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TOEPLITZ CONDITION NUMBERS AS AN H∞ INTERPOLATION PROBLEM

Rachid Zarouf

Abstract. The condition numbers CN(T ) = ‖T‖ .
∥

∥T−1
∥

∥ of Toeplitz and analytic n×n matrices T are studied. It
is shown that the supremum of CN(T ) over all such matrices with ‖T‖ ≤ 1 and the given minimum of eigenvalues

r = mini=1..n|λi| > 0 behaves as the corresponding supremum over all n×n matrices (i.e., as 1

rn
(Kronecker)), and

this equivalence is uniform in n and r. The proof is based on a use of the Sarason-Sz.Nagy-Foias commutant lifting
theorem.

Let H be a Hilbert space of finite dimension n and an invertible operator T acting on H such that
‖ T ‖≤ 1. We are interested in estimating the norm of the inverse of T :

‖ T−1 ‖ .

More precisely, given a family F of n−dimensional operators and a T ∈ F , we set

rmin(T ) = mini=1..n|λi| > 0,

where {λ1, ..., λn} = σ(T ) is the spectrum of T . We are looking for “the best possible majorant” Φn(r)
such that

∥

∥T−1
∥

∥ ≤ Φn(r)

for every T ∈ F , ‖T‖ ≤ 1. Let r ∈]0, 1[. This leads us to define the following bound cn(F , r),

cn(F , r) = sup
{∥

∥T−1
∥

∥ : T ∈ F , ‖T‖ ≤ 1, rmin(T ) ≥ r
}

The following classical result is attributed to Kronecker ( XIX c.)

Theorem. (Kronecker):
Let F be the set of all n-dimensional operators defined on an euclidean space. Then

cn(r) := cn(F , r) =
1

rn

Since obviously the upper bound in cn(r) is attained (by a compactness argument), a natural question
arises: how to describe the extremal matrices T such that ‖T‖ ≤ 1, rmin(T ) ≥ r and

∥

∥T−1
∥

∥ = 1
rn
. The

answer is contained in N. Nikolski [1] in the following form: the case of equality

∥

∥T−1
∥

∥ =
1

rn

occurs for a matrix T with ‖ T ‖= 1 if and only if:
1
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(1) either r = 1 and then T is an arbitrary unitary matrix.

(2) or r < 1, and then the eigenvalues λj(T ) of T are such that

|λj(T )| = r

and given σ = {λ1, ..., λn} on the circle, there exists a unique extremal matrix T (up to a unitary

equivalence) with the spectrum {λ1, ..., λn} having the form

T = U +K

where K is a rank one matrix, U is unitary and U and K are both given explicitly. (In fact, T is

nothing but the so-called model operator corresponding to the Blaschke product B = Πn
j=1bλj

, see [2] for

definitions).

For numerical analysis, the interest is in some classes of structured matrices such as Toeplitz, Hankel
etc.... In that note, we are going to focus on the Toeplitz structure. Recall that T is a Toeplitz matrix if

and only if there exists a sequence (ak)
k=n−1
k=−n+1 such that

T = Ta =













a0 a−1 . . a−n+1

a1 . . . .

. . . . .

. . . . a−1

an−1 . . a1 a0













,

and that T is an analytic Toeplitz matrix if and only if there exists a sequence (ak)
k=n−1
k=0 such that

T = Ta =













a0 0 . . 0
a1 . . . .

. . . . .

. . . . 0
an−1 . . a1 a0













.

We will denote by Tn the set of Toeplitz matrices of size n and T a
n will be the set of analytic Toeplitz

matrices of size n. This leads us to the following questions.
How behave the constants cn(Tn, r) and cn(T

a
n , r) when n → ∞ and/or r → 0? Are they uniformly

comparable with the Kronecker bound cn(r)? Are there exist Toeplitz matrices among extremal matrices
described above? The answers seem not to be obvious, at least the obvious candidates like T = λ+Jn

‖λ+Jn‖
,

where Jn is the n−dimensional Jordan matrix, do not lead to the needed uniform (in n and r) equivalence.
For short, we denote,

tn(r) = cn(Tn, r)

and

tan(r) = cn(T
a
n , r).
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Obviously we have,

tan(r) ≤ tn(r) ≤ cn(r) =
1

rn
.

The following theorem answers the above questions.

Theorem. 1) For all r ∈]0, 1[ and n ≥ 1,

1

2
≤ rntan(r) ≤ rncn(r) = 1

2) For every n ≥ 1

limr→0r
ntan(r) = limr→1r

ntan(r) = 1

and for every 0 < r ≤ 1

limn→∞rntan(r) = 1.

The proof of the theorem is given in section 2 below.

1. The operator Mn and its commutant

Let Mn : (Cn, < ., . >) −→ (Cn, < ., . >) be the nilpotent Jordan Block of size n

Mn =













0
1 .

. .

. .

1 0













.

It is well known that the commutant {Mn}
′

= {A ∈ Mn(C) : AMn = MnA} of Mn verifies

{Mn}
′

= {p (Mn) : p ∈ Pol+} ,

where Pol+ is the space of analytic polynomials. On the other hand, we can state this fact in the following
way. Let

Kzn =
(

znH2
)⊥

= Lin
(

1, z, ..., zn−1
)

,

H2 being the standard Hardy space in the disc D = {z : |z| < 1}, and

Mzn : Kzn → Kzn

such that

Mznf = Pzn(zf), ∀f ∈ Kzn .
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Then the matrix of Mzn in the orthonormal basis of Kzn , Bn =
{

1, z, ..., zn−1
}

is exactly Mn, and hence

{p (Mn) , p ∈ Pol+} = {Mn}
′

= {Mzn}
′

The following straightforward link between n× n analytic Toeplitz matrices and {Mn}
′ is well known.

