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SOBOLEV SPACE ESTIMATES FOR A CLASS OF BILINEAR

PSEUDODIFFERENTIAL OPERATORS LACKING SYMBOLIC

CALCULUS

FRÉDÉRIC BERNICOT AND RODOLFO H. TORRES

Abstract. The reappearance of a sometimes called exotic behavior for linear and
multilinear pseudodifferential operators is investigated. The phenomenon is shown to
be present in a recently introduced class of bilinear pseudodifferential operators which
can be seen as more general variable coefficient counterparts of the bilinear Hilbert
transform and other singular bilinear multipliers operators. The unboundedness on
product of Lebesgue spaces but the boundedness on spaces of smooth functions (which
is the exotic behavior referred to) of such operators is obtained. In addition, by
introducing a new way to approximate the product of two functions, estimates on a
new paramultiplication are obtained.

1. Introduction

1.1. An anomalous yet recurrent phenomenon. This article is a continuation
of recent work devoted to the development of a theory of bilinear and multilinear
pesudodifferential operators which are the x-dependent counterparts of the singular
multipliers modeled by the bilinear Hilbert transform. In particular we will further
study the class of bilinear pseudodifferential operators BS0

1,1; π/4 and show that it has
a sometimes called exotic or forbidden behavior regarding boundedness on function
spaces.

By a bilinear pseudodifferential operator we mean an operator, defined a priori on
test functions, of the form

Tσ(f, g)(x) =

∫

R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η)dξdη.

Two main types of x-dependent classes of symbols have been studied in the literature.
One is the Coifman-Meyer type BSm

ρ,δ(R
n), 0 ≤ δ ≤ ρ ≤ 1, m ∈ R, of symbols

satisfying estimates of the form

(1.1) |∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ(1 + |ξ|+ |η|)m+δ|α|−ρ(|β|+|γ|),
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for all multi-indices α, β, γ.
The other type corresponds to classes denoted by BSm

ρ,δ; θ(R
n), 0 ≤ δ ≤ ρ ≤ 1,

m ∈ R, −π/2 < θ ≤ π/2, and consisting of symbols satisfying

(1.2) |∂αx∂
β
ξ ∂

γ
ησ(x, ξ, η)| ≤ Cαβγ;θ(1 + |η − tan(θ)ξ|)m+δ|α|−ρ(|β|+|γ|)

(where for θ = π/2 the estimates are interpreted to decay in terms of 1 + |ξ| only).
Both types of classes can be seen as bilinear analogs of the classical Hörmander classes
Sm
ρ,δ(R

n) of linear pseudodifferential operators

Tτ (f)(x) =

∫

Rn

τ(x, ξ)f̂(ξ)eix·ξdξ,

with symbols satisfying

(1.3) |∂αx∂
β
ξ τ(x, ξ)| ≤ Cαβ(1 + |ξ|)m+δ|α|−ρ|β|.

As their name indicates, the first type of bilinear classes were introduced by Coifman
and Meyer at least in the case m = 0, ρ = 1 and δ = 0, [12], [13], [14]. It is now well-
understood that the operators in BS0

1,0 are examples of certain singular integrals and fit
within the general multilinear Calderón-Zygmund theory developed by Grafakos and
Torres [22]; see also the works of Christ and Journé [11] and Kenig and Stein [25]. For
other values of the parameters, the classes BSm

ρ,δ were studied by Bényi [1]; Bényi and
Torres [5], [6]; Bényi et al [4]; and more recently by Bényi et al [3].

The general classes BSm
ρ,δ; θ with x-dependent symbols were first introduced in [4]. A

connection to the bilinear Hilbert transform and the work of Lacey and Thiele [26], [27]
is given by the study in the x-independet case of singular multipliers in one dimension
satisfying

|∂βξ ∂
γ
ησ(ξ, η)| ≤ Cβγ|η − tan(θ)ξ|−|β|−|γ|.

This type of multipliers were investigated by Gilbert and Nahmod [17], [18], [19]; and
Muscalu et al [30]. We also recall that if for τ in S0

1,0(R) we define

(1.4) σ(x, ξ, η) = τ(x, ξ − η),

then σ is in BS0
1,0;π/4. These operators have certain modulation invariance. Namely,

Tσ(e
iw·f, eiw·g)(x) = ei2wxTσ(f, g)(x)

for all w ∈ R. Such a Tσ fits then within the more general framework of modulation
invariant bilinear singular integrals of Bényi et al [2]. Boundedness properties for
symbols in the classes BS0

1,0; θ(R), not necessarily of the form (1.4), were obtained by
Bernicot [7, 8]. We refer the reader to [35] for further motivation and references.

In this article we want to discuss the reappearance of the exotic phenomenon for
the parameters m = 0 and ρ = δ = 1. Namely, the unboundedness on Lp spaces of
operators in BS0

1,0; θ, but their boundedness on spaces of smooth functions.

In the linear case this phenomenon for S0
1,1 is by now well-understood through the

works of Stein [32], Meyer[28], Runst [31], Bourdaud [9], Hörmander [23], Torres [33],
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among others. It is intimately related to the lack of calculus for the adjoints of op-
erators in such class and, ultimately, this behavior has been interpreted through the
T (1)-Theorem of David and Journé [15]. The class S0

1,1 is the largest class of linear
pseudodifferential operators with Calderón-Zygmund kernels but their exotic behavior
on Lp spaces is given by the fact that for T in the class S0

1,1, the distribution T
∗(1) is in

general not in BMO (though T (1) is). Here T ∗ is the formal transpose of T . Moreover,
the boundedness of an operator T in S0

1,1 on several other spaces of function is related
to the action (properly defined) of T ∗ on polynomials; see [34] and the relation to the
work of Hörmander [24] found in [33]. By comparison, the smaller classes S0

1,δ with
δ < 1 are closed by transposition and hence the operators in such classes do satisfy the
hypotheses of the T (1)-Theorem and are bounded on Lp for 1 < p <∞.

Likewise, in the bilinear case, the class BS0
1,1 is the largest class of pseudodifferential

operators with bilinear Calderón-Zygmund kernels. But gain, T ∗1 and T ∗2, the two
formal transposes of an opearator T in BS0

1,1, may fail to satisfy the hypotheses of the
T (1)-Theorem for bilinear Calderón-Zygmund operators in [22]. A symbolic calculus
for the transposes hold in the smaller classes BS0

1,δ with δ < 1, [5], [3], rendering the

boundedness of operators in BS0
1,δ. Though unbounded on product of Lp spaces, the

class BS0
1,1 is still bounded on product of Sobolev spaces [5]. For the Coifman-Meyer

symbols there is then a complete analogy with the linear situation.
For the newer more singular classes BS0

1,0;θ a symbolic calculus for the transposes
was shown to exist in [4] and extended in [8]. Hence, the boundedness on product of
Lp spaces of operators in such classes and of the form (1.4) can be easily obtained from
the new T (1)-Theorem for modulation invariant singular integrals in [2]. The class
BS0

1,0;θ also produced bounded operators on Sobolev spaces of positive smoothness as
shown in [7]. All these developments motivate us to look for exotic behavior in the
larger classes BS0

1,1;θ.

