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Abstract

Univariate and multivariate quadratic spline quasi-interpolants provide interesting
approximation formulas for derivatives of approximated functions that can be very
accurate at some points thanks to the superconvergence properties of these opera-
tors. Moreover, they also give rise to good global approximations of derivatives on
the whole domain of definition. From these results, some collocation methods are
deduced for the solution of ordinary or partial differential equations with boundary
conditions. Their convergence properties are illustrated and compared with finite
difference methods on some numerical examples of elliptic boundary value problems.

Key words: spline approximants, Numerical differentiation, spline collocation
methods.
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1 Introduction

Univariate and multivariate spline quasi-interpolants (abbr. QIs) have been
studied for several decades in approximation theory (see e.g. [1a, 1c, 2, 8,
9a, 9b, 9c]). However, few studies have been devoted to their potential ap-
plications in numerical analysis. Such a program has already been initiated
in [7a–b] where some applications to the approximation of derivatives have
been developed. In this paper, we focus on approximations of first and second
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derivatives by those of quadratic spline quasi-interpolants and their applica-
tions to collocation methods. Though it is possible to use spline QIs of higher
degrees and smoothness, we want to show that already simple C1 quadratic
splines provide rather good numerical methods.
Let I = [a, b] with the uniform partition Xn = {xi = a + ih, 0 ≤ i ≤ n} where
h = (b − a)/n, and x−2 = a − 2h, x−1 = a − h, xn+1 = b + h, xn+2 = b + 2h.
For 1 ≤ i ≤ n, let ti = 1

2
(xi−1 + xi), ui = ti − hr/6, vi = ti + hr/6 (where

r :=
√

3), and let t0 = a, tn+1 = b, v0 = a, un+1 = b. Let J := {0, 1, . . . , n+1}.
On Tn := {ti, i ∈ J} we define fi = f(ti), 0 ≤ i ≤ n + 1, and on the set
of Gauss abscissas Gn := {v0; ui, vi, 1 ≤ i ≤ n; un+1}, we define f̃i = f(ui),
1 ≤ i ≤ n+1 and f̂i = f(vi), 0 ≤ i ≤ n. Quadratic B-splines {Bi, i ∈ J}, with
supports [xi−2, xi+1] form a basis of the n + 2-dimensional space S2(I,Xn) of
C1 quadratic splines (see e.g. [1b, 3, 10]).
In Section 2, we study the uniform quadratic spline quasi-interpolant (abbr.
uniform QI) Q, and the Gauss quadratic spline quasi-interpolant (abbr. Gauss
QI) Q̃, respectively defined by

Qf =
∑
i∈J

λi(f)Bi and Q̃f =
∑
i∈J

µi(f)Bi,

where the coefficient functionals are given, for 2 ≤ i ≤ n− 1, by

λi(f) =
1

8
(−fi−1 + 10fi − fi+1) and µi(f) = α(f̃i + f̂i) + β(f̂i−1 + f̃i+1),

with α = (9+r)/12 and β = −(3+r)/12. For extreme indices, the functionals
have specific forms (see Section 2 below). The uniform QI is based on the
set Xn and the Gauss QI is based on the set Gn. The choice of coefficients
implies that the two QIs are exact on P2, i.e. Qms = Q̃ms = ms for s = 0, 1, 2,
with the notation ms(x) := xs. This can be verified by using the B-spline
representation of monomials. It implies in particular ([5], chapter 5), that the
global approximation error Qf − f on a smooth function f is O(h3).
However, we notice that Qf(a) = f(a), Qf(b) = f(b), Qf(xi)−f(xi) = O(h4),
1 ≤ i ≤ n − 1, and Qf(ti) − f(ti) = O(h4), 1 ≤ i ≤ n, for both quasi-
interpolants Q = Q or Q̃. Therefore there is a superconvergence phenomenon of
these operators on the sets of points Xn and Tn. This phenomenon does not hold
on Gn. On the other hand, in Section 3, we show that another superconvergence
phenomenon takes place at Gaussian points for first derivatives, which leads
to an improvement of global approximation properties of these derivatives.
Section 4 describes some derivation matrices which are used in Section 5 in
collocation methods for the solution of some univariate Dirichlet problems.
The numerical results show an improvement with respect to classical finite
difference methods. Finally, Sections 6 and 7 give some bivariate extensions of
previous methods and an application to the Dirichlet problem for the Laplace
equation. Once again, the new method is better than finite difference methods
for the Laplacian.
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2 Univariate quadratic spline quasi-interpolants

2.1 Properties of the uniform quasi-interpolant

The specific coefficient functionals for extreme indices of the uniform quadratic
spline quasi-interpolant Qf =

∑
i∈J λi(f)Bi are defined as follows :

λ0(f) := 12
5
f0 − 13

8
f1 + 1

4
f2 − 1

40
f3, λn+1(f) := 12

5
fn+1 − 13

8
fn + 1

4
fn−1 − 1

40
fn−2,

λ1(f) := −2
5
f0 + 13

8
f1 − 1

4
f2 + 1

40
f3, λn(f) := −2

5
fn+1 + 13

8
fn − 1

4
fn−1 + 1

40
fn−2.