Lemma 1.1. T a
n = {Mn}

′

.

Proof. Let

φ(z) =
∑

k≥0

φ̂(k)zk.

Then,

φ (Mn) =
n−1
∑

k=0

φ̂(k)Mk
n =















φ̂(0)

φ̂(1) .

. . .

. . .

φ̂(n− 1) . . φ̂(1) φ̂(0)















.

Conversely, if A =













a0 0 . . 0
a1 . . . .

. . . . .

. . . . 0
an−1 . . a1 a0













∈ T a
n then A =

(

∑n−1
k=0 akz

k
)

(Mn) .

�

We also need the Schur-Caratheodory interpolation theorem (1912), which also can be considered as a
partial case of the commutant lifting theorem of Sarason and Sz-Nagy-Foias (1968) see [2] p.230 Theorem
3.1.11.

Proposition 1.2. The following are equivalent.
i) T is an n× n analytic Toeplitz matrix.
ii) There exists g ∈ H∞ such that T = g (Mn).
Moreover

‖ T ‖= inf {‖ g ‖∞: g ∈ H∞(D) , g (Mn) = T}

= min {‖ g ‖∞: g ∈ H∞(D) , g (Mn) = T} ,

where ‖ g ‖∞= supz∈T|g(z)|.

2. Proof of the theorem

Lemma 2.1. Let T be an invertible analytic Toeplitz matrix of size n × n (which means that there exists
f ∈ Pol+ ⊂ H∞ such that T = f (Mn)). Then

∥

∥T−1
∥

∥ = inf {‖ g ‖∞: g, h ∈ H∞, fg + znh = 1} .
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Proof. Since T−1belongs also to {Mn}
′, there exists g ∈ Pol+ ⊂ H∞ such that T−1 = g (Mn). This

implies in particular that

(fg) (Mn) = In,

which means that fg − 1 annihilates Mn. That means that

fg − 1

is a multiple of zn in H∞. Conversely, if g ∈ H∞ verifies the above Bezout equation with h ∈ H∞ then

g (Mn) = T−1.

But by Proposition 1.2 we have

∥

∥T−1
∥

∥ = inf
{

‖ g ‖∞: g ∈ H∞, g (Mn) = T−1
}

,

and hence

∥

∥T−1
∥

∥ = inf {‖ g ‖∞: g, h ∈ H∞, fg + znh = 1} .

�

Proof of the theorem. First, we prove that for every r ∈]0, 1[ there exists an analytic n×n Toeplitz
matrix Tr such that

1 ) ‖Tr‖ ≤ 1,
2) σ (Tr) = {r} ,
3)

∥

∥T−1
r

∥

∥ ≥ 1
rn

− 1.

Indeed, let

br(z) =
r − z

1− rz
∈ H∞

be the Blaschke factor corresponding to r. The H∞ calculus of Mn tells us that the operator

Tr := br (Mn)

satisfies property 1):

‖Tr‖ ≤ ‖br‖∞ = 1.

On the other hand, by the spectral mapping theorem

σ (Tr) = {br (σ (Mn))} = {br(0)} = {r} .

In particular this proves that Tr is invertible. Finally, using Lemma 2.3, we get

∥

∥T−1
r

∥

∥ = inf {‖ g ‖∞: g, h ∈ H∞, brg + znh = 1} =
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= inf

{∥

∥

∥

∥

1− znh

br

∥

∥

∥

∥

∞

: h ∈ H∞, rnh(r) = 1

}

=

= inf {‖ 1− znh ‖∞: h ∈ H∞, rnh(r) = 1} .

But if h ∈ H∞and rnh(r) = 1, we have

‖ 1− znh ‖∞≥‖ h ‖∞ −1

and

‖ h ‖∞≥ |h(r)| =
1

rn
,

which gives

‖ 1− znh ‖∞≥
1

rn
− 1.

Therefore

∥

∥T−1
r

∥

∥ ≥
1

rn
− 1,

which completes the proof of property 3) of Tr.

Now we obtain

1− rn ≤ rn
∥

∥T−1
r

∥

∥ ‖≤ rntan(r) ≤ rntn(r) ≤ rncn(r) = 1

for every r ∈]0, 1[. On the other hand, we have
∥

∥T−1
r

∥

∥ ‖Tr‖ ≥ 1 and hence

∥

∥T−1
r

∥

∥ ≥
1

‖Tr‖
≥ 1.

As a result for all r ∈]0, 1[,

rn
∥

∥T−1
r

∥

∥ ≥ rn,

and combining with the previous estimate, we obtain

1

2
≤ max(rn, 1− rn) ≤ rn

∥

∥T−1
r

∥

∥ ≤ rntan(r) ≤ rntn(r) ≤ rncn(r) = 1,

which completes the first claim of the theorem. The second claim follows from the previous inequalities.

�
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Remark. It should be mention that we have not obtained an explicit formula for tan(r). Regarding the
description of extremal matrices (for the quantity cn(r)) mentioned in the Introduction, it seems likely that
tan(r) < cn(r) =

1
rn
. In the same spirit, it would be of interest to know the limits limr→1 (infn≥1r

ntan(r))
and limn→∞ (inf0<r<1r

ntan(r)) .
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