1.2. New results. In this article, we show with an example that there exit modulation
invariant operators in the class BS0

1,1;θ which fail to be bounded on product of Lp spaces

(Proposition 2.1). This immediately implies that an arbitrary operator T in BS0
1,1;θ

may not have both T ∗1(1, 1) and T ∗2(1, 1) in BMO, as defined in [2]. It follows also
that a symbolic calculus for the transposes in those classes is not possible. Nevertheless,
as the reader may expect after the above introduction, we shall show that the classes
are bounded on product of Sobolev spaces. For simplicity in the presentation we will
only consider the case BS0

1,1;π/4. The corresponding results for other values of θ in

(−π/2, π/2) \ {−π/4} (avoiding the degenerate directions) can be obtained in similar
way.

In the case of modulation invariant operators, we obtained boundedness on product
of Sobolev spaces with positive smoothness (Theorem 3.1). Surprisingly if we do not
assume modulation invariance we can only obtain the corresponding result on Sobolev
spaces of smoothness bigger than 1/2 (Theorem 3.3). We do not know if the result
is sharp, but a better result does not seem attainable with our techniques. Table 1
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Class/symbol estimates Lebesgue spaces Sobolev spaces

(linear) S0
1,0 Lp → Lp W s,p → W s,p

|∂β
x∂

α
ξ σ(x, ξ)| ≤ Cαβ(1 + |ξ|)−|α| 1 < p < ∞ 1 < p < ∞, s > 0

(linear) S0
1,1 W s,p → W s,p

|∂β
x∂

α
ξ σ(x, ξ)| ≤ Cαβ(1 + |ξ|)−|α| unbounded 1 < p < ∞, s > 0

(bilinear) BS0
1,0 Lp × Lq → Lt W s,p ×W s,q → W s,t

|∂β
x∂

α
ξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ|+ |η|)−|α| 1 < p, q < ∞ 1 < p, q, t < ∞, s > 0

1/p + 1/q = 1/t 1/p + 1/q = 1/t

(bilinear) BS0
1,1 W s,p ×W s,q → W s,t

|∂β
x∂

α
ξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ|+ |η|)|β|−|α| unbounded 1 < p, q, t < ∞, s > 0

1/p + 1/q = 1/t

(bilinear) BS0
1,0;π/4

Lp × Lq → Lt W s,p ×W s,q → W s,t

|∂β
x∂

α
ξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ − η|)−α 1 < p, q < ∞ 1 < p, q, t < ∞, s > 0

1/p + 1/q = 1/t < 3/2 1/p + 1/q = 1/t

(bilinear) BS0
1,1;π/4

W s,p ×W s,q → W s,t

|∂β
x∂

α
ξ,ησ(x, ξ − η)| ≤ Cαβ(1 + |ξ − η|)β−α unbounded 1 < p, q, t < ∞, s > 0

1/p + 1/q = 1/t

(bilinear) BS0
1,1;π/4

W s,p ×W s,q → W s,t

|∂β
x ∂

α
ξ,ησ(x, ξ, η)| ≤ Cαβ(1 + |ξ − η|)β−α unbounded 1 < p, q, t < ∞, s > 1/2

1/p + 1/q = 1/t

Table 1. Summary of the boundedness properties of pseudodifferential operators on Lebesgue and
Sobolev spaces.

summarizes the known results and the new ones and puts in evidence the parallel
situation in several classes of pseudodifferential operators.

As a byproduct of our results, we also improve on some known estimates on para-
multiplication by introducing a new way to approximate the pointwise product of two
functions with errors better localized in the frequency plane (see Section 4 for precise
statements).

1.3. Further definitions and notation. We recall the maximal Hardy-Littlewood
operator M defined for a function f ∈ L1

loc(R) by

M(f)(x) = sup
B ball

B∋x

1

|B|

∫

B

|f(y)|dy.

We write M2 =M ◦M for the composition of the maximal operator with itself.
For a function f in the Schwartz space S of smooth and rapidly decreasing functions,

we will use the definition of the Fourier transform given by

f̂(ξ) =

∫

R

f(x)e−ix·ξ dx.

With this definition, the inverse Fourier transform is given by f∨(ξ) = (2π)−1f̂(−ξ).
Both the Fourier transform and its inverse can be extended as usual to the dual space
of tempered distributions S ′.
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For a bounded symbol σ, the bilinear operator

Tσ(f, g)(x) =

∫
eix(ξ+η)f̂(ξ)ĝ(η)σ(x, ξ, η) dξdη

is well-defined and gives a bounded function for each pair of functions f , g in S.
Moreover for σ in BS0

1,1;π/4, the operator Tσ clearly maps S × S into S ′ continuously.
This justifies many limiting arguments and computations that we will perform without
further comment.

The formal transposes, T ∗1 and T ∗2, of an operator T : S × S → S ′ are defined by

〈T ∗1(h, g), f〉 = 〈T (f, g), h〉 = 〈T ∗2(f, h), g〉,

where 〈·, ·〉 is the usual pairing between distributions and test functions.
We will use the notation Ψ2−k for the L1-normalized function 2kΨ(2k·) and consider

the Littlewood-Paley characterization of Sobolev spaces W s,p, 1 < p <∞, s ≥ 0. That
is, for a function Ψ in S with spectrum contained in {ξ : 2−1 ≤ |ξ| ≤ 2} and another
function Φ also in S and with spectrum included in {|ξ| ≤ 1}, and such that

(1.5) Φ̂(ξ) +
∑

k≥0

Ψ̂(2−kξ) = 1

for all ξ, we have

(1.6) ‖f‖W s,p ≈ ‖Φ ∗ f‖Lp +

∥∥∥∥∥∥

(∑

k≥0

22ks |Ψ2−k ∗ f |2
)1/2

∥∥∥∥∥∥
Lp

.

Here ‖ · ‖Lp denotes the usual norm of the Lebesgue space Lp(R). For s = 0, the
norm ‖ · ‖W 0,p is equivalent to ‖ · ‖Lp. Also, by BMO we mean as usual the classical
John-Nirenberg space of functions of bounded mean oscillation.

By homogeneity considerations, we will investigate boundedness properties of the
form

(1.7) T : W s,p ×W s,q →W s,t,

where the exponents satisfy 1 ≤ p, q, t ≤ ∞ and the Hölder relation

(1.8)
1

p
+

1

q
=

1

t
.

2. Unboundedness on Lebesgue spaces

We first show that for s = 0 the bound (1.7) may fail for BS0
1,1;π/4(R).