We notice that Qf(a) = (λ0+λ1)/2 = f0 = f(a) and Qf(b) = (λn+λn+1)/2 =
fn+1 = f(b), therefore Qf interpolates f at the extreme points of I. This QI
can also be written in the quasi-Lagrange form

Qf =
∑
j∈J

fjB̄j, with B̄j :=
1

8
(−Bj−1 + 10Bj −Bj+1), 4 ≤ j ≤ n− 3.

The coefficients in the basis {Bi, i ∈ J} of the first and last four quasi-Lagrange
functions are given in the following table (with upper (resp. lower) indices for
left (resp. right) functions).

i 0 1 2 3 4

B̄0 12/5 -2/5 0 0 0 B̄n+1

B̄1 -13/8 13/8 -1/8 0 0 B̄n

B̄2 1/4 -1/4 5/4 -1/8 0 B̄n−1

B̄3 -1/40 1/40 -1/8 5/4 -1/8 B̄n−2

n + 1 n n− 1 n− 2 n− 3 i

Proposition 1. The quasi-interpolant Q is exact on the space P2 of quadratic
polynomials, i.e. Qmr = mr for r = 0, 1, 2. Moreover ‖Q‖∞ = 3/2.

Proof: Let us give the proof for Qm2 = m2. It is well known (see e.g. [1b])
that m2 =

∑
j∈J xj−1xjBj. Using tj−1 = tj − h and tj+1 = tj + h, we obtain

λj(m2) =
1

8
(−t2j−1 + 10t2j − t2j+1) = t2j −

h2

4
= xj−1xj, for 2 ≤ j ≤ n− 1.
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In the same way, one verifies that

λ0(m2) = 1
40

(
96a2 − 65(a + h

2
)2 + 10(a + 3h

2
)2 − (a + 5h

2
)2

)
= x−1x0,

λ1(m2) = 2m2(a)− λ0(m2) = 2a2 − a(a− h) = x0x1,

λn(m2) = xn−1xn and λn+1(m2) = xnxn+1.

‖Q‖∞ is equal to the Chebyshev norm of its quasi-Lagrange function Λ̄ :=∑
j∈J |B̄j| and a direct study of the latter leads to ‖Q‖∞ = |Λ̄|∞ = Λ̄(x1) =

Λ̄(xn−1) = 3/2.�

Proposition 2. For all indices i, there holds Qf(xi) − f(xi) = O(h4) and
Qf(ti)− f(ti) = O(h4), therefore Qf is superconvergent on both sets of points
Xn and Tn.

Proof: the superconvergence of Qf on Xn and Tn is verified by computing
Taylor expansions on both sets of points with the help of a computer algebra
system. Setting Ēf = Qf − f , we thus obtain successively

Ēf(t1) = Ēf(tn) = 0,

Ēf(ti) ∼ C̄ih
4D4f(ti) where C̄2 = C̄n−1 = 7

512
, C̄i = 1

64
, 3 ≤ i ≤ n− 2,

Ēf(xi) ∼ C̄ ′
ih

4D4f(x1) where C̄ ′
1 = C̄ ′

n−1 = 1
64

, C̄ ′
i = 3

128
, 2 ≤ i ≤ n− 2.�

Remark 1. The quasi-interpolant Q studied here is slightly different from
the quadratic spline QI already studied in [9b]. The first and last coefficient
functionals λ0(f) and λn+1(f) have been modified in order to get the super-
convergence at points t1, x1, t2, tn−1, xn, tn. The norm is also a little bit bigger.

Finally, we consider the global approximation error Qf − f , which is known
to be O(h3) for functions f ∈ C3(I). In each subinterval Ii := [xi−1, xi], the
local Lagrange interpolant pi ∈ P2 on the set Ti := {xi−1, ti, xi} satisfies for all
x ∈ Ii, f(x)−pi(x) = 1

6
(x−xi−1)(x−ti)(x−xi)D

3f(ξ), with ξ ∈ Ii. Therefore,
an elementary calculation leads to maxx∈Ii

|f(x)− pi(x)| ≤ r
216

h3‖D3f‖∞. On
the other hand, setting p̄i = Q̄f|Ii

, and denoting λi for λi(f), we obtain

p̄i(xi−1) =
λi−1 + λi

2
, p̄i(ti) =

λi−1 + 6λi + λi+1

8
, p̄i(xi) =

λi + λi+1

2
.

