4 ea) = FOD() = FOD()
O+ ez) = fRO()
FAD( ) — D)
: FON( 4 ea) = FOD() _

Obviously, in the general casgéy andfd map anr;—vector valued sequence to a
s - rq—Vvector valued sequence.
We will denote the unit vectors iR"< by e, |a| < d, and the unit vectors iR*"4

byej,ouj: 1,...73, ‘a‘ Sd

10



Definition 10 The maskA € ¢"<*"4 (7Z#) is said to satisfy thepectral condition of
orderd’ < difthere exists a basis 6f consisting of polynomials, € I, |a| < d',
such that

Sav, =27 10y, Vo = Up, (18)

Remark 11 SinCE{p@}ka is a basis oflI;, for any« such thata| = &, the mono-
mial 2,2 can be written as

1
%= Aappst ) Aappp.
1BI=k 181 <k

Letga(z) = 3 i5<k Ao, Ps. By (18), the polynomiabma(z) = - 52 Aa,s 05 =
L 2% —q,(z) satisfiesS gv,,, = 2-1*lv,,_. Replacing,, bym,, if necessary, we can

ol

thus always assume that the polynomjajsof Definition 10 are normalized in such a
way that their leading term ig; z.

The counterpart for Lemma 5 is as follows.

Lemma 12 For p € TI; we have that
Tqv, = Z Z ej o Dp(0). (19)
j=1 |a|=d

Proof: For|a| < d,anyy € Z°andj = 1,..., s there exists som¢= ¢, ,; € (0,1)
such that

j 1 a+(d—|a
ej o Tavp(y) = (Té’l’p)a (v) = @—Jal+1)! DIl iy 4 ge5) = 0, (20)

while for o] =dandj =1,...,s

el Tov,(v) = alpa(7) = Dp(0),
which can be combined into
S S
Tqv, = Z Z €j.a e}jaTdv = Z Z ej.a Dp(0),
j=1|a|<d j=1lal=d

that is (19). O

Corollary 13 For p € I1; we have thalyv, = 0.

Also the extension of Proposition 7 follows essentially the same lines but now
makes use of the associated quotient ideals, cf. [23, 26].

Proposition 14 For some positive integeN, let C € ¢V>7a (z%). If for k < d,
Scv, = 0 for all p € I, then there exists a finitely supported madgk € ¢¥>**rd
such that N

Sc =SB, Tk.

11



Proof: Again let us writeC™ in terms of its column blocks,
C*(2) = [Co(2)--- Cu(2)],  Ci(2) = [ca(Djgj=r» k=0,....d.

The proof consists of showing that whenewgsv, = 0 for all p € II;, then there
exist finitely supported masks; ;. € N*si(75),5=1,...,sandk = 0, ..., d, thus
By, € (VX" (75),k =0,...,d, such that

C*(z) = [Bio(2)  Bi(2) Cipa(2) - Cy(2) | -+
() () o
0 I
w [ Bi(2) -+ Bi(2) Ciya(2) -+ Ci2)] : H(21)
(7:) (=) o
L 0 I_
= Bi(2) Ty (%), IeRramxta=r),

Once more, induction is used to builsl;, or B(z).
For k = 0 we only have to considgs = 1, that isv, = ey, which leads to
0 = Sceg such that, by (4), we have the vector identity

)= 30 (52 1) biy(e)
j=1

and withBg; = bg; we thus get that

—zl_2—1 0]
0 1
C'(z) = [Bu(:)Ci(2)---Cu(z)| -+ | By (2)Ci(2) - Cal2)] -
272-1 0
L 0 I_

() () o

0 I

= Bj(2) ; H| = Bi(:)T; (7).
(T5) (% o
- 0 I-

which is (21) fork = 0.
Now suppose that the validity of (21) has been proved for séna@d assume
that Scv, = 0 for all p € II,,;. By the induction hypothesis, (21) holds, so that

C*(2) = By(2)T} (2?). Fix a € N§ with || = k + 1. For the monic polynomia,
with p,,(z) — ixa € II}4—1, we again consider the truncated vector sequence

o= (@], € 0 ()

12



for which (20) yields that there exist sonjec R¢ such that forj = 1,...,s and
Bl <k

~ . 1
T A (i ) B+(k—|Bl+1)e;
e]w@Tk’v}? (Tdvp)ﬁ (k‘ o |ﬁ| + 1)' D Jp(é)

