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Abstract

In this paper, we consider a financial market with an asset exposed to a risk inducing

a jump in the asset price, and which can still be traded after the default time. We use

a default-intensity modeling approach, and address in this incomplete market context

the problem of maximization of expected utility from terminal wealth for logarithmic,

power and exponential utility functions. We study this problem as a stochastic control

problem both under full and partial information. Our contribution consists of showing

that the optimal strategy can be obtained by a direct approach for the logarithmic

utility function, and the value function for the power (resp. exponential) utility function

can be determined as the minimal (resp. maximal) solution of a backward stochastic

differential equation. For the partial information case, we show how the problem can be

divided into two problems: a filtering problem and an optimization problem. We also

study the indifference pricing approach to evaluate the price of a contingent claim in

an incomplete market and the information price for an agent with insider information.

Keywords Optimal investment, default time, filtering, dynamic programming principle,

backward stochastic differential equation, indifference price, information pricing, logarith-

mic utility, power utility, exponential utility.
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1 Introduction

One of the important problems in mathematical finance is the portfolio optimization

problem when the investor wants to maximize the expected utility from terminal wealth. In

this paper, we study this problem for the classical utility functions by considering a small

investor on an incomplete financial market who can trade in a finite time interval [0, T ] by

investing in risky stocks and a riskless bond. We assume that there exists a default time

on the market, and this one generates a jump of stock price. The underlying traded asset

is assumed to be a local martingale driven by a Brownian motion and a default indicating

process. We assume that in the market there are two kinds of agents: the insider agents

(the agents with insider information) and the classical agents (they only observe the asset

prices and the default times). These situations are referred as full information and partial

information. We will be interested not only in describing the investor’s optimal utility, but

also the strategies which he may follow to reach this goal.

The utility maximization problem with full information has been largely studied in the

literature. In the framework of a continuous-time model the problem was studied for the

first time by Merton [26]. Using the methods of stochastic optimal control, the author de-

rives a nonlinear partial equation for the value function of the optimization problem. Some

papers study this problem by using the dual problem, we can quote, for instance, Karatzas

et al. [17] for the case of complete financial models, and Karatzas et al. [18] and Kramkov

and Schachermayer [21] for the case of incomplete financial models, they find the solution

of the original problem by convex duality. These papers are useful to prove the existence

of an optimal strategy in the general case, but in practice it is difficult to find the optimal

strategy with the dual method. Some others study the problem by using the dynamic pro-

gramming principle, we can quote Jeanblanc and Pontier [15] for a complete model with

discontinuous prices, Bellamy [1] in the case of a filtration generated by a Brownian motion

and a Poisson measure, Hu et al. [14] for an incomplete model in the case of a Brownian

filtration, and Jiao and Pham [16] in the case with a default, in which the authors study

the case before the default and the case after the default.

Models with partial observation are essentially studied in the literature in a complete

market framework. Detemple [6], Dothan and Feldman [7], Gennotte [12] use dynamic

programming methods in a linear gaussian filtering. Lakner [22, 23] solves the optimiza-

tion problem via a martingale approach and works out the special case of linear gaussian

model. We mention that Frey and Runggaldier [11] and Lasry and Lions [24] study hedging

problems in finance under restricted information. Pham and Quenez [29] treat the case of

an incomplete stochastic volatility model. Callegaro et al. [4] and Roland [31] study the

case of a market model with jumps.

We first study the case of full information. For the logarithmic utility function, we use

a direct approach, which allows to give an expression of the optimal strategy depending

uniquely on the coefficients of the model satisfied by the stocks. For the power utility func-

tion, we look for a necessary condition characterizing the value function which is solution

of the maximization problem. We show that this value function is the smallest solution of a

backward stochastic differential equation (in short BSDE). We also give an approximation
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of the value function by a sequence of solutions of BSDEs. These solutions are the value

functions of the maximization problem restricted to some bounded subsets of strategies.

For the exponential utility function, we refer to the companion paper Lim and Quenez [25].

In order to solve the partial information problem, the common way is to use the filtering

theory, so as to reduce the stochastic control problem with partial information to one with

full information as in Pham and Quenez [29] or Roland [31]. Then we can apply the results

of the full information problem.