Using Taylor expansions at xi with integral remainders, we get for example
p̄i(xi) = 1

16
(−f(ti−1)+9f(ti)+9f(ti+1)−f(ti+2)) = f(xi)+

∫ xi
xi−1

ki(t)D
3f(t)dt,

where the Peano kernel ki(t) is a piecewise quadratic function on the four
intervals [ti−1, ti], [ti, xi], [xi, ti+1], [ti+1, ti+2]. From that representation (and a
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similar one at xi−1), and setting ēi := f − p̄i, we deduce the error bounds

|ēi(xi−1)|, |ēi(xi)| ≤
3h3

64
‖D3f‖∞, |ēi(ti)| ≤

h3

48
‖D3f‖∞.

The Lagrange basis {`0, `1, `2} of P2 based on Ti satisfying ‖∑2
k=0 |`k|‖∞ = 5

4
,

we then obtain

|(pi − p̄i)(x)| = |ēi(xi−1)`0(x) + ēi(ti)`1(x) + ēi(xi)`2(x)| ≤ 15

256
h3‖D3f‖∞.

Finally we deduce from the two above majorations

Proposition 3. When D3f is bounded, the following error estimate holds:

‖f −Qf‖∞ ≤ Ch3‖D3f‖∞, where C <
1

18
.

2.2 Properties of the Gauss quasi-interpolant

The specific coefficient forms of the Gauss quadratic spline quasi-interpolant
Q̃f =

∑
i∈J µi(f)Bi, for extreme indices, are the following:

µ0(f) := α0f̂0 + β0f̃1 + γ0f̂1 + δ0f̃2, µn+1(f) := α0f̃n+1 + β0f̂n + γ0f̃n + δ0f̂n−1,

µ1(f) := α1f̂0 + β1f̃1 + γ1f̂1 + δ1f̃2, µn(f) := α1f̃n+1 + β1f̂n + γ1f̃n + δ1f̂n−1,

where the parameters have the following values (r =
√

3):

α0 = (43− r)/13, β0 = −(1 + r/2), γ0 = −(3− r)/2, δ0 = (5 + 2r)/26,

α1 = −(17− r)/13, β1 = −β0, γ1 = −γ0, δ1 = −δ0

Like Q, the Gauss QI Q̃ can be written in the quasi-Lagrange form

Q̃f =
n+1∑
j=1

f̃jB̃j +
n∑

j=0

f̂jB̂j, with

 B̃j := βBj−1 + αBj

B̂j := αBj + βBj+1

, 3 ≤ j ≤ n− 2.

The coefficients in the basis {Bi, i ∈ J} of the first and last five functions are
given in the following table (with upper (resp. lower) indices for left (resp.
right) functions).
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i 0 1 2 3

B̂0 α0 α1 0 0 B̃n+1

B̃1 β0 β1 0 0 B̂n

B̂1 γ0 γ1 β 0 B̃n

B̃2 δ0 δ1 α 0 B̂n−1

B̂2 0 0 α β B̃n−1

n + 1 n n− 1 n− 2 i

As for Q, it is easy to verify that Q̃ interpolates f at the points a and b, is
exact on P2, and has a small infinite norm.

Proposition 4. The quasi-interpolant Q̃ is exact on the space P2 of quadratic
polynomials. Moreover its infinite norm satisfies ‖Q̃‖∞ ≈ 2.7

Proof: The infinite norm of the linear operator Q̃ is equal to the Chebyshev
norm of its Lebesgue function Λ̃ :=

∑n+1
j=1 |B̃j| +

∑n
j=0 |B̂j| and a direct study

of the latter leads to ‖Q̃‖∞ = |Λ̃|∞ ≈ 2.7.�

Proposition 5. For all indices i, there holds Q̃f(xi) − f(xi) = O(h4) and
Q̃f(ti)− f(ti) = O(h4), therefore Q̃f is superconvergent on both sets of points
Xn and Tn.

Proof: As in Proposition 2, the superconvergence of Q̃f on Xn and Tn is
verified by computing Taylor expansions at those points with the help of a
computer algebra system. Setting Ẽf := Q̃f − f , we thus obtain successively

Ẽf(ti) ∼ C̃i h
4D4f(ti), Ẽf(xi) ∼ C̃ ′

ih
4D4f(xi), where

C̃1 = C̃n = 61−9r
6912

, C̃2 = C̃n−1 = 139−29r
6912

, C̃i = 73−16r
1056

, 3 ≤ i ≤ n− 2,

C̃ ′
1 = C̃ ′

n−1 = 43−5r
1728

, C̃ ′
i = 25−4r

864
, 2 ≤ i ≤ n− 2.

The values of constants lie between 6× 10−3 and 4× 10−2.�

We could also consider the global approximation error Q̃f − f , which is also
O(h3) for functions f having a bounded third derivative. We do not give details
here, the results being quite similar to those of Proposition 3.
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3 Approximation of first derivatives

3.1 Superconvergence on the set Gn

Proposition 6. For f ∈ C4(I), the following error estimates hold at Gauss
points Gn for both quasi-interpolants Q = Q or Q̃

DQf(ui)−Df(ui) = O(h3), DQf(vi)−Df(vi) = O(h3), 1 ≤ i ≤ n.