1
(k— 18] + 1)!5ﬁ+(k—|ﬂ\+1)€j70¢’

hence,
- k 1 k41
Tiv, = (k— ¢+ 1) Co (bt = D g Caty = wj ER™,(22)
£=0 (=1

with the usual convention thal; = 0 whenevers € Z° \ N, that is, whenevef has
a negative component. The definitionf; in (22) is also valid inR™, and we will
denote this natural embedding fay;. Now,

w1 + e,
0 = chp:SBka (’v;+ea) :SBk :
W, + e,
s k+1 1
_— ( i3l ) |

j=1 =1

which can be summarized by stating that
s k+1 1
0=S5B,wa,  wWa:=) (eﬂla Y 0 ea‘,a—eq) € R, la| =k + 1.
j=1 =1
(23)
Recalling tha(Bk);a =c;forj=1,...,sand|a| = k + 1, (23) means in terms of
the columns ofB; thatforj =1,...,sand|a| =k + 1
k41
0= CZ(Z) + Z Eb;,a—&j (Z)7 zZ € {i1}57
=1
so that there exidi;, ; ,,m = 1,...,s, |a| = k + 1, such that
k+1 1 1 s
cq(2) + Z Eb}k',a—eej(z) =3 Z (2m” = 1) by ja(2): (24)
=1 " m=1

Averaging this identity ovey, settingb;,, () := LS~ b7, .. (2) and replacingn

T s Luj=1Tmyg

13



by 7, we obtain

. 1g
ca(z) = ; (
j=1

®w | =

®w | =

which can be combined into

*

. 1
Ck+1(2) = S

If we then substitute this expression for the colu@ff, , of

Bi(:) = [Bjy(2)-

I _Wigr

Substituting (25) into (21), we thus get that

C'(z) = Bi(:)T} (%) = -

[ jo(z)-- ;7k+1(z)]j:1,...,s

Td—Tk+1

14

k(2) Chia(2) -+ Cal2)] .

we obtain the recursive relationshipy,(z) = By (2)Y (z) where

]

Sk+1

Sk+1

Sk+1

Sk+14

)

(7).




If we partition7} according to the structure af as

[(73) ]
I

Sk+1

I

Td—Tk+1

=3
I

(1)
I5k+1

I

L Td—Tk+1d

then a simple matrix multiplication yields that

(7)) (=) —wi17 0]
0 (72-1)I,,,, ©
0 0 I
Y*(2) Ty (2°) = ; : =T (7)),
(T3)" (2%) —w,17 0
0 (252-1)1I,,, ©
0 0 I}

which shows that indee@*(z) = Bj,,,(2) T}, (2*), thus advancing the induction
hypothesis and completing the proof. O

With an appropriate renormalization like in the proof of Theorem 4, we thtesob
its counterpart for dimensios.

Theorem 15 If the maskA € (74" (Z°) satisfies the spectral condition of ordér
then there exists two (finitely supported) masksB € ¢*7<*5"4(Z*) such that

TiSa =274SBTy, and ;54 =2""S5T,. (26)

Remark 16 It is worthwhile to note that the proof of Theorem 15 gives a constructive
method to compute the symbols of the Taylor schdBhasd B. The crucial stepisthe
computation of the decomposition(4), a task that is already implemented in some
Computer Algebra Systems, for exampl€oCoA [2]. Recall, however, that due to
the existence o$yzygiesthis decomposition is usually not unique, cf. [3] and so also
B and B are not unique.

Definition 17 With the hypotheses of the previous Theorem, the subdivision schemes
Sp is called theTaylor subdivision schemeassociated withd 4 and the schemﬁg
is thecomplete Taylor subdivision scheme

Remark 18 For initial data f, € ¢"(Z*), we consider the sequence of iterations
£, n € N built from the schemé/ 4 defined in(6). If we now define the associated
sequence

g, = 2T, D" f, € (57 (Z°), n €N, (27)
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and if A satisfies the spectral condition, then we deduce fifenthat forn € N we
have

g, = anTanfn _ 2ndeSADn—1fn71 _ 2(”_1)dSBTdD”_1fn71
= SBY,-1=(5B)" 9,

henceg,, is generated by the stationary subdivision scheipe
Similarly if h,, := 27T, D" f,, then,h,, = (S5)" ho.