Proposition 2.1. There exists a symbol τ ∈ S0
1,1 such that the operator Tσ with symbol

σ(x, ξ, η) = τ(x, ξ − η) is in BS0
1,1;π/4 and is not bounded from Lp ×Lq into Lt for any

exponents p, q, t satisfying (1.8).
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Proof. As in [5], we adapt to the bilinear situation a by now classical counterexample

in the lineaar setting; see [9]. Let ψ be a function in S satisfying ψ̂ ≥ 0, ψ̂(ξ) 6= 0 only

for 5/7 < |ξ| < 5/3, and ψ̂(ξ) = 1 for 5/6 ≤ |ξ| < 4/3. Consider the symbol

τ(x, ξ) =
∑

j≥4

e−i2jxψ̂(2−jξ),

which is easily seen to be in S0
1,1. Select another function ψ1 in S verifying supp (ψ̂1) ⊂

[0, 1/3] and define

f =
m∑

j=4

aje
i2jxψ1(x),

for arbitrarily coefficients aj . For σ(x, ξ, η) = τ(x, η − ξ), we have

(2.1) Tσ(f, ψ1)(x) =
∑

j,k≥4

ake
−i2jx

∫

R2

eix(ξ+η)ψ̂(2−j(η − ξ))ψ̂1(ξ − 2k)ψ̂1(η)dξdη.

For each k, the integration at most takes place where 0 ≤ η ≤ 1/3 and 2k ≤ ξ ≤
2k + 1/3, which implies

−2k − 1/3 ≤ η − ξ ≤ 1/3− 2k,

and then for each j,

(2.2) − 2k−j − 2−j/3 ≤ 2−j(η − ξ) ≤ 2−j/3− 2k−j.

Note that since j, k ≥ 4, if k > j we have

2−j/3− 2k−j < −5/3,

while if k < j
−2k−j − 2−j/3 > −5/7.

It follows from (2.2) that the only non-zero term in (2.1) is the one with j = k and also

ψ̂(2−j(η − ξ)) = 1

where the integrand is not zero. We obtain

Tσ(f, ψ1)(x) =

m∑

j=4

aje
−i2jxei2

jxψ2
1(x) =

(
m∑

j=4

aj

)
ψ2
1(x).

If we assume that the operator Tσ is bounded from Lp ×Lq into Lt, we could conclude
then that

(2.3)

∣∣∣∣∣
m∑

j=4

aj

∣∣∣∣∣ . ‖f‖Lp .

(
m∑

j=4

|aj|
2

)1/2

,

where the last inequality follows from the Littlewood-Paley square function characteri-
zation of the Lp norm of f and the constants involved depend on ψ1 but are independent
of m. Since the aj are arbitrary (2.3) is not possible. �
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3. Sobolev space estimates

We will show that the class BS0
1,1;π/4 produces bounded operators on product of

Sobolev spaces. The situations in the modulation invariant and the general case are
slightly different.

3.1. The modulation invariant case. We first consider the case of bilinear operators
obtained from linear ones as in the previous section. That is, the symbol σ takes the
form

σ(x, ξ, η) = τ(x, ξ − η),

where τ belongst to the linear class S0
1,1. We have the following theorem.

Theorem 3.1. Let τ be a linear symbol in S0
1,1 and consider the bilinear operator Tσ,

where σ(x, ξ, η) = τ(x, ξ − η). If s > 0 and 1 < p, q, t < ∞ satisfy the Hölder relation
(1.8), then Tσ is bounded from W s,p ×W s,q into W s,t.

Proof. We begin by recalling the Coifman-Meyer reduction for symbols in S0
1,1(see e.g.

[14], Chapter II, Section 9), which is by now a standard technique in the subject. The
symbol τ can be decomposed in a absolutely convergent sum of reduced symbols of the
form

τ(x, ξ) =
∞∑

j=0

mj(2
jx)ψ̂(2−jξ),

where ψ is a smooth function whose Fourier transform is supported on {ξ : 2−1 ≤
|ξ| ≤ 2} and {mj}j≥0 is a uniformely bounded collection of Cr(R) functions where r
can be taken arbitrarily large. Due to this reduction, we need only to study a symbol
of the form

σ(x, ξ, η) =
∑

j≥0

mj(2
jx)ψ̂(2−j(ξ − η)) :=

∑

j≥0

σj(x, ξ, η).

We use the same notations of Bourdaud in [9]. We expand mj into an inhomogeneous
Littlewood-Paley decomposition using (1.5) so that

(3.1) mj =
∑

k≥0

mj,k

with the spectrum of mj,k contained in the dyadic annulus {ξ : 2k−1 ≤ |ξ| ≤ 2k+1} for
k ≥ 1, and in the ball {ξ, |ξ| ≤ 2} for k = 0. Then we define for h ≥ j the function
nj,h(x) := mj,h−j(2

jx). Due to the regularity of the function mj , we have the following
properties for h ≥ j + 1:

(3.2) supp n̂j,h ⊂ {ξ : 2h−1 ≤ |ξ| ≤ 2h+1}

and

(3.3) ‖nj,h‖L∞ ≤ Cr2
(j−h)r,
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where, we mention again, the number r can be chosen as large as we want. For h = j
we have

(3.4) supp n̂j,j ⊂ {ξ : |ξ| ≤ 2j+1}

and

(3.5) ‖nj,j‖L∞ ≤ Cr.

Note also that,

(3.6) mj(2
jx) = mj,k(2

jx) +
∑

h≥j+1

mj,h−j(2
jx) = nj,j(x) +

∑

h≥j+1

nj,h(x).

Writing Tj for the bilinear operator with symbol ψ̂(2−j(ξ − η)), we get

Tσ(f, g)(x) =
∑

j≥0

mj(2
jx)Tj(f, g)(x).

To study the norm of Tσ(f, g) in the Sobolev space W s,t, and with the functions Ψ and
Φ as in (1.6), we need to estimate terms of the form Φ ∗ Tσ(f, g) and, say for k− 2 ≥ 0

Ψ2−k ∗ Tσ(f, g) :=
∑

j≥0

Ψ2−k ∗ [mj(2
j.)Tj(f, g)] = Ik(f, g) + IIk(f, g),

where

Ik(f, g) :=

k−2∑

j=0

Ψ2−k ∗ [mj(2
j.)Tj(f, g)]

and

IIk(f, g) :=
∑

j≥k−2

Ψ2−k ∗ [mj(2
j .)Tj(f, g)].

We only treat Ik and IIk. The estimate for the other terms can be achieved with the
same arguments (they are actually easier). For notational convenience, we identify
Ψ2−k with the convolution operator it defines (and similarly with other functions).

Estimate for I. We further decompose mj(2
j.) and Tj(f, g). Using (3.1), (3.6), and

(1.5) we have

mj(2
jx) = Φ2−k(mj(2

j.))(x) +
∑

l≥k

nj,l(x).