As the global approximation order of Df by DQf on the interval is only
O(h2), there appears a superconvergence phenomenon of the first derivatives
on Gn, which does not hold on Xn and Tn.

Proof: As in Propositions 2 and 4 above, the results are verified by computing
Taylor expansions on Gn, Xn and Tn, with the help of a computer algebra
system. We set Ēf := Qf − f and Ẽf := Q̃f − f , and we obtain successively

DĒf(ui) ∼ C̄ih
3D4f(ui), DĒf(vi) ∼ C̄ ′

ih
3D4f(vi), where

C̄1 = C̄n = (27−16r)
1728

, C̄2 = C̄n−1 = (27−23r)
1728

, C̄i = − r
108

, 3 ≤ i ≤ n− 2,

C̄ ′
1 = C̄ ′

n = (27+16r)
1728

, C̄ ′
2 = C̄ ′

n−1 = (27+23r)
1728

, C̄ ′
i = − r

108
, 3 ≤ i ≤ n− 2,

DẼf(ui) ∼ C̃ih
3D4f(ui), DẼf(vi) ∼ C̃ ′

ih
3D4f(vi), where

C̃1 = C̃n = (66−17r)
2592

, C̃2 = C̃n−1 = (6−25r)
2592

, C̃i = − r
108

, 3 ≤ i ≤ n− 2,

C̃ ′
1 = C̃ ′

n = (63+2r)
2592

, C̃ ′
2 = C̃ ′

n−1 = (15+16r)
2592

, C̃ ′
i = − r

108
, 3 ≤ i ≤ n− 2.

(the values of these constants lie between 4.10−4and 4.10−2). Direct computa-
tions also show that DĒf(ti), DĒf(xi), DẼf(ti), DẼf(xi) are only O(h2)�

3.2 Improved global approximation of the first derivative

While DQf is a continuous piecewise linear function, a better and smoother
global approximant of the first derivative Df is provided by the Gauss quasi-
interpolant Q̃(DQf) of DQf , which is a C1 quadratic spline. Let us briefly
study the global approximation order of Df by Q̃(DQf). We first write

Df − Q̃(DQf) = (Df − Q̃Df) + Q̃(Df −DQf).
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From the results of Section 2, the first error satisfies Df−Q̃Df = O(h3) when
f has a fourth order bounded derivative.The second error can be written

Q̃(Df −DQf) =
∑
j∈J

(µj(Df)− µj(DQf))Bj.

The coefficient µj(Df)−µj(DQf) being, for all j ∈ J , a linear combination of
values of Df −DQf on Gn, we deduce from Proposition 6 that it is a O(h3).
Therefore the same result holds for Q̃(Df − DQf) because of the property∑

j∈J Bj = 1. In fact, there are two close approximants: one is Q̃(DQf) (i.e.

the Gauss QI of the derivative of the uniform QI) and the other is Q̃(DQ̃f)
(i.e. the Gauss QI of the derivative of the Gauss QI of the given function f).
Numerical experiments show that both approximants are quite close to each
other and give a global approximation of Df in O(h3).

4 Derivation matrices

4.1 Direct derivation

Let S =
∑

j∈J cjBj be a quadratic spline obtained as a quasi-interpolant Qf
of a given function f . Denoting {Nj,−1 ≤ j ≤ n + 1} the hat functions with
supports [xj−1, xj+1], we have S ′ =

∑n
j=0

1
h
(cj+1 − cj)Nj, which implies that

S ′(a) = 1
h
(c1 − c0), S ′(b) = 1

h
(cn+1 − cn), and for 1 ≤ i ≤ n,

S ′(ui) = 1
h

(
−3+r

6
ci−1 + r

3
ci + 3−r

6
ci+1

)
,

S ′(vi) = 1
h

(
−3−r

6
ci−1 + r

3
ci + 3+r

6
ci+1

)
,

S ′(ti) = 1
2
(S ′(ui) + S ′(vi)) = 1

2h
(ci+1 − ci−1).

When S = Qf , let f ∈ Rn+2 be the vector with components {fi, i ∈ J} and
let f ′ ∈ Rn+2 be the vector with components {f ′i = S ′(ti), i ∈ J}. These two
vectors satisfy the equation f ′ = D f where the derivation matrix D on Tn is
a (n + 2)× (n + 2) 5-diagonal square matrix.