5 Convergence of Subdivision Operators

Definition 19 Let B € ("*" (Z*) be a mask andp : " (Z*) — (" (Z°) the asso-
ciated stationary subdivision operator defined(i). The operator isC’—convergent
if for any datag, € ¢" (Z*) and corresponding sequence of refinements= S g,
there exists a functio, € C (R®,R") such that for any compadt’ C R® there
exists a sequencs, with limit 0 that satisfies

5 9a(0) — ¥ (2770 | < @9
Definition 20 Let A € ¢74*"4 (Z*) be a mask and{ 4 the associated Hermite subdi-
vision scheme of’¢(Z*) as defined in(6). The scheme isonvergenif for any data
fo € 0" (Z*) and the corresponding sequence of refinemgnishere exists a func-
tion ® = [pa]jaj<qa € C (R*,R") such that for any compadt’ C R*® there exists a
sequence,, with limit 0 which satisfies

max  max F(B) = ¢a (2’”[3)’ < &n. (29)

The schemé 4 is said to beC“—convergenif moreoverg, € C¢ (R*,R) and

0%
ox®

= ¢a, |af <d.

Theorem 21 Given a maskA € ("4(Z*) which satisfies the spectral condition. Sup-
pose that for any datgf, € ¢" (Z®) and associated refinement sequerfceof the
Hermite schemé! 4,

1. the sequencg, (0) converges to a limiy € R"<,

2. the associated Taylor subdivision sche$igis C’—convergent and for any ini-
tial datag, = T f, the limit functionV = ¥, € C (R*, R*"¢) satisfies

0
0 Y
V=1,® [ T, d] =1 Ya=[Yoljama- (30)
0
| W

ThenH 4 is convergent.
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The construction of the limit functiof® of H 4 starts with a lemma in the special
cased = 1.

Lemma 22 Given a sequence of refinements

hq(il) n }jzl,...,s

10 _
ho= | 7y €0z R, B = [hy

such that
1. there exists a constanin R such thaflim,,_. | o hq(zo)(o) =c,

2. there exists a functioB € C (R®,R?®) such that for any compact subskt of
R? there exists a sequengg with limit 0 and

(1) = (9—n

pemax h,’ (a) _(2 a)H < ln, (31)
nARO) (o) — D)

x| 2"Ah,,’ () — hy, (a)H < pn. (32)

Then there exists for any compdcta sequencé,, with limit 0 such that the function

1
plx)=c +/ o7 2 (tz) dt, x € R%, (33)
0
satisfies
O (@) — (27 H < 4
T CUC R B o

Before we prove this lemma, let us recall some useful notations and dsnéep
f € C (K,R*) we will write the modulus of continuity as

w (f,h) = max{|[f(z) = f(Y)ll : 2,y € K, [lz—ylL <h}.

SinceK is compact,f is uniformly continuous and this value tend<Qtashenh tends
to 0.

Given a multiindexr € Z*, apathfrom 0 to 7 is a sequence’, j = 0, ..., n, such
thatr? = 0, 7" = 7 andr/*! — 77 € {+¢,},_, . In other words, a path goes from
0 to 7 in steps of unit vectors. A path is callglitect if it has minimal length, i.e., if
n = ||7||s = |7]. Clearly, to anyr there exists at least one direct path.

Proof: Clearly, the functionp from (33) is continuous.

We prove (34) forK = [—L, L]® since any compact subset&f is included in a
such hypercube.

Let n be aneveninteger and let us fixx € 2" K N Z*, which we decompose into
a = [+ 7 where

ﬁ:2n/2ﬁ,, ,8/ e 2n/2Kst’ ||a7ﬁHoo < 2n/2'
Such a3 can be obtained by roundirity /2. componentwise to the next integer,

yielding ||27"/2ac — B'||__ < 1, hencef|a — 8], < 2"/2. (see figure).
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27"
1
O 27n 2—n/2

v

The grids with2—™ and2—"/2

<

A (@) = hO (8)] +

O (B) = ¢ (278)| + |# (278) - ¢ (27"a) | (35)

and we will bound each of these terms separately.
Majorization Of‘h%o)(a) ~19B) ‘: We choose a direct patfr/ }
7 and deduce from (32) that there exists {1, ..., s} such that