We also decompose

Tj(f, g)(x) = Φ2−k [Tj(f, g)] (x) +
∑

p≥k

Ψ2−p [Tj(f, g)] (x).

We get

Ik(f, g) =

k−2∑

j=0

Ψ2−k

[
Φ2−k(mj(2

j .))Φ2−k(Tj(f, g))
]

(3.7)
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+

k−2∑

j=0

∑

l≥k

Ψ2−k [nj,lΦ2−k(Tj(f, g))]

+
k−2∑

j=0

∑

p≥k

Ψ2−k

[
Φ2−k(mj(2

j.))Ψ2−p [Tj(f, g)]
]

+

k−2∑

j=0

∑

l,p≥k

Ψ2−k [nj,lΨ2−p [Tj(f, g)]] .

Using the notation φ̃ for a generic smooth function with bounded spectrum and ψ̃ for
a generic smooth function with a spectrum included into a corona around 0, we claim
that we can write Ik as a sum of terms of three different form:

Ik(f, g) =
∑

0≤j≤k−2

Ψ2−k(Tσj
(f, g)) ≈ (1)k + (2)k + (3)k,

where

(1)k :=
∑

j≤k−2

Ψ2−k

[
nj,kφ̃2−k [Tj(f, g)]

]
,

(2)k :=
∑

j≤k−2

Ψ2−k

[
φ̃2−k

[
mj(2

j.)
]
ψ̃2−k [Tj(f, g)]

]
,

(3)k :=
∑

l≥k

∑

j≤k−2

Ψ2−k

[
nj,lψ̃2−l [Tj(f, g)]

]
.

Let us explain this reduction. The first sum in (3.7) can be written as a finite linear
combination of terms taking the form (1)k and (2)k. Indeed, consider one of the general
terms Ψ2−k [Φ2−k(mj(2

j .))Φ2−k(Tj(f, g))] and write ξ (resp. η) for the frequency variable
of mj(2

j.) (resp. Tj(f, g)). We have a non-vanishing contribution if

|η| ≤ 2k, |ξ| ≤ 2k and |η + ξ| ≃ 2k,

where we have used that the spectrum of the product is included in Minkowski sum of
spectrums. Consequently, this is possible only if |ξ| ≃ 2k, which corresponds to (1)k
(recall that nj,l is frequentialy supported in

{
|ξ| ≈ 2l

}
)), or |η| ≃ 2k, which corresponds

to (2)k.
Concerning the second sum in (3.7), it can also be reduced to the sum for l ≈ k (as

the other terms vanish) and it is a finite sum of terms like (1)k. Similar reasoning for
the third term in (3.7) gives that it is controlled by (2)k. Finally, the general term in
the fourth sum in (3.7) is non-zero if

2p ± 2l ≈ 2k.

But, since the inner double sum has l, p ≥ k, the general term is non-zero only for
l ≈ p. We see then that the double sum (over l and p) reduces to one sum over only
one parameter. It follows that the fourth sum in (3.7) is similar to (3)k.
We now study each of the model sums (1)k, (2)k, (3)k.
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1) The sum with (1)k.
We use the estimate (3.3) for nj,k with r > s and Young’s inequality to obtain

‖2ks(1)k‖l2(k∈N) .

∥∥∥∥∥
∑

j+2≤k

2(j−k)r2ksM
(
φ̃2−k [Tj(f, g)]

)∥∥∥∥∥
l2(k∈N)

.

∥∥∥∥∥
∑

j+2≤k

2js2(j−k)(r−s)M
(
φ̃2−k [Tj(f, g)]

)∥∥∥∥∥
l2(k∈N)

.
∥∥2jsM2 [Tj(f, g)]

∥∥
l2(j∈N)

.

Therefore,

(3.8)
∥∥‖2ks(1)k‖l2(k∈N)

∥∥
Lt .

∥∥∥
∥∥2jsM2 [Tj(f, g)]

∥∥
l2(j∈N)

∥∥∥
Lt

and from the Fefferman-Stein vector-valued inequality for the maximal operator M
(see [16]), we deduce that

∥∥‖2ks(1)k‖l2(k∈N)
∥∥
Lt .

∥∥∥
∥∥2jsTj(f, g)

∥∥
l2(j∈N)

∥∥∥
Lt
.

We can use now a linearization argument. By writing rj(ω) for Rademacher functions
(ω ∈ [0, 1]), we know that (see e.g. Appendix C in [20]):

∥∥‖2ks(1)k‖l2(k∈N)
∥∥
Lt .

∥∥∥∥∥∥

∥∥∥∥∥
∑

j

2jsrj(ω)Tj(f, g)

∥∥∥∥∥
Lt(ω∈[0,1])

∥∥∥∥∥∥
Lt

.

By Fubini’s Theorem, we have that

∥∥‖2ks(1)k‖l2(k∈N)
∥∥
Lt .

∥∥∥∥∥∥

∥∥∥∥∥
∑

j

2jsrj(ω)Tj(f, g)

∥∥∥∥∥
Lt

∥∥∥∥∥∥
Lt(ω∈[0,1])

.

Now for each ω ∈ [0, 1], the operator (f, g) →
∑

j 2
jsrj(ω)Tj(f, g) is the bilinear

operator associated to the symbol

∑

j

2jsrj(ω)Ψ̂(2−j(ξ − η)) ∈ BSs
1,0;π/4.

From [4] and [8] (since the symbol is x-independent) these bilinear operators are
bounded from W s,p × W s,q into Lt (uniformly on ω ∈ [0, 1]) and the proof in this
case is complete.
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2) The sum with (2)k.
This term is the most difficult to estimate. Using again the boundedness of the func-
tions mj in C

r →֒ L∞, we can estimate

‖2ks(2)k‖l2(k∈N) .

∥∥∥∥∥
∑

j+2≤k

2ksM
(
ψ̃2−k [Tj(f, g)]

)
(x)

∥∥∥∥∥
l2(k∈N)

.(3.9)

We observe that

ψ̃2−k [Tj(f, g)] (x) =

∫
ψ̃2−k(x− z)

∫
Ψ̂(2−j(ξ − η))f̂(ξ)ĝ(η)eiz(ξ+η) dξdη dz

=

∫
̂̃
ψ(2−k(ξ + η))Ψ̂(2−j(ξ − η))f̂(ξ)ĝ(η)eix(ξ+η) dξdη.

We must have |ξ+η| ≈ 2k and |ξ−η| ≈ 2j. But we only have terms with 2j < 2k/4, so
we deduce that |ξ| ≈ |η| ≈ 2k. It follows that we can further localize in the frequency
plane adding a new function ψ (whose spectrum is included in a corona) such that

ψ̃2−k [Tj(f, g)] (x) = ψ̃2−k

[
Tj(ψ2−kf, ψ2−kg)

]
(x)

Going back to (3.9) we obtain by the Cauchy-Schwartz inequality (there are k terms
in the inner sum)

‖2ks(2)k‖l2(k∈N) .