Similarly, when S = Q̃f , let g ∈ R2n+2 be the vector with components {g0 :=
f̂0; g2i−1 := f̃i, g2i := f̂i, 1 ≤ i ≤ n; g2n+1 := f̂n+1} and let g′ ∈ R2n+2 be the
vectors with components {g′0 := S ′(a); g′2i−1 := S ′(ui), g′2i := S ′(vi), 1 ≤ i ≤
n; g′2n+1 := S ′(b)}. These two vectors satisfy the equation g′ = D̃g where the

derivation matrix D̃ on Gn is a (2n + 2)× (2n + 2) band matrix.
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However, the approximation order given by direct derivation on Tn is only
O(h2). We will improve on this result in the next subsection.

Example: The following tables give the maximum error on derivatives on
Tn: e′k = maxi∈J |f ′(ti) − f ′i |, for f := φk, k = 1, 2, computed for various
partitions in n subintervals of I = [0, 1], with φ1(x) = (1−x2)2/4 and φ2(x) =
0.9/(cosh(10x− 2))2 + 0.8/ cosh(100x− 60). We use the notation 1.1(−2) for
1.1× 10−2.

n 8 16 32 64

e′1 1.1(-2) 2.8(-3) 7.2(-4) 1.8(-4)

n 256 512 1024 2048

e′2 1.2 2.2(-1) 5.0(-2) 1.2(-2)

4.2 Improved derivation order on Tn

The practical problem appearing in the construction of an efficient derivation
matrix is that the superconvergence of derivatives holds on Gn while in general
data are given on Tn. In this section, we shall improve the approximation error
on derivatives up to O(h3) on Tn by doing convenient linear combinations of
values of DQf(ti). Using again the notations S := Qf and f ′i := S ′(ti), i ∈ J ,
we consider the following approximations of f ′ on Tn.

y′0 :=
1

6
(8f ′0 − 3f ′1 + f ′2) , y′1 :=

1

12
(−2f ′0 + 15f ′1 − f ′2)

y′j :=
1

24

(
−f ′j−1 + 26f ′j − f ′j+1

)
, 2 ≤ j ≤ n− 1

y′n :=
1

12

(
−f ′n−1 + 15f ′n − 2f ′n+1

)
, y′n+1 :=

1

6

(
f ′n−1 − 3f ′n + 8f ′n+1

)
Let us give a short proof of the fact that f ′(tj) − y′j is at least O(h3) for
4 ≤ j ≤ n − 3. Similar, but more complex calculations give the same results
for the four first and last indices.

f ′j−1 = S ′(tj−1) =
1

2h
(λj(f)− λj−2(f)) =

1

16h
(fj−3 − 10fj−2 + 10fj − fj+1).

f ′j = S ′(tj) =
1

2h
(λj+1(f)− λj−1(f)) =

1

16h
(fj−2 − 10fj−1 + 10fj+1 − fj+2).

f ′j+1 = S ′(tj+1) =
1

2h
(λj+2(f)− λj(f)) =

1

8h
(fj−1 − 10fj + 10fj+2 − fj+3).
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which gives, for f smooth enough, by using Taylor expansions :

f ′(tj)− y′j := f ′(tj)−
1

24

(
−f ′j−1 + 26f ′j − f ′j+1

)
=

9h4

320
f (5)(tj) + O(h6).

Let y′ ∈ Rn+2 be the vector with components {y′i, i ∈ J}. The vectors f and y′

satisfy y′ = D̂f . The improved derivation matrix D̂ has the following structure

a1 a2 a3 a4 a5 0 0 . . .

b1 b2 b3 b4 b5 0 0 0 . . .

c1 c2 c3 c4 − 3
32

1
384

0 0 . . .

d1 d2 d3 d4
87
128

− 3
32

1
384

0 . . .

0 − 1
384

3
32
− 87

128
0 87

128
− 3

32
1

384
0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 − 1
384

3
32
− 87

128
0 87

128
− 3

32
1

384
0

. . . 0 0 − 1
384

3
32
− 87

128
−d4 −d3 −d2 −d1

. . . 0 0 0 − 1
384

3
32
−c4 −c3 −c2 −c1

. . . 0 0 0 0 −b5 −b4 −b3 −b2 −b1

. . . 0 0 0 0 −a5 −a4 −a3 −a2 −a1



where the coefficients at the upper left and lower right corners are given by

a1 =−31/10, a2 = 367/96, a3 = −29/32, a4 = 31/160, a5 = −1/96,

b1 =−21/20, b2 = 89/192, b3 = 45/64, b4 = −39/320, b5 = 1/192.

c1 = 4/15, c2 = −117/128, c3 = 7/96, c4 = 213/320,

d1 =−1/120, d2 = 13/128, d3 = −131/192, d4 = 1/1920.