The outline of this paper is organized as follows. In Section 2, we describe the model and

formulate the optimization problem. In Section 3, we solve the maximization problem for

the logarithmic utility function with a direct approach. In Section 4, we consider the power

utility function by giving a characterization of the value function by a BSDE thanks to the

dynamic programming principle, then we approximate the value function by a sequence of

solutions of Lipschitz BSDEs. In Section 5, we use results from filtering theory to reduce

the stochastic control problem with partial information to one with full information, then

we apply the results of the full information problem to the partial information problem.

Finally we study the indifference price for a contingent claim and the information price

linked to the insider information.

2 The model

We start with a complete probability space (Ω,F ,P) and F = {Ft}0≤t≤T a filtration

in F satisfying the usual conditions (augmented and right-continuous). The terminal time

T < ∞ is a fixed constant, and we assume throughout that all processes are defined on the

finite time interval [0, T ]. Suppose that this space is equipped with two stochastic processes:

a Brownian motion W and a jump process N equal to Nt = 1τ≤t, where τ is a default time.

We assume that this default time can appear at any time: P(τ > t) > 0. We denote by M

the compensated martingale of this process N and by Λ its compensator in the filtration F.

We assume that the compensator Λ is absolutely continuous with respect to the Lebesgue

measure, so that there exists a process λ such that Λt =
∫ t

0 λsds. We can see that

Mt = Nt −

∫ t

0
λsds, (2.1)

is an F-martingale. In the sequel we assume that the process λ is uniformly bounded. It

should be noted that the construction of such process N is fairly standard; see, for example,

Bielecki and Rutkowski [2].

We introduce some sets used throughout the paper:

– L1,+ is the set of positive F-adapted càd-làg processes on [0, T ] such that E[Yt] < ∞

for any t ∈ [0, T ].

– S2 is the set of positive F-adapted càd-làg processes on [0, T ] such that E[supt∈[0,T ] |Yt|
2] <

∞.
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– L2(W ) (resp. L2
loc(W )) is the set of F-predictable processes on [0, T ] such that

E

[

∫ T

0
|Zt|

2dt
]

< ∞ (resp.

∫ T

0
|Zt|

2dt < ∞ a.s. ).

– L2(M) (resp. L1
loc(M)) is the set of F-predictable processes on [0, T ] such that

E

[

∫ T

0
λt|Ut|

2dt
]

< ∞ (resp.

∫ T

0
λt|Ut|dt < ∞ a.s. ).

We consider a financial market consisting of one risk-free asset, whose price process is

assumed for simplicity to be equal to 1 at each date, and one risky asset with a price process

S evolving according to the following diffusion

dSt = St−(µtdt+ σtdWt + βtdNt), 0 ≤ t ≤ T . (2.2)

We shall make the following standing assumptions:

Assumption 2.1. – µ and σ are R-valued uniformly bounded adapted stochastic pro-

cesses, with σt > 0 and θt = µt/σt uniformly bounded.

– β is a R-valued uniformly bounded predictable stochastic process, with βt > −1 for

any t ∈ [0, τ ].

The last assumption implies that the process S is positive.

An F-predictable process π = (πt)0≤t≤T is called trading strategy if
∫

πtXt

St
dSt is well

defined where Xt is the wealth at time t. The process π describes the part of the wealth

invested in the risky asset. The number of shares of the risky asset is given by πtXt

St
. The

wealth process Xx,π of a self-financing trading strategy π with initial capital x satisfies the

equation

Xx,π
t = x exp

(

∫ t

0

(

πsµs −
|πsσs|

2

2

)

ds+

∫ t

0
πsσsdWs

)

(1 + πτβτNt) . (2.3)

For a given initial time t and an initial capital x, the associated wealth process is denoted

by Xt,x,π.

Now let U : R → R be a utility function. The optimization problem consists of maxi-

mizing the expected utility from terminal wealth over the class A(x) of admissible portfolios

(which will be defined in the sequel). More precisely, we want to characterize the value

function of this problem, which is defined by

V (x) = sup
π∈A(x)

E
[

U(Xx,π
T )

]

, (2.4)

and we also want to give the optimal strategy when this one exists. We begin by the simple

case when U is the logarithmic utility function, then we study the power and exponential

utility functions.
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3 Logarithmic utility function

In this section, we specify the meaning of optimality for trading strategies by stipulating

that the agent wants to maximize his expected utility from his terminal wealth Xx,π
T with

respect to the logarithmic utility function

U(x) = log(x), x > 0 .