∥∥∥∥2ksk1/2
∥∥∥M

(
ψ̃2−k

[
Tj(ψ2−k(f), ψ2−k(g))

])∥∥∥
l2(j∈N)

∥∥∥∥
l2(k∈N)

.

We then obtain similarly as in the previous case

∥∥‖2ks(2)k‖l2(k∈N)
∥∥
Lt .

∥∥∥∥
∥∥∥2ksk1/2

∥∥M2
[
Tj(ψ2−k(f), ψ2−k(g))

]∥∥
l2(j∈N)

∥∥∥
l2(k∈N)

∥∥∥∥
Lt

.

∥∥∥∥
∥∥∥2ksk1/2

∥∥Tj(ψ2−k(f), ψ2−k(g))
∥∥
l2(j∈N)

∥∥∥
l2(k∈N)

∥∥∥∥
Lt

.

We linearize in j as before and using the fact that k1/2 . 2ks (as s > 0),

∥∥‖2ks(2)k‖l2(k)
∥∥
Lt .

∥∥∥∥∥∥∥

∥∥∥∥∥∥

∥∥∥∥∥
∑

j

rj(ω)Tj(2
ksψ2−k(f), 2ksψ2−k(g))

∥∥∥∥∥
L1(ω∈[0,1])

∥∥∥∥∥∥
l2(k∈N)

∥∥∥∥∥∥∥
Lt

.

.

∥∥∥∥∥∥

∥∥∥∥∥∥

∥∥∥∥∥
∑

j

rj(ω)Tj(2
ksψ2−k(f), 2ksψ2−k(g))

∥∥∥∥∥
l2(k∈N)

∥∥∥∥∥∥
Lt

∥∥∥∥∥∥
L1(ω∈[0,1])

.

For each ω ∈ [0, 1], we can invoke a vector valued result for bilinear operators of
Grafakos and Martell ([21]). More precisely, as explained in the first point, for each
ω ∈ [0, 1] the bilinear operator (f, g) →

∑
j rj(ω)Tj(2

ksψ2−k(f), 2ksψ2−k(g)) is bounded
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from Lp ×Lq to Lt (since it is associated to a x-independent symbol). Then, Theorem
9.1 in [21] implies that the operator admits an l2-valued bilinear extension, which yields

∥∥‖2ks(2)k‖l2(k∈N)
∥∥
Lt .

∥∥∥
∥∥∥
∥∥2ksψ2−k(f)

∥∥
l2(k∈N)

∥∥∥
Lp

∥∥∥
∥∥2ksψ2−k(g)

∥∥
l2(k∈N)

∥∥∥
Lq

∥∥∥
L1(ω)

,

with estimates uniformly in ω ∈ [0, 1]. This concludes the proof of the case (2)k.

3) The sum with (3)k.
The analysis in this case is entirely analogous as the case (1)k and so we leave the
details to the reader.

Estimate for II. In this case, we decompose the term IIk(f, g) with quantities
appearing as a linear combinaison of terms of the following form

(1)k =
∑

j≥k−2

Ψ2−k

[
nj,jφ̃2−j [Tj(f, g)]

]
,

or

(2)k =
∑

j≥k−2

∑

l≥j

Ψ2−j

[
nj,l(x)ψ̃2−l [Tj(f, g)]

]
.

Indeed with a similar reasoning as before and since j ≥ k − 2, the general quantity
in IIk has a non-vanishing contribution only if the frequency variables of mj(2

j ·) or
Tj(f, g) are contained in {|ξ| . 2j} (which corresponds to (1)k) or if the two frequency
variables are contained in {|ξ| ≃ 2l} for some l ≥ j (which corresponds to (2)k).

The study of (2)k is similar to the one of (1)k with the help of fast decays in l (see
(3.3)), so we only write the proof for (1)k. By the estimates on nj,j, we have

∥∥‖2ks(1)k‖l2(k∈N)
∥∥
Lt .

∥∥∥∥∥∥

∥∥∥∥∥
∑

j≥k−2

2(k−j)s2jsM2 [Tj(f, g)]

∥∥∥∥∥
l2(k∈N)

∥∥∥∥∥∥
Lt

.

Using s > 0 and Young’s inequality for the l2-norm on k, we get the following bound
∥∥‖2jsM2 [Tj(f, g)] ‖l2(j∈N)

∥∥
Lt .

We have already studied such quantities in the first case (see (3.8)) and prove the
appropriate bounds.
The proof of the theorem in now complete. �

Remark 3.2. Since σ(x, ξ, η) = τ(x, ξ− η) is bounded, the function Tσ(1, 1) (rigorously
defined in [2]) is given by

Tσ(1, 1) = σ(., 0, 0) ∈ L∞ ⊂ BMO.

If the transposes of Tσ are also given by symbols in the classes BS0
1,1;θ or even by

some bounded functions, then we can use the bilinear T (1)-Theorem of [2] (since Tσ
is modulation invariant) to conclude that T is bounded on the product of Lebesgue
spaces. The counterexample of the previous section shows that this is not always the
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case, so the classes BS0
1,1;θ cannot be closed by transposition. As mentioned in the

introduction the smaller classes BS0
1,0;θ are.

3.2. The general case. In this subsection, we consider general symbols in the class
BS0

1,1;π/4. We obtain a slightly less general result than the one in the previous case.

Theorem 3.3. If σ ∈ BS1,1;π/4 and s > 1/2, then the bilinear operator Tσ is bounded
from W s,p × W s,q into W s,t for all exponents 1 < p, q, t < ∞ satisfying the Hölder
condition (1.8).

Proof. We want to adapt the proof of Theorem 3.1. We briefly indicate the extra
difficulties faced.
Reduction to elementary symbols.

We first reduce the problem to the study of elementary symbols taking the following
form

(3.10) σ(x, ξ, η) =
∑

j≥0

l∈Z

mj,l(2
jx)Ψ̂(2−j(ξ − η))Ψ̂(l + 2−j(+ξ + η).

Let us give a sketch of such reduction. By multiplying the symbol σ with Ψ̂(2−j(ξ −

η))Ψ̂(l + 2−j(ξ + η), we localize it in the frequency to the following domain

{(ξ, η), |ξ − η| ≃ 2j and |ξ + η + l2j| ≃ 2j,

which can be compared to a ball of radius 2j. This compactly supported symbols σj,l
satisfy

|∂αx∂
β
ξ,ησj,l(x, ξ, η)| ≤ Cαβ2

j(α−β).

As usually, we decompose this symbol in Fourier series, obtaining

σj,l(x, ξ, η) =
∑

a,b∈Z2

γa,b(x)e
i(a.ξ+b.η)Ψ̂(2−j(ξ − η))Ψ̂(l + 2−j(+ξ + η).