In the examples below, we compare results obtained by using derivatives de-
fined above with those obtained by approximating derivatives by classical finite
differences. We use the following finite differences based on Xn (zi = z(xi)):

z′0 ≈
1

h

(
−11

6
z0 + 3z1 −

3

2
z2 +

1

3
z3

)
, z′1 ≈

1

h

(
−1

3
z0 −

1

2
z1 + z2 −

1

6
z3

)
,

z′i ≈
1

h

(
1

12
zi−2 −

2

3
zi−1 +

2

3
zi+1 −

1

12
zi+2

)
, 2 ≤ i ≤ n− 2,

z′n−1 ≈
1

h

(
1

3
zn +

1

2
zn−1 − zn−2 +

1

6
zn−3

)
, z′n ≈

1

h

(
11

6
zn − 3zn−1 +

3

2
zn−2 −

1

3
zn−3

)
.
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The errors at the endpoints are in O(h3) while those at central points are in
O(h4).

Example 2 : The first line (QI) give the maximum errors on the approxi-
mate derivatives on Tn: e′k = maxi∈J |f ′(ti)−y′i|, for various values of n, and for
f := φk, k = 1, 2, 3, on I = [−1, 1], with φ1(x) = 1

4
(1− x2)2, φ2(x) := 1

1+16x2 ,
φ3(x) := sin(πx)+sin(5πx). The second line (FD) gives the estimation of first
derivatives given by classical finite differences on Xn. Both errors are in O(h3).
The notation 6.5(−3) stands for 6.5× 10−3.

n 8 16 32 64 128

e′1(QI) 6.5(-3) 8.1(-4) 1.0(-4) 1.3(-5) 1.6(-6)

e′1(FD) 2.3(-2) 2.9(-3) 3.7(-4) 4.6(-5) 5.7(-6)

e′2(QI) 1.3 0.32 2.8(-2) 2.5(-3) 1.7(-4)

e′2(FD) 0.12 0.22 4.0(-2) 3.0(-3) 2.0(-4)

e′3(QI) 19.4 6.7 0.71 4.9(-2) 3.1(-3)

e′3(FD) 30.8 13.9 3.1 0.25 1.7(-2)

4.3 Improved global approximation of the first derivative

As in section 3.2, a better approximation of the first derivative on Tn pro-
vides a better and smoother global approximation of this function on the
interval I. It suffices to take the quasi-interpolant Q on the modified values
of derivatives {y′j, j ∈ J} given in the previous section. Let us denote by

ḡ′ this QI: ḡ′ =
∑

j∈J y′jB̄j. As the approximation order of Q is O(h3) and
y′j − f ′(tj) = O(h3), we deduce immediately that, for f smooth enough (D4f
bounded), ‖f ′ − ḡ′‖∞ = O(h3).

Example: The following table give the uniform errors: e′k = maxx∈I |f ′(x) −
ḡ′(x)|, for f := φk, k = 1, 2, 3, with the same functions as in previous ex-
ample, obtained with various partitions in n subintervals of I = [−1, 1]. The
computed errors are at least O(h3).
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n 8 16 32 64 128

e′1 6.5(-3) 8.1(-4) 1.0(-4) 1.3(-5) 1.6(-6)

e′2 1.4 0.44 6.4(-2) 4.9(-3) 3.9(-4)

e′3 20 7.0 0.71 5.9(-2) 4.0(-3)

5 Collocation methods for univariate problems

Let us consider the univariate Dirichlet problem on I = [a, b] with a differential
operator of Sturm-Liouville type :

−D(p(x)Du(x)) + r(x)u(x) = f(x), u(a) = u(b) = 0,

p being a C1 function, r a continuous function and f a piecewise continuous
function on I. Let u ∈ Rn be the vector of unknown values of u on T ∗

n :=
Tn\{a, b}, and let ũ ∈ Rn+2 be the augmented vector with 0 as first and
last components. Applying the derivation matrix D̂ gives an approximation
D̂ũ ∈ Rn+2 of first derivatives of u on Tn. Then, we multiply this vector by the
diagonal matrix P ∈ Rn+2 defined by P (i, i) = p(ti) and we multiply again
by the derivation matrix. Denoting by R ∈ Rn+2 the diagonal matrix defined
by R(i, i) = r(ti), we see that the left-hand side of the differential equation is
approximated by the vector

Âũ := −D̂P D̂ũ + Rũ

Let A ∈ Rn be the matrix of order n deduced from Â by deleting the first and
last lines and columns, it is well known ([11], chapter 7) that the problem is
equivalent to solving the linear system Au = f where f ∈ Rn is the vector of
values of f on T ∗

n . Numerical experiments show that the approximation order
of the solution is O(h3).