- fromO to
7=0,...,|7]

]hg)) (8471 — h© (B + Tﬂ‘)] < 27" (pn + | hsF (B + 1))

wheren is eitherr’ or 7711, depending on the sign ef ! — 77. Involving also (31),
we then obtain

27" (2pn + 6k (B+m)))
27" (2,“% + ”E”oo)

\hgfv B+ — b9 (6 + rj)’ <
<

where the right hand side is independenj oHence,

|r|—1
hO (@) — hﬁ?’(ﬂ)‘ - ¥ ‘h,(f) (8 + r7+1) — pO (ﬁ+7j)‘
j=0
IT|-1
< 2™ Z (2pn + 1Elloo) = 27"|7] (210 + [|E]| o)
j=0

and sincgr| < s2"/2, we obtain the desired bound

B0 (@) = hO(8)| < 27725 (2pun + |Elle) (36)

18



Majorization of s B)—¢ (2—%)‘: Sinces = 2"/24" with ' € Z?,

on/2_q

OB = 0 Z O (G +1)8) — nO (58 (37)

2721 (j+1)2—n/2
e(27"6) = c+ Z 27" /2 /2 gT= (27¢P) dt, (38)
j=0 j2—n

and therefore

1) ¢ (279)|

2n/2—1
< OO =+ > PO (G+ D) - D (58) —278TE (275
j=0
ro (+1)2 /2
+27m Y BTE(E 2 - / Br=(27"p) dt|. (39)
i=0 2R

The first term in the right hand side sum converges to zero by assumptioneacan
assume that the sequenegis chosen in such a way th%(t(o) — c‘ < i, for the

second one we lgtr") denote a direct path fromto 3, hence

18'1-1
- 3

k=0

k:07"'7|ﬂ/‘

Since2~"|3| < sL and sincer* is a path fronD to 3’ we have that

Tk‘ <o |@| =22 8| < sL272,

For anyy € Z* and/ such thatr*+! — 7% = 4¢,, we observe that
1O (3 4+ 7541) = A D (74 74) F 2778 (27)|

(7+r’““ — h0 (’y+T ) F 2 "R <’Y+Tk>’

w27 it (v +7F) — & (27)|

27" (un + |het (’y + rk> —& (7 ;Tk> D

(5)-ste

27 (2 + 5L (2,2772) ) <27 (24 + sTw (2,272)),

which can be rewritten as
hg?) (’y + TkH) — h%o) (’y + Tk) —27" (TkH — Tk>T = (2”7)‘

<9 (2un + sLw (5 2*"/2)) .

<

IN

+27"

IN
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again with a right hand side independentyadndk. Consequently, fofy € Z2,

WY (v + ) = hP () - 273 = (27|

[8'|-1
(0) k+1) _ 1(0) k\ __o-n(_k+1 _k —n
< kzo hy, (’Y+T+) hy, (’y—i-T) 2 (7'+ T)ﬁg(k)(Q ’y)‘
<

827 (20 + 5L (2,27772) ) < 27251 (2 + sLw (2,272)),

which can be summarized as

9 G-+ 0) -2 () - 275" (2
< 2725 (210 + sLw (2,27717))). (40)

To complete this part of the proof, we have to find an upper bound for

(122

BTE(B /2" — / BTE(275) dt

j2—n/2

(j+1)27/2
/ 5T= (2778) dt — 27232 (27758')
J

2—n/2

Sinces = 2"/23', hencej g’ = j27"/23, we get fort € [j27/2, (j + 1)27"/?] that

|2t~ 27 = 2

tB_JQ_n/QﬁHl g 2—n|ﬁ|2—7’b/2 g $L2_n/2

so that||= (27"¢8) — 2 (27"j3')|l; < sLw (£,27/2). Thus, we deduce that
(j+1)2-"/2
/ A= (27mB) dt — 2"/2BTE (27"3)
J

2—n/2
([ ez
/ = (27"40) dt — = (27"8)
J

2—n/2

IN

18] sL27" 2w (E 2—"/2) .