The modulation term ei(a.ξ+b.η) does not play a role, as it corresponds to translation in
physical space (which does not modify the Lebesgue norms), it remains for us to check
that the coefficients γa,b are fast decreasing in (a, b) and satisfies the desired smoothness
in x. To do so, we remark that for α ∈ N integrations by parts yields

∣∣∂αx γa,b(2−jx)
∣∣ . 2−jα(2j)−2

∣∣∣∣
∫ ∫

e−i(a.ξ+b.η)∂αxσj,l(2
−jx, ξ, η)dξdη

∣∣∣∣
. 2−jα(2j)−2 (1 + |a|+ |b|)−M

∣∣∣∣
∫ ∫

e−i(a.ξ+b.η)
(
1 + ∂Mξ + ∂Mη

)
∂αxσj,l(2

−jx, ξ, η)dξdη

∣∣∣∣
. (1 + |a|+ |b|)−M ,

where M is an integer that can be chosen as large as we wish. So we conclude that
the functions γa,b(2

−j ·) are uniformly bounded in Cr (for r arbitrarily large) with fast
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decays in (a, b). This operation (expansion in Fourier series) allows us to reduce the
study of σ to reduced symbols taking the form (3.10).

Study of elementary symbols.

We adapt the proof of Theorem 3.1 and use the same notation. We have to study the
sum

(3.11)
∑

j≥0

l∈Z

mj,l(2
jx)Tj,l(f, g),

where Tj,l is the bilinear operator associated to the x-independent symbol

Ψ̂(2−j(ξ − η))Ψ̂(l + 2−j(ξ + η)).

We can proceed as in the modulation invariant case and consider the different cases,
eventually arriving to the point where we need to linearize with respect to the param-
eter j. But now, we also have to linearize according to the new parameter l. When we
estimate the square function of Tj,l, we have to study Ψ2−k(Tj,l(f, g)) and we are inter-
ested only in the indices j, l satisfying |ξ+η| ≈ 2k with |ξ−η| ≈ 2j and |ξ+η+l2j| ≈ 2j.
However, due to the use of the Cauchy-Schwartz inequality in l, we will have an extra
term bounded by 2(k−j)/2, which corresponds to the square root of the number of indices
l satisfying all these conditions. For the study of (1)k and (3)k there is no problem,
since r can be chosen satisfying r > s + 1/2. However, for the study of (2)k we will
need 2k(s+1/2)k1/2 ≤ 2ks2ks and so we need to assume that s > 1/2. �

Remark 3.4. It is interesting to note that without the modulation invariance, an extra
exponent 1/2 appears. We do not know if our result is optimal or not. Moreover,
unlike the modulation invariance case, we also do not know whether a general operator
Tσ with symbol σ ∈ BS1,1;π/4, and whose two adjoints satisfy similar assumptions,
is bounded on product of Lebesgue spaces. To address this question, it would be
interesting to obtained (if possible) a T (1)-Theorem as in [2] but without assuming
modulation invariance.

4. An improvement on paramultiplication.

In this section, we will use x-independent symbols in BS1,1;π/4 (and also in the
smaller class BS1,0;π/4) to describe a new paramultiplication operation. We will obtain
an improvement over the classical paramultiplication first studied by Bony in [10] in the
L2 setting and extended by Meyer in [28, 29] to Lp norms. The classical paraproducts
and their properties hold for multidimensional variables, however our improvement
works (at least at this moment) only in the one dimensional case.
We start with the classical definition.

Definition 4.1. Let f and b be two smooth functions and let Φ and Ψ be as in (1.5)

and (1.6). We assume that for all η ∈ supp Φ̂ and ξ ∈ supp Ψ̂ we have

|η| ≤
1

2
|ξ|.
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η

ξ

ξ = η

ξ = −η

Figure 1. Support of the bilinear symbol associated to the paraproduct Π.

Then the paramultiplication by b is defined as follows

Πb(f) :=
∑

k∈Z

Φ2k(f)Ψ2k(b).

The operator (b, f) → Πb(f) can essentially be thought as a bilinear multiplier whose
symbol is a smooth decomposition of the characteristic function of the cone in Figure 1.

The following two propositions are well-known properties for paraproducts (see e.g.
Theorems 2.1 and 2.5 in [10] for the originel results involving L2-Sobolev spaces and
[28, 29] for extension to other Sobolev spaces):

Proposition 4.2. For all s > 0 and p ∈ (1,∞) the linear operator Πb is bounded on
the Sobolev space W s,p, satisfies

‖Πb‖W s,p→W s,p . ‖b‖L∞ ,

and the operation can be extended to an L∞ function b.

The paramultiplication approximates the pointwise multiplication is the following
sence.

Proposition 4.3. Let 1 < t <∞ and s > 1/t. For f ∈ W s,t and g ∈ W s,t, we have

‖fg −Πf (g)− Πg(f)‖W 2s−1/t,t . ‖f‖W s,t ‖g‖W s,t .

The exponent of regularity 2s − 1
t
is bigger than s for ts > 1. This gain is very

important. The result is essentialy due to the fact that, in the frequency space, the
error term has only a contribution from f and g when

{|ξ| ≈ |η|} ,

i.e. in a cone along the two main diagonals.
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η

ξ

ξ = η

ξ = −η

Figure 2. Support of the bilinear symbol associated to the new paraproduct Π̃.

Using the new bilinear operators (whose singularities are localized on a line in the

frequency plane), we can define a new paramultiplication operation Π̃ such that the
error term will be concentrated in the frequency plane exactly in a strip (of fixed
width) around the two diagonals. In this way, we will be able to get a better gain for
the exponent of regularity.

Definition 4.4. Let Θ be a smooth function on R such that its Fourier transform Θ̂
satisfies

ω ≥ 2 =⇒ Θ̂(ω) = 1 −∞ < ω ≤ 1 =⇒ Θ̂(ω) = 0.

Then we define for b, f ∈ S(R), the improved paramultiplication by b (written Π̃b(f))
by
(4.1)

Π̃b(f)(x) =

∫

R2

eix(ξ+η)b̂(ξ)f̂(η)
[
Θ̂(ξ − η)Θ̂(ξ + η) + Θ̂(η − ξ)Θ̂(−ξ − η)

]
dξdη.

The new bilinear multiplier (b, f) → Π̃b(f) is associated to a bilinear symbol, corre-
sponding to a smooth version of the characteristic function of the region in Figure 2.
We remark that this new region approximates the domain {(ξ, η), |ξ| ≥ |η|} better than
the region in Figure 1.

This new operation satisfies a similar property to the one in Proposition 4.2.

Proposition 4.5. Let s ≥ 0 and let 1 < p, q, t < ∞ be exponents satisfying (1.8).
For every ǫ > 0 and b ∈ W ǫ,p(R), the improved paramultiplication by b is well-defined
and produce a bounded operation from W s,q to W s,t. In fact, there exists a constant
C = C(s, ǫ, p, q, t) such that for all functions f ∈ W s,q,

∥∥∥Π̃b(f)
∥∥∥
W s,t

≤ C‖b‖W ǫ,p‖f‖W s,q .
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Moreover if s = 0, the exponent ǫ = 0 is allowed.