Our goal is to solve the following optimization problem

V (x) = sup
π∈A(x)

E
[

log(Xx,π
T )

]

, (3.1)

with A(x) the set of admissible portfolios defined by:

Definition 3.1. The set of admissible trading strategies A(x) consists of all F-predictable

processes π satisfying E[
∫ T

0 |πtσt|
2dt]+E[

∫ T

0 λt| log(1+πtβt)|dt] < ∞, and such that πtβt >

−1 a.s. for any 0 ≤ t ≤ τ .

We can see from (3.1) that V (x) = log(x)+V (1). Hence, we only study the case x = 1.

And for the sake of brevity, we shall denote Xπ
t instead of X1,π

t and A instead of A(1). By

definition of Xπ we obtain

log(Xπ
t ) =

∫ t

0

(

πsµs −
|πsσs|

2

2

)

ds+

∫ t

0
πsσsdWs +

∫ t

0
log(1 + πsβs)(dMs + λsds) . (3.2)

As in [21], we assume that supπ∈A E[log(Xπ
T )] < ∞.

We add the following assumption on the coefficients to be able to solve the optimization

problem (3.1) directly:

Assumption 3.1. The process β−1 is uniformly bounded.

With this assumption, we get easily the value function V (x) and the optimal strategy:

Theorem 3.1. The solution of the optimization problem (3.1) is given by

V (x) = log(x) + E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

,

with π̂ the optimal trading strategy defined by

π̂t =















µt

2σ2
t

−
1

2βt
+

√

(µtβt + σ2
t )

2 + 4λtβ2
t σ

2
t

2βtσ2
t

if t ≤ τ and βt 6= 0,

µt

σ2
t

if t ≤ τ and βt = 0 or t > τ.

(3.3)

Proof. With (3.2) and Definition 3.1, we get the following expression for V (1)

V (1) = sup
π∈A

E

[

∫ T

0

(

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)

)

dt
]

,
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which implies that

V (1) ≤ E

[

∫ T

0
ess sup
πtβt>−1

{

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)

}

dt
]

. (3.4)

For any t ∈ [0, T ] and any ω ∈ Ω, we have

ess sup
πtβt>−1

{

πtµt −
|πtσt|

2

2
+ λt log(1 + πtβt)dt

}

= π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt),

with π̂ defined by (3.3). Then from inequality (3.4), we can see that

V (1) ≤ E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

.

It now is sufficient to show that the strategy π̂ is admissible. It is clearly the case with

Assumption 3.1. Thus the previous inequality is an equality

V (1) = E

[

∫ T

0

(

π̂tµt −
|π̂tσt|

2

2
+ λt log(1 + π̂tβt)

)

dt
]

,

and the strategy π̂ is optimal.

Remark 3.1. Assumption 3.1 can be reduced to

E

[

∫ T

0
|π̂tσt|

2dt
]

+ E
[

∫ T

0
λt| log(1 + π̂tβt)|dt

]

< ∞ .

Remark 3.2. Recall that in the case without default, the optimal strategy is given by

π̃t = µt/σ
2
t . Thus, in the case of default, the optimal strategy can be written under the

form

π̂t = π̃t − εt,

where εt is an additional term given by

εt =











µt

2σ2
t

+
1

2βt
−

√

(µtβt + σ2
t )

2 + 4λtβ
2
t σ

2
t

2βtσ2
t

if t ≤ τ and βt 6= 0 ,

0 if t ≤ τ and βt = 0 or t > τ .

Note that if we assume that β is negative (resp. β is positive), i.e. the asset price S has

a negative jump (resp. a positive jump) at default time τ , ε is positive (resp. negative),

i.e. the agent has to invest less (resp. more) in the risky asset than in the case of a market

without default.

4 Power utility

In this section, we keep the notation of Section 3 and we shall study the case of the

power utility function defined by

U(x) = xγ , x ≥ 0 , γ ∈ (0, 1) .