Since27"| 3| < sL, we finally get

(j+1)27"/2
2" / BTz (27™p) dt —27"BT= (27"58)
J

2-n/2

<9 /2(s0)2w (E, 2—”/2) . (41)

We can now substitute the bounds obtained in (40) and (41) into (39) to fwaldo
the second term in (35) is suitably bounded as

\hg)) (8) — ¢ (2—”5)( < (2L + 1)ptn + 2(sL)?w (E 2—"/2> . (42)
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Majorization of|¢ (27"3) — ¢ (27 ™a) |: Since2™"||3 — al|; < s27"/2, we immedi-
ately have that

‘gp (2_”6) — (2_”04)‘ < sw (gp, 2_”/2> . (43)

Final estimate:To finish the proof for evem, we just substitute (36), (42) and (43)
into (35) yielding

‘h%o)(a) — (27"(1)‘ < On, a€e2"KNZ°.
with the explicit bound
6 =277 2], + (2_”/25 +2sL + 1) fin + (s +2(sL)?) w (cp, 2—”/2) :

which tends td for n — oo.

If, on the other hand; is odd, then we build an intermediate coarser grid with step-
width 2("—1)/2 and associate € 2" K N Z* an approximatiors € 2"~ 1/2K N 73,
to obtain an analogous result. O

Proof of Theorem 21: For initial dataf, € ¢ (Z°) andg, = T, f, the associated
Taylor subdivision schem§&p is, by assumption, convergent and the limit function
U, € C(R*,R*"4) satisfies (30). The first hypothesis yields that for anyith |o| <

d the sequencg?(0) converges ta),. Then we define) recursively asp, = 1q,

|a] =dandforja| =d—1,...,0,as

1
Do) = Cq +/0 xTTa(tx)dt, To = [¢a+€j]j:1 WS (44)

seeey

Clearly,® = [¢a]|q|<q i cONtinuous.
Fixing a compac# C R*, we will prove by a backward finite recursion fbr=
d,d—1,...,0that

|f3() = o (27™)| < en, v eZN2"K, la| = k. (45)

The casé = d is an immediate consequence of the convergenge ef 2"?T; D" f,,
which yields for anyy € Z* N 2" K that

}fg(fY) — Yo (2771,7)‘ < én, |a| =d, (46)

while, for k < d, anda € Z*® with || = k, the convergence of the appropriate
component og,, to zero implies that

d—|al
B Z 1 y .
gn(d=lal) fa (v + 6j) o onl | no (M| <eén, J=1...s (47)
(=0 '

for a sequence, that tends to zero fat — co.

To prove (45) fork = d — 1, we define fora € Z° with |a| = d — 1 andj =
1,...,s, the sequencesy = fo ' as well as5 = [Yare; ]y andr!) = fo.
Because of (46) and (47), we can apply Lemma 22 and obtain that

|f7?(’7)_¢a (2_n7)‘ <6, ~vye2"KNZ°, la| =d -1,
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which is (45) fork = d — 1.
To prove the recursive stép— k— 1,1 < k < d, we observe that for any € Z°
with |3| = k — 1 and forj = 1,...,s, we get from (47) that, fofy € Z°* N 2" K,

d—Fk
n I} N B Bt B—Me-
2 (fn(’7+ej) fn(7)> In ]( —2n(d k) +éz;2n€ Hp J( )‘
(48)
Since (45) holds fofa| > k, itfollows for¢ = 2,...,|3| —
Le;
Tim [ £ (9) = b1, (2777)| = 0

uniformly for v € Z° N 2" K and sinceps(, is bounded onk,, so is the sequence

,f+£€f (7)‘ onZ® N 2" K. Thus the right hand side of (48) converges to zero so that
(48) immediately yields (45) fok replaced by — 1. O

Corollary 23 For s = 1, given a maskA € ¢¢(7Z) which satisfies the spectral con-
dition. Suppose that the associated Taylor subdivision schgis C°—convergent
with the conditions of Theorem 21 théhy is C?—convergent.

Proof: Fors =1,fora =d—1,...,0, recursively, the functio,, defined in (44)
is C1 with ¢}, = ¢o11 andey is C with % =g¢gforg=0,....,d O

Fors > 1, the difference between convergencefpfi and C%—convergence of
H 4 depends on whethek,; in (30) is ad—th derivative of some function or not. In
fact, in the simplest casé= 1 as in (33), the question reduces to whefraector of
functions ind variables is a gradient of some function. A simple characterization of
that property is given in the following Lemma 24 which is most likely known buatlsh
be included for the sake of completeness.