Proof. The new paramultiplication is given by two terms, which can be studied by
identical arguments. We only deal with the first term but for simplicity in the notation
we still write

Π̃f (b)(x) =

∫

R2

eix(ξ+η)b̂(ξ)f̂(η)Θ̂(ξ − η)Θ̂(ξ + η)dξdη.

We note that this function Π̃b(f) corresponds to the operator Tσ(b, f) associated to
the bilinear symbol

σ(ξ, η) = Θ̂(ξ − η)Θ̂(ξ + η).

We need to show that Tσ is continuous from W ǫ,p ×W s,q to W s,r.

The case s = 0.
We compute the Fourier transform of Tσ(b, f),

T̂σ(b, f)(ω) =

∫

ξ+η=ω

b̂(ξ)f̂(η)Θ̂(ξ − η)Θ̂(η + ξ)dξdη

= Θ̂(ω)

∫

ξ+η=ω

b̂(ξ)f̂(η)Θ̂(ξ − η)dξdη

= Θ̂(ω)T̂τ(b, f)(ω),

where τ is given by τ(ξ, η) = Θ̂(ξ−η). So in fact we can write Tσ(b, f) as the convolution
product between Θ and Tτ (b, f). Since the function Θ in Definition 4.4 is smooth, the
convolution operation by Θ is bounded on Lt. We obtain also

‖Tσ(b, f)‖Lt . ‖Tτ (b, f)‖Lt .

Now the bilinear operator Tτ is associated to the symbol τ which satisfies the Hörmander
multiplier conditions related to the frequency line {ξ = η}. That is,

∣∣∂αξ ∂βη τ(ξ, η)
∣∣ . |ξ − η|−α−β

for all α and β. It follows from the work of Gilbert and Nahmod [17] that this bilinear
operator maps Lp × Lq to Lt and we obtain the desired result

‖Tσ(b, f)‖Lt . ‖b‖Lp‖f‖Lq .

Note that for the case s = 0 no regularity on b is really needed.

The case s > 0.
Let Φ and Ψ be as in (1.5) and (1.6). We study first Φ ∗ Tσ(f, g). We have

̂[Φ ∗ Tσ(b, f)](ω) = Φ̂(ω)Θ̂(ω)T̂τ (b, f)(ω).

The spectral condition over Φ and Θ imply that ω ≈ 1. So for ξ and η (the frequency
variables of b and f) satisfying ξ − η ≥ 1 and ξ + η = ω ≈ 1, we deduce that either η
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is bounded or −ξ ≈ η >> 1. Therefore, we can find a smooth function ζ and an other

one ψ̃ (whose spectrum is contained in a corona around 0) such that

Φ ∗ Tσ(b, f) = Φ ∗ Tσ(b, ζ ∗ f) +
∑

l≥0

Φ ∗ Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f).

Using 0 < ǫ, we get by the Cauchy-Schwartz inequality

|Φ ∗ Tσ(b, f)| ≤ |Φ ∗ Tσ(b, ζ ∗ f)|+

(∑

l≥0

22ǫl
∣∣∣M
[
Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f)

]∣∣∣
2
)1/2

.(4.2)

By the same reasoning for an integer k ≥ 1, if ξ and η satisfy η ≥ ξ+1 and 1 < ξ+η =
ω ≈ 2k, we deduce that either η ≈ 2k or −ξ ≈ η >> 2k. So we can find a smooth

function ψ̃ (for convenience we keep the same notation), whose spectrum is included
in a corona around 0 such that for all integer k large enough

Ψ2−k ∗ Tσ(b, f) = Ψ2−k ∗ Tσ(b, ψ̃2−k ∗ f) +
∑

l≥k

Ψ2−k ∗ Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f).

Using the same ǫ, we get by Minkowski’s and Cauchy-Schwartz’ inequalities
(∑

k

22ks |Ψ2−k ∗ Tσ(b, f)|
2

)1/2

.

(∑

k

22ksM
[
Tσ(b, ψ̃2−k ∗ f)

]2
)1/2

+
∑

l≥0

(∑

k≤l

22ks
∣∣∣Ψ2−k ∗ Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f)

∣∣∣
2
)1/2

.

(∑

k

22ksM
[
Tσ(b, ψ̃2−k ∗ f)

]2
)1/2

+
∑

l≥0

2lsM
[
Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f)

]

.

(∑

k

22ksM
[
Tσ(b, ψ̃2−k ∗ f)

]2
)1/2

+

(∑

l≥0

22l(s+ǫ)
∣∣∣M
[
Tσ(ψ̃2−l ∗ b, ψ̃2−l ∗ f)

]∣∣∣
2
)1/2

.(4.3)

From (4.2) and (4.3), using the Lq−Lt boundedness of Tσ(b, .) (proved in the first case),
the vector-valued Fefferman-Stein inequality, and its bilinear version (Theorem 9.1 of
[21] already mentioned), we obtain the desired result:

‖Tσ(b, f)‖W s,t .

∥∥∥∥∥∥
|Φ ∗ Tσ(b, f)|+

(∑

k≥0

22sk |Ψ2−k ∗ Tσ(b, f)|
2

)1/2
∥∥∥∥∥∥
Lt
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. ‖b‖Lp

∥∥∥∥∥∥
|ζ ∗ f |+

(∑

k≥0

22sk
∣∣∣ψ̃2−k ∗ f

∣∣∣
2
)1/2

∥∥∥∥∥∥
Lq

+

∥∥∥∥∥∥

(∑

l≥0

22lǫ
∣∣∣ψ̃2−l ∗ b

∣∣∣
2
)1/2

∥∥∥∥∥∥
Lp

∥∥∥∥∥∥

(∑

k≥0

22sk
∣∣∣ψ̃2−k ∗ f

∣∣∣
2
)1/2

∥∥∥∥∥∥
Lq

. ‖b‖W ǫ,p‖f‖W s,q .

�

Remark 4.6. We note that our new bilinear operation needs an extra regularity as-
sumption b ∈ W ǫ,p to keep the regularity of the function f (the case s > 0). This is

due to the fact that the high frequencies of b play a role in the high frequency of Π̃b(f)

(which is natural) but in the low frequencies of Π̃b(f) too. This last phenomenom does
not appear in the classical paramultiplication operation. This point can be observed
in the Figures 1 and 2. Let ω be the frequency variable of the paraproduct. For small
ω, say ω ≃ 2, the contributions of b and f correspond to the intersection of the cone in
Figures 1 and 2 and the line {ω = ξ + η}. In the first case (Figure 1) this intersection
is bounded set, whereas in the second case (Figure 2) it is not bounded and contains
also high frequencies of b.

We now obtain an improvement on Proposition 4.3.