Example 4. Dirichlet problems −u′′ = f with u(−1) = u(1) = 0 and
successive right hand sides f = φk, k = 1, 2, 3, with φ1(x) = −2 + 12x2,
φ2(x) = π2(sin(πx) + 25 sin(5πx)), φ3(x) = 16 exp(4x), and corresponding
solutions u = vk: v1(x) = x2(1 − x2), v2(x) = sin(πx) + sin(5πx), v3(x) =
sinh(4)x + cosh(4) − exp(4x). The first line (QI) give the maximum errors
ek := maxi∈J |u(ti) − ui|, k = 1, 2, 3, for various values of n. The second line
(FD) gives the errors obtained by using the derivation matrix associated with
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classical finite differences on Xn. Both errors are in O(h3).

n 8 16 32 64 128

e1(QI) 4.7(-3) 3.1(-4) 2.0(-5) 1.3(-6) 8.1(-8)

e1(FD) 5.0E-3 3.1(-4) 2.0(-5) 1.2(-6) 7.7(-8)

e2(QI) 17 1.9 7.5(-2) 3.8(-3) 2.3(-4)

e2(FD) 11.4 1.9 1.3(-1) 7.4(-3) 3.7(-4)

e3(QI) 0.84 0.10 8.7(-3) 6.4(-4) 4.3(-5)

e3(FD) 1.11 0.11 9.0(-3) 7.7(-4) 5.6(-5)

Example 5. Dirichlet problems −u′′ + u = f with u(−1) = u(1) = 0 and
successive right-hand sides f = φk, k = 1, 2, with φ1(x) = (1 + π2) sin(πx),
φ2(x) = exp(x/2)(((100π2+ 3

4
) sin(10πx)−10π cos(10πx))+(9π2+1) sin(3πx),

and corresponding solutions u = vk: v1(x) = sin(πx), v2(x) = exp(x/2) sin(10πx)+
sin(3πx). The first line (QI) give the maximum errors ek := maxi∈J |u(ti)−ui|,
k = 1, 2, ..., for various values of n. The second line (FD) gives the errors ob-
tained by using the derivation matrix associated with classical finite differences
on Xn. Both errors are in O(h3).

n 8 16 32 64 128

e1(QI) 1.8(-2) 1.2(-3) 7.6(-5) 4.8(-6) 3.0(-7)

e1(FD) 2.3(-2) 1.2(-3) 8.2(-5) 5.3(-6) 3.4(-7)

e2(QI) 39 22 2.9 0.12 6.3(-3)

e2(FD) 41 22 3.4 0.24 1.3(-2)

On these five examples, the solutions obtained by QI are quite comparable
with those obtained by FD, and often slightly better. Both they need the
solution of a system of linear equations.

6 Bivariate spline quasi-interpolants on a rectangle

We briefly sketch the methods developed for bivariate extensions of the pre-
vious QIs to functions defined on a domain Ω := [a, b] × [c, d], with uniform
partitions Xn = {xj = a+jh, 0 ≤ j ≤ m}, Yn = {yk = c+kh, 0 ≤ k ≤ n}, and
midpoints sj = 1

2
(xj−1 +xj) and tk = 1

2
(yk−1 +yk). We put J = {0, . . . ,m+1}

and K = {0, . . . , n + 1} and define s0 = a, sn+1 = b, t0 = c, tn+1 = d. We
consider tensor products and discrete blending sums [4] of univariate QIs : in
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that case, we get biquadratic QIs. We show that they are superconvergent at
all points (ξj, ηk) where ξj = xj or sj and ηk = yk or tk. Finally, we construct
derivation matrices with an application to the solution of the classical bivari-
ate Dirichlet problem −∆u = f by associated collocation methods. In this
section, Pn denotes the space of polynomials of total degree at most n and
Pp,q the space of polynomials of partial degrees at most p in x and q in y.
Monomials are denoted mp,q(x, y) := xpyq = mp(x)mq(y).

6.1 Tensor product and discrete blending sum of univariate QIs

The tensor product T = P2Q2 of the two univariate quadratic spline QIs :

P2f(x) :=
∑
j∈J

f(sj)B̄j(x), Q2g(y) :=
∑
k∈K

g(tk)B̄k(y),

is the bivariate QI defined by

TF (x, y) :=
∑

(j,k)∈J×K

F (sj, tk)B̄j,k(x, y), with B̄j,k(x, y) := B̄j(x)B̄k(y).

Proposition 7. The quasi-interpolant T is exact on the space P2,2 of bi-
quadratic polynomials. Moreover ‖T‖∞ = 9/4.

Proof. The proof is classical and based on similar techniques to those used e.g.
in [2] or [4].

The discrete blending sum (see [2, 4]) of the four quadratic spline QIs :

P1f(x) :=
∑
j∈J

f(sj)Bj(x), P2f(x) :=
∑
j∈J

f(sj)B̄j(x),

Q1g(y) :=
∑
k∈K

g(tk)Bk(y), Q2g(y) :=
∑
k∈K

g(tk)B̄k(y),

is the bivariate QI defined by

RF (x, y) := (P1Q2 + P2Q1 − P1Q1)F (x, y) =
∑

(j,k)∈J×K

F (sj, tk)B̃j,k(x, y)

where the basic functions B̃j,k are given by

B̃j,k(x, y) := Bj(x)B̄k(y) + B̄j(x)Bk(y)−Bj(x)Bk(y).
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As P1 and Q1 are exact on P1, and P2 and Q2 are exact on P2, it is easy to
verify that R is exact on P1,2 ⊕ P2,1 which contains P2. Indeed, for all pairs
(p, q) with 0 ≤ p, q ≤ 2 and (p, q) 6= (2, 2), we have:

Rmp,q = (P1mp)mq + mp(Q1mq)− (P1mp)(Q1mq) = mp,q.