Lemma 24 A vector fieldp = [¢;],_,  is the gradient of a functiof : R* — R if
and only if its distributional derivatives satisfy

Opj Oy, )
i S =1,...,s. 4
axk ax‘] ) j’ k b ) S ( 9)
Proof: If ¢ = V[, then

dp; O f Oy

Ok 0608 0¢;
yielding (49). Conversely, if) satisfies (49), we set

1
f(z) = c+/ Lo (tz) dt, x € R?, c=: f(0) € R,
0
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and get

of o (' p
1
Z/ txk— (tz) dt+/ p;j(tx)dt
0
1
Z/ txg axk (tx) dt—l—/o pj(tx)dt
1 1 d 1
= /tefDMtx)xdt—i—/ @j(tx)dt:/ tedet¢(tx)+/ @j(tz)dt
0 0 0 0
1 _ 1
/ Ci%(ta:)+/ ;(t) dt
o dt 0
. 1 1
= bostlg— [ eita i+ [ oyt dt = pa),
thatis,p = Vf. O
Iterating (49) and passing to the Fourier transform we immediately obtainraatbe

ization of derivative vectors of functions.

Corollary 25 A vector field¥ = [¢q],, is thedth total derivative of a function if
and only if for any«, o/ such thata| = |¢/| = d and anyg, 8’ such thate + 5 =
o' + (3 we have

(i6)% ha(€) = (i€)" Yo (€), €€ R (50)

Corollary 26 For s > 1, letbe given a masM € ¢"¢ (Z*) which satisfies the spectral
condition. Suppose also that the associated Taylor subdivision scBgris C°—
convergent, that its limit functiod satisfies the conditions of Theorem 21, and that
the function¥; from (30) also fulfills (50). ThenH 4 is C—convergent.

Proof: Convergence is an immediate consequence of Theorem 24, i§ also an
dth derivative, then the functions

1 s
Ya(T) = 14(0) —|—/0 Z:cj Yate; (tx) dt, o] =d —1, z € R,
7=1
are continuous and well-defined. Choosing’’ with |o| = |o/| = d—1andg, 5 # 0

suchthatr + 3 = o/ + ' as well asj, j' € {1,..., s} such that3; # 0 andf}, # 0,
we get that

~ ) A N
(i) a(€) = ()" <aﬂ> (&) = (i) Yare; (€)
J
= (7Y farse, (6) = (1) $u (©)
sothatVy_1 = [ta]4—q_; is @d — 1st derivative. Iterating this process, we arrive at

a functioney such thatD*y = U, k = 1,...,d, hence the convergence is indeed a
C? one. O
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Recall that a Hermite subdivision scheme is caifedrpolatoryif f, (2«a) = f,_;(«),

a € 77, that is, the values computed during a certain iteration level are presarved
later iteration levels. Indeed, almost all of the “original” Hermite schemes oifettes
type. It was pointed out in [10, Corollary 2] that for interpolatory schentiee spec-
tral condition is satisfied automatically, a fact that also holds true for the mugdtiea
situation. Hence, for any interpolatory Hermite scheme there also existseriatsd
Taylor scheme and convergence of the two is equivalent.

Theorem 27 If A is the mask for an interpolatory Hermite scheme, then this scheme
is C“—convergent if and only if the associated Taylor scheme is convesggrda limit
as in(30)whereW,; is adth derivative, hence satisfi€¢s0).

Proof: That the condition on the Taylor scheme is sufficient for dfehas already
been proved, so we just have to show thdtconvergence implies convergence of the

Taylor scheme. To that end, we consider (27) to obtainjferl,...,s, |o| < d and
6 € 77 that
27D g; () = (TuD" £,)
gk (a+ke;)
= [VB+g) = FI0) = D 70
k=0
d—|a| 27nk
= 6o (27"B+27"¢) —¢a (2778) — Y R (27"8)
k=0 '
d—|al 2fnk
_ Da¢0 (2—nﬁ + 2—n6j) o Da¢0 (2—77,6) _ o D(X+k6j¢0 (2—nﬁ)
k=0 '

9—n(d—|a) (Da+(d—|a|)¢0(§) _ Da+(d—|a\)¢0 (2—n5)>

for some{ € [2773,27™ (B + ¢;)], so that indeedy; o(5)| < w(D%pp,27") and
we have convergence to zero. Raf = d, (27) immediately yields thaj; .(8) =
®a (277 3) which completes the proof. O

Remark 28

1. The above result can be used to check the convergence of aroiatery Her-
mite subdivision scheme since for stationary subdivision schemes like tbe Tay
scheme there exist characterizations of convergence. These ingiheaffiac-
torization step based on a difference operator after which convergeraters
acterized by a spectral radius, cf. [24]. Hence, convergencebmoompletely
characterized for interpolatory Hermite schemes.