In order to formulate the optimization problem we first define the set of admissible trading

strategies.
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Definition 4.1. The set of admissible trading strategies A(x) consists of all F-predictable

processes π such that
∫ T

0 |πtσt|
2dt+

∫ T

0 λt|πtβt|dt < ∞ a.s. and such that πτβτ ≥ −1 a.s.

Remark 4.1. From expression (2.3), it is obvious that the condition πτβτ ≥ −1 a.s. is

equivalent to Xx,π
t ≥ 0 a.s. for any 0 ≤ t ≤ T .

The portfolio optimization problem consists of determining a predictable portfolio π

which attains the optimal value

V (x) = sup
π∈A(x)

E
[

(Xx,π
T )γ

]

. (4.1)

Problem (4.1) can be clearly written as V (x) = xγV (1). Therefore, it is sufficient to study

the case x = 1. As in [21], we assume that supπ∈A(1) E[(X
1,π
T )γ ] < ∞. To solve the

optimization problem, we give a dynamic extension of the initial problem. For any initial

time t ∈ [0, T ], we define the value function J(t) by the following random variable

J(t) = ess sup
π∈At(1)

E

[

(

Xt,1,π
T

)γ
∣

∣

∣
Ft

]

,

with At(1) the set of F-predictable processes π = (πs)t≤s≤T such that
∫ T

t
|πsσs|

2ds +
∫ T

t
|πsβs|λsds < ∞ a.s. and such that πτβτ ≥ −1 a.s.

For the sake of brevity, we shall denote Xπ
s (resp. Xt,π

s ) instead of X1,π
s (resp. Xt,1,π

s )

and A (resp. At) instead of A(1) (resp. At(1)).

In the sequel, we will use the martingale representation theorem to characterize the

value function J(t):

Lemma 4.1. Any (P,F)-local martingale has the representation

mt = m0 +

∫ t

0
asdWs +

∫ t

0
bsdMs, ∀ t ∈ [0, T ] a.s. , (4.2)

where a ∈ L2
loc(W ) and b ∈ L1

loc(M). If m is a square integrable martingale, each term on

the right-hand side of the representation (4.2) is square integrable.

4.1 Optimization over bounded strategies

Before studying the value function J(t), we study the value functions (Jk(t))k∈N defined

by

Jk(t) = ess sup
π∈Ak

t

E

[

(Xt,π
T )γ

∣

∣

∣
Ft

]

, ∀ t ∈ [0, T ] a.s. , (4.3)

where Ak
t is the set of strategies of At uniformly bounded by k. That means that the part

of the wealth invested in the risky asset has to be bounded by a constant k, which makes

sense in finance, because the ratio of the amount of money invested or borrowed to the

wealth must be bounded according to the financial legislation.

Let us fix k ∈ N. We want to characterize the value function Jk(t) by a BSDE. For that

we introduce for any π ∈ Ak the càd-làg process Jπ defined for any t ∈ [0, T ] by

Jπ
t = E

[

(Xt,π
T )γ

∣

∣Ft

]

.

The family {Jπ, π ∈ Ak} is uniformly bounded:
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Lemma 4.2. The process Jπ is uniformly bounded by a constant independent of π.

Proof. Fix t ∈ [0, T ]. We have

Jπ
t = E

[

exp
(

γ

∫ T

t

(µsπs −
|σsπs|

2

2
)ds+

∫ T

t

γσsπsdWs

)

(1 + πτβτ1t<τ≤T )
γ
∣

∣

∣
Ft

]

,

since the coefficients µ, σ and β are supposed to be uniformly bounded, we can see that

Jπ
t ≤ (1 + k |β|∞)γ exp

(

(γ k |µ|∞ + γ2
(k |σ|∞)2

2
)T

)

.

Classically, for any π ∈ Ak, the process Jπ can be shown to be the solution of a linear

BSDE. More precisely, there exist Zπ ∈ L2(W ) and Uπ ∈ L2(M), such that (Jπ, Zπ, Uπ)

is the solution in S2 × L2(W )× L2(M) of the linear BSDE with bounded coefficients



















− dJπ
t =

{

γπt(µtJ
π
t + σtZ

π
t ) +

γ(γ − 1)

2
π2
t σ

2
t J

π
t + λt((1 + πtβt)

γ − 1)(Jπ
t + Uπ

t )
}

dt

− Zπ
t dWt − Uπ

t dMt,

Jπ
T = 1.