Proposition 4.7. Let t ∈ (1,∞) and s ≥ 1/t. If f ∈ W s,t and g ∈ W s,t, then
∥∥∥fg − Π̃f(g)− Π̃g(f)

∥∥∥
W 2s,t

. ‖f‖W s,t‖g‖W s,t.

Remark 4.8. As already mentioned, in the classical paramultiplication calculus, the
regularity result is true for s ≥ 1/t and the gain is only s− 1/t.

Proof. Let us denote by D the difference operator

D(f, g) := fg − Π̃f(g)− Π̃g(f).

It corresponds to the bilinear operator associated to the symbol τ given by

τ(ξ, η) :=1− Θ̂(η − ξ)Θ̂(η + ξ)− Θ̂(−η + ξ)Θ̂(−η − ξ)

− Θ̂(ξ − ξ)Θ̂(η + ξ)− Θ̂(η − ξ)Θ̂(−η − ξ).

This symbol is supported in the complement of the cone drawn in Figure 2 and the
symetrical one. Consequently, it is supported in two strips (around the two diagonals)

supp(τ) ⊂ {(ξ, η), |ξ − η| ≤ 3} ∪ {(ξ, η), |ξ + η| ≤ 3} .

We can then reproduce a similar reasonning as used for Proposition 4.5. The symbol τ
can be decomposed in two parts τ1, τ2; the first one supported in {(ξ, η), |ξ + η| ≤ 3}
and the second one supported in {(ξ, η), |ξ − η| ≤ 3}.
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The bilinear multiplier associated to τ1 has only low frequencies, hence

‖Tτ1(f, g)‖W 2s,t . ‖Tτ1(f, g)‖Lt.

Using Proposition 4.5 with exponents t, p, q ∈ (1,∞) satisfying (1.8), it follows that

‖Tτ1(f, g)‖W 2s,t . ‖f‖Lp‖g‖Lq . ‖f‖W s,t‖g‖W s,t,

where we have used the Sobolev embeding W s,t ⊂ Lp since s ≥ 1/t > 1/t − 1/p (and
similarly with q).

Concerning the second part τ2, it is easy to check that, on its support , 1 + |ξ + η|,
1 + |ξ| and 1 + |η| are comparable and in addition

(4.4) max{1 + |ξ + η|, 1 + |ξ|, 1 + |η|} −min{1 + |ξ + η|, 1 + |ξ|, 1 + |η|} . 1.

We claim that Tτ2 is bounded from Lt×Lt into Lt. Indeed, the symbol τ2 is supported
around the diagonal ξ = η and it takes the form

τ2(ξ, η) = m(ξ − η),

for a smooth function m supported on [−3, 3]. It follows that

(4.5) Tτ2(f, g)(x) =

∫
m̂(y)f(x− y)g(x+ y)dy.

Since m ∈ S(R) we have, in particular, that m̂ ∈ L1 ∩ L∞, and using Minkowski’s
inequality we easily deduce that Tτ2 is bounded from L∞×L∞ to L∞ and from L1×L1

to L1. By (complex) bilinear interpolation, we conclude that T is bounded from Lt×Lt

to Lt, for 1 < t <∞.
It remains to estimate Tτ2 in the Sobolev space. We let the reader verify that, as in

similar previously done computations (and using (4.4)), Tτ2 can be decomposed as

(4.6) Tτ2(f, g) =
∑

k≥0

Ψ2−kTτ2
(
Ψ1

2−kf,Ψ
2
2−kg

)
,

for some smooth frequency truncations Ψ,Ψ1,Ψ2. It follows that∥∥∥∥∥∥

(∑

k≥0

2k4s
∣∣Ψ2−kTτ2

(
Ψ1

2−kf,Ψ
2
2−kg

)∣∣2
)1/2

∥∥∥∥∥∥
Lt

.

∥∥∥∥∥∥

(∑

k≥0

2k4s
∣∣Tτ2

(
Ψ1

2−kf,Ψ
2
2−kg

)∣∣2
)1/2

∥∥∥∥∥∥
Lt

.

∥∥∥∥∥∥

(∑

k≥0

2ks
∣∣Ψ1

2−kf
∣∣2
)1/2

∥∥∥∥∥∥
Lt

∥∥∥∥∥∥

(∑

k≥0

2k2s
∣∣Ψ2

2−kg
∣∣2
)1/2

∥∥∥∥∥∥
Lt

. ‖f‖W s,t‖g‖W s,t,

where we have used the Lt boundedness of the operator Tτ2 and its l2-vector valued
extension (given again by Theorem 9.1 of [21]). �
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Remark 4.9. The previous proof relies on the boundedness from Lt × Lt to Lt of Tτ2 .
This property does not hold in the classical paraproduct situation.

We have given a proof by interpolation, where the specific form of τ2 plays an im-
portant role. We would like to describe now a direct proof of the boundedness for the
simpler case t = 2. The arguments are based on the geometric fact that the symbol τ2
is supported on a strip around the diagonal with bounded width.

We can use in the L2 case a partition of frequencies given by ∆k a smooth truncation
on the interval [k − 4, k + 4]:

∆̂k(f)(ξ) = χ(ξ − k)f̂(ξ),

where χ is a smooth function, supported on [−4, 4] and equal to 1 on [−3, 3]. Then,
by Plancherel’s equality, we have

‖Tτ2(f, g)‖L2 .

(∑

k∈Z

‖∆k(Tτ2(f, g)‖
2
L2

)1/2

.

By (4.4), it follows that with other similar truncation operators ∆1 and ∆2,

‖Tτ2(f, g)‖L2 .

(∑

k∈Z

‖∆k(Tτ2(∆
1
k(f),∆

2
k(g)))‖

2
L2

)1/2

.

(∑

k∈Z

‖1|ξ−k|≤4

∫ ∣∣∣∆̂1
k(f)(η)∆̂

2
k(g)(ξ − η)

∣∣∣ dη‖2L2

)1/2

.

(∑

k∈Z

∥∥∥∆̂1
k(f)

∥∥∥
2

L2

∣∣∣∆̂2
k(g)

∥∥∥
2

L2

)1/2

,

where we have used that each interval [k − 4, k + 4] has a bounded length. Since the
collection ([k − 4, k + 4])k∈Z is a bounded covering, we can conclude the boundedness
of Tτ2 from L2 × L2 into L2. (Note that the same argument does not apply in Lp.)

Remark 4.10. Our new definition of paramultiplication is based on bilinear operators
associated to x-independent symbols of the class BS1,0;π/4. We could use the Sobolev
boundedness (proved in the first sections of the current paper) in order to define other
kind of paramultiplications with an x-dependent symbol but we will not carry here
such analysis any further.
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[4] Á. Bényi, A.R. Nahmod, and R.H. Torres, Sobolev space estimates and symbolic calculus for
bilinear pseudodifferential operators, J. Geom. Anal. 16 (2006), 431–453,.
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baki 22 no. 550, (1979).
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