2. To use Theorem 27 for the construction of convergent Hermite sshisndif-
ficult as the Taylor scheme has to satisfy two major nontrivial conditions: its
limit function has to be of the forif80) and ¥, has to have the gradient prop-
erty (50). How to ensure these for a subdivision scheme is generally unknown
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and far from trivial. Note however, that this is a standard problem in the mul-
tivariate case where also the straightforward univariate idea of “smoothing”
refinable functions provides some complications, cf. [25].

We close this section with another remark on the connection between the complete
and the incomplete Taylor factorization. For simplicity, we restrict the exposition

the univariate case, the same relationship also holds true in severalesribbThe-

orem 21, it has been shown that convergence of the Hermite subdigisiemeH 4

is based on the convergence on the associated Taylor subdivisianesShgewhose

mask is obtained by;S4 = 27¢SgT,;. Moreover, Corollary 23 tells us that in

this case we automatically hag&—convergence and Corollary 27 says that ¢He-
convergence off 4 is even equivalent to the convergenceS provided thatH 4

is interpolatory. In summary, convergence %% can be expected to be crucial for
describing the convergence Hf4.

It follows from (30) thatSp is a subdivision scheme of rank one and that its limit
function is of the forme;®7 where® is ad—vector field; recall that we still restrict
ourselves to the cage= 1. The convergence of such schemes is described in [20, 21],
and it is equivalent to the existence of a md3lsuch that

I,; O }

AiSp = Sla Ay ;:[ ol A

andSE is contractive. Now,

AdeSA = AdSBTd = SEAde

and since
_ 1 1 -
A -1 d-n! —d
A e : :
| I4-1 O =
Ade—[ 0 A] 1 | = Ta,
A -1
- 1 -

this implies thatdeA = SETd and so convergence @f 4 is also described by the
existence andontractivityof S. Based on the results from [24], the same type of
relationship can also be formulated for- 1.

6 Examples

The first example from [19] considers an interpolating scheme in dimensienl
with d = 1 depending on two parameters. For this, we give the two factorizations and
prove theC''—convergence for some values of the parameters.

In the second example, from [9], we have a non interpolatory schemeaugile
the complete Taylor scheme.

The third example was firstly published in [7], then simplified in [18]. It is an
interpolatory scheme in dimension= 2 with d = 1 derivatives whose complete
Taylor scheme will be given.
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6.1 An Interpolatory Scheme fors =1andd =1

We recall the interpolatory Hermite subdivision schef€!, proposed by Merrien
[19]. The mask has support included[inl, 1] with:

A(=1) :% {2(12_@ ﬂ ,A(0) = % [(2) (1)] A1) :% [_2(12_ ; —;M] ,

For every choice of andu, H 4 reproduces affine functions so that it satisfies the
spectral condition withyg(z) = 1, p1(z) = z. According to Theorem 4, there exists
Taylor vector subdivision schem#&g; and .S associated with 4.

_ -1_1 _
With T = [ﬁ 11] andTy(z) = [2 0 ! 11} , we obtain that

. . 1[(z72 =121+ p2) A2 -1D(1—2)—pz"t+2) -2
Ti2)4%) =5 [(z-Q —1)2(1 - )2 Wzt +2)+2)) } |

The nonzero matrices of the mask of the Taylor scheme are
0 2\ 0 —2X\—p/2 1 —2)

B(-2) = [O 0],3(_1) - [O e ],B(O) - [O h ] andB(1) =

Lt )

Similarly with 7} =

A —
0 A
Taylor scheme are found to be

B(O):[(l 2A]7 1§<1):[“ _,L/z_zx}’

the nonzero matrices of the mask of the complete

L—p) p/2 p=1 1—p/2
ForA > —1/8 andu < 1, we define a vector norm byv|| := ||P~1v||2, where
1—p
||| is the usual Euclidean vector norm aRd= 1JfA . The corresponding
0 2y/15x
matrix operator norm is given byM || := ||[P~'M P||2, where||N ||z := /p(NTN)
is the spectral norm of a matriX. Then
2 /(1 — ) (1+8)) 1
. 1 _ —
2 [—/(1—p)(1+38N) 1

are symmetric. The eigenvaluesB{i);—o ; or of P~ B(i) P are

6 = i(2+u+¢(2—u>2+32x(1_u))

by = i(2+u—\/(2—u)2—|—32/\(1—,u)).