(4.4)

Using the fact that Jk(t) = ess supπ∈Ak
t
Jπ
t for any t ∈ [0, T ], we derive that Jk(.)

corresponds to the solution of a BSDE, whose generator is the essential supremum over π

of the generators of {Jπ, π ∈ Ak}. More precisely,

Proposition 4.1. The following properties hold:

– Let (Y,Z,U) be the solution in S2×L2(W )×L2(M) of the following Lipschitz BSDE























− dYt =ess sup
π∈Ak

{

γπt(µtYt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Yt + λt((1 + πtβt)

γ − 1)(Yt + Ut)
}

dt

− ZtdWt − UtdMt,

YT = 1.

(4.5)

Then, Jk(t) = Yt a.s. for any t ∈ [0, T ].

– There exists a unique optimal strategy for Jk(0) = supπ∈Ak E[(Xπ
T )

γ ].

– A strategy π̂ ∈ Ak is optimal for Jk(0) if and only if it attains the essential supremum

of the generator in (4.5) dt⊗ dP− a.e.

Proof. Since for any π ∈ Ak there exist Zπ ∈ L2(W ) and Uπ ∈ L2(M) such that (Jπ, Zπ, Uπ)

is the solution of the BSDE

− dJπ
t = fπ(t, Jπ

t , Z
π
t , U

π
t )dt− Zπ

t dWt − Uπ
t dMt ; Jπ

T = 1 ,
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with fπ(s, y, z, u) = γ(γ−1)
2 π2

sσ
2
sy + γπs(µsy + σsz) + λs

(

(1 + πsβs)
γ − 1

)

(y + u). Let us

introduce the generator f which satisfies ds ⊗ dP− a.e.

f(s, y, z, u) = ess sup
π∈Ak

fπ(s, y, z, u) .

Note that f is Lipschitz, since the supremum of affine functions, whose coefficients are

bounded by a positive constant c, is Lipschitz with Lipschitz constant c. Hence, the BSDE

with Lipschitz generator f

− dYt = f(y, Yt, Zt, Ut)dt− ZtdWt − UtdMt ; YT = 1,

admits a unique solution denoted by (Y,Z,U).

By the comparison theorem in case of jumps Yt ≥ Jπ
t , ∀ t ∈ [0, T ] a.s. As this inequality

is satisfied for any π ∈ Ak, it is obvious that Yt ≥ ess supπ∈Ak Jπ
t a.s. Also, by applying a

predictable selection theorem, one can easily show that there exists π̂ ∈ Ak such that for

any t ∈ [0, T ], we have

ess sup
π∈Ak

{

γπt(µtYt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Yt + λt((1 + πtβt)

γ − 1)(Yt + Ut)
}

= γπ̂t(µtYt + σtZt) +
γ(γ − 1)

2
π̂2
t σ

2
t Yt + λt((1 + π̂tβt)

γ − 1)(Yt + Ut).

Thus (Y,Z,U) is a solution of the BSDE (4.4) associated with π̂. Therefore by uniqueness

of the solution of the BSDE (4.4), we have Yt = J π̂
t and thus Yt = ess supπ∈Ak

t
Jπ
t = J π̂

t ,

∀ t ∈ [0, T ] a.s.

The uniqueness of the optimal strategy is due to the strict concavity of the function x 7→

xγ .

4.2 General case

In this part, we characterize the value function J(t) by a BSDE, but the general case is

more complicated than the case with bounded strategies and it needs more technical tools.

Note that the random variable J(t) is defined uniquely only up to P-almost sure equivalent

and that the process J(.) is adapted but not necessarily progressive. Using dynamic control

technics, we derive the following characterization of the value function:

Proposition 4.2. J(.) is the smallest F-adapted process such that (Xπ)γJ(.) is a super-

martingale for any π ∈ A with J(T ) = 1. More precisely, if J̄ is an F-adapted process such

that (Xπ)γ J̄ is a supermartingale for any π ∈ A with J̄T = 1, then for any t ∈ [0, T ], we

have J(t) ≤ J̄t a.s.