For p ≤ 1, P1mp = mp, therefore Rmp,q = mpmq + mp(Q1mq)−mp(Q1mq) =
mp,q. The proof is similar for q ≤ 1. In addition, from ‖P2‖∞ = ‖Q2‖∞ = 3

2

and ‖P1‖∞ = ‖Q1‖∞ = 1, we deduce that ‖R‖∞ ≤ 4. So, we have proved the
following:

Proposition 8. The quasi-interpolant R is exact on the space of polynomials
P1,2 ⊕ P2,1. Moreover ‖R‖∞ ≤ 4.

6.2 Superconvergence properties

Superconvergence means exact interpolation for monomials of partial degree
at most 3, i.e. (P2mp−mp)(ξj) = 0 and (Q2mq−mq)(ηk) = 0 for 0 ≤ p, q ≤ 3,
ξj = xj or sj, ηk = yk or tk. Therefore

(Tmp,q −mp,q)(ξj, ηk) = P2mp(ξj)Q2mq(ηk)−mp(ξj)mq(ηk) = 0,

i.e. T is superconvergent at all gridpoints (ξj, ηk). For the operator R, we get

(Rmp,q −mp,q)(ξj, ηk) = P1mp(ξj)mq(ηk) + mp(ξj)Q1mq(ηk)

−P1mp(ξj)Q1mq(ηk)−mp(ξj)mq(ηk)

= (P1mp(ξj)−mp(ξj))(mq(ηk)−Q1mq(ηk)) = O(h4),

since P1f − f = O(h2) and Q1g − g = O(h2) for smooth functions f and g.
Thus, there is no exact interpolation, but the approximation order is four.
By Taylor’s formula, this also implies that (RF − F )(ξj, ηk) = O(h4) for all
smooth bivariate functions F . The superconvergence of derivatives will be
studied elsewhere.

7 Bivariate Dirichlet problem

In order to illustrate the possibilities of the bivariate collocation method de-
duced from tensor product quasi-interpolation, we consider the classical model
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problem −∆u = f on a square domain Ω with Dirichlet boundary conditions.
As discrete approximation of the Laplacian, we use the Kronecker product of
matrices (see [11], chapter 7) K = A⊗I+I⊗A, where A is the matrix deduced
from the derivation matrix D̂ (Sections 4.2 and 5). In that case, denoting by
u the vector of components of the solution in the basis of tensor-product B-
splines and by f the vector of values of f at the interior points of Ω, the linear
system to solve is then −Ku = f .

Examples. Let the right-hand sides be f1 = 4(1 − 3x2)(1 − y2)2 + 4(1 −
3y2)(1−x2)2 on Ω = [−1, 1]2 and f2 = 64[((2x− 1)y(y− 1))2 +((2y− 1)x(x−
1))2] sin(4x(x− 1)y(y− 1))− 32[x(x− 1) + y(y− 1)] cos(4x(x− 1)y(y− 1)) on
Ω = [0, 1]2. The corresponding exact solutions are respectively
u1 = ((1− x2)(1− y2))2 and u2 = 4 sin(4x(x− 1)y(y− 1)). The first line (QI)
give the maximum errors e1 and e2 at the points of Tn ×Tn for various values
of n (we give between brackets the numerical convergence order). The second
line (FD) gives the errors obtained by using the derivation matrix associated
with classical finite differences on Xn.

n 8 16 24 32 40 48

e1(QI) 3.9(-3) 2.8(-4) [3.8] 5.8(-5) [3.9] 1.9(-5) [3.9] 7.9(-6) [3.9] 3.8(-6) [3.9]

e1(FD) 7.6(-3) 4.2(-4) [4.2] 7.8(-5) [4.1] 2.4(-5) [4.1] 9.7(-6) [4.1] 4.6(-6) [4.1]

e2(QI) 2.3(-4) 2.4(-5) [3.3] 5.4(-6) [3.6] 1.9(-6) [3.6] 8.4(-7) [3.7] 4.2(-7) [3.8]

e2(FD) 2.5(-4) 4.9(-5) [2.3] 1.2(-5) [3.4] 4.3(-6) [3.7] 1.8(-6) [3.7] 9.3(-7) [3.8]

Remark. We get convergence orders which seem closer to 4 than to 3. This
is due to the fact that derivatives are approximated to the 4th order at most
points inside the domain (see Section 4).
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