SinceP~' B(i) P are symmetric, the eigenvalues are real wiith< ¢,. Now for ;1 €
[—2,1)andX € (—1/8,0) wefind/; < (2+pu++/(2 —p)?)/4 =1andly > (2+pu—
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V@ = 1)2)/4 = p/2 > —1. Thusp := || B(i)|| = max{|¢1], |¢z|} < 1 and we have
shown thatS is contractive. We can extend the resulfdou) € [-1/8,0) x [-2,1)
and we can deduce tte!-convergence off 4 for (\, i) € [-1/8,0) x (=2,1).

More precisely, the contractivity o 5 is obtained if the joint spectral radius of
{B(0), B(1)} is less thari and following [5], theC'—convergence off 4 is obtained

if and only if —1/2 < A\ < 0 and1 + max (%, 1;—30 <p<l.

6.2 A Non Interpolatory Scheme fors = 1andd =1

We build the de Rham transform [9] of the previous schefhg with support in
[—2, 1]. The respective non zero matrices are

112 +401 - p) AN+ 20 116 —4X1 - p) 8\ — 2\

814 —2u—2u> > +8N1—p)| 8 4—2u—2u% 2p+4p®—8N1—p)|’
1[6—4\(1—p) —8\ + 2\ T[244N1—p)  —4X =2\
8 |—4+2u+2u® 2u+p®—8\1—p)| 8 |-4+2u+2u? w2 +8N1—p)|"

We notice thatf/ 4 satisfies the spectral condition with(x) = 1, p1(x) = z — 1/2.
A complete Taylor schem&; is associated witlt 4. The nonzero matriceB of the

mask areB(a), a € [—1,1] with

By = LrAI-m e+
o4 4-2p -2 P81 - )]

B(O) — 1[2p+2p% —8A1—p) —4N(1 — p) — pi?
4 0 20— 16A(1 — p) |’

E(l) — 1-_2+4)‘(1—M)+2M+2M2 —6A\p— p? —2u+2
4 —4 4+ 2+ 2u? 4—2p —p?+8A1 —p)|”

6.3 An Interpolatory Scheme fors =2andd = 1
The H RC*-Algorithm has a mask supportedfinl, 1]2. Forn,ne € {£1}

1 00 3 —mA 0
A0,00=D=10 5 0|, A(p,0)= [-m3* 4 0f,
0 0 %_ 0 %
3 0 —m2A] i —m3  —m3
A (0,m2) = 0 0 | Al |-mEE b mnk
it 0 & it mmel b

We have simplified the construction of [7] and it depends on two paramgtersl
wonly. ForA = —1/8, u = —1 we obtain the Sibson-Thomson interpolant on every
initial square, see [27]. In this case, tHeRC' -interpolant is aC'! piecewise quadratic
consisting of 16 individual pieces. It was also shown thatfifeC! -algorithm is exact
for bilinear functions for any value of andy which implies that the spectral property
is satisfied withp o oy (7, y) = 1, p1,0y(z,y) = x andp(o1)(z,y) = y. Thus, a Taylor
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subdivision schemg& € (0*5(Z?) is associated witti 4. The nonzero matriceB

of the mask are:
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B(~1,0) =
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A A
Aﬁl _g_g f—ug()OO
B 8 S0
=~ L L0 0 0
B(1,-1) = 1 § 8
(1,~1) 0 0 0 0 0 0
0 0 0 000
L0 0 0 00 0,
r 1 A A b
i gg000
BO,-1)=| 1 5 5 000
0 0 0000
0 0 0 0 0 0
. 0 0 000 O]

In [18], sufficient conditions are given to obtain thé—convergence of the scheme for
different values of the parameters.

Two examples of interpolatory schemes for= 2 andd = 2 were also proposed

in [6].
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