From [21], there exists an optimal strategy π̂ ∈ A such that J(0) = E[(X π̂
T )

γ ]. From the

dynamic programming principle, we have the following optimality criterion:

Proposition 4.3. The following assertions are equivalent:

i) π̂ is an optimal strategy, that is E[(X π̂
T )

γ ] = supπ∈A E[(Xπ
T )

γ ].

9



ii) The process (X π̂)γJ(.) is a martingale.

The proof of these propositions is given in Appendix A.

By Proposition 4.2, J(.) is a supermartingale. Hence for any t ∈ [0, T ] we have E[J(t)] ≤

J(0) < ∞.

Proposition 4.4. There exists a càd-làg modification of J(.) which is denoted by J .

Proof. By Proposition 4.3, we know that J(t) = E[(X π̂
T )

γ |Ft]/(X
π̂
t )

γ a.s. Which implies

the desired result.

This càd-làg process is characterized by a BSDE. More precisely, we have:

Theorem 4.1. There exist Z ∈ L2
loc(W ) and U ∈ L1

loc(M) such that (J,Z,U) is the

minimal solution1 in L1,+ × L2
loc(W )× L1

loc(M) of the following BSDE



















− dJt =ess sup
π∈A

{

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt + λt((1 + πtβt)

γ − 1)(Jt + Ut)
}

dt

− ZtdWt − UtdMt,

JT = 1.

(4.6)

There exists a unique optimal strategy such that J(0) = E[(X π̂
T )

γ ]. Moreover, π̂ ∈ A is

optimal if and only if it attains the essential supremum of the generator in (4.6) dt⊗dP−a.e.

The proof of this theorem is postponed in Appendix B.

There exists another characterization of the value function J as the limit of processes

(Jk)k∈N as k tends to +∞, when Jk is the value function in the case where the strategies

are bounded by k:

Theorem 4.2. For any t ∈ [0, T ], we have

Jt = lim
k→∞

↑ Jk(t) a.s.

The proof of this theorem is given in Appendix C.

This allows to approximate the value function J by numerical computation, since the

value functions (Jk)k∈N are the solution of Lipschitz BSDEs and the results of [3] can be

applied.

5 The partial information case

We consider a general filtration which modelizes the information given by the prices

(St)0≤t≤T , the default time τ , but also by other factors. These factors can have in particu-

lar an influence on the default probability. We consider an agent on this market, which does

1That is for any solution (J̄ , Z̄, Ū) of the BSDE (4.6) in L1,+×L2
loc(W )×L1

loc(M), we have Jt ≤ J̄t, ∀ t ∈

[0, T ] a.s.
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not observe all the information but only the information given by the prices and the default

time. The underlying Brownian motion, the drift process and the compensator process in

the equation for the asset price are not directly observable.

Let (Ω,F ,P) be a probability triplet and F = {Ft, 0 ≤ t ≤ T} a filtration in F satisfying

the usual conditions (augmented and right continuous). Suppose that this space is equipped

with W and N as in Section 2. We also assume there are a risk-free asset and a risky asset

on the market. As in Section 2, we assume that the price process S evolves according to

the following model

dSt = St−(µtdt+ σtdWt + βtdNt), 0 ≤ t ≤ T, (5.1)

moreover we assume that

σt =

{

σ1(t, St) if t ≤ τ ,

σ2(t, St, τ, βτ ) if t > τ ,

and

βt = β(t, St−) if t ≤ τ ,

Note that the intensity λ and the drift µ are not necessary observable. The known functions

σ1(t, x) and β(t, x) are measurable mappings from [0, T ] × R into R, and the function

σ2(t, x, s, b) is a measurable mapping from [0, T ]×R×R+×]− 1,∞[ into R. We make the

hypotheses of Assumption 2.1 and we add the following assumption:

Assumption 5.1. The functions xσ1(t, x), xσ2(t, x, s, b) and xβ1(t, x) are Lipschitz in

x ∈ R , uniformly in t ∈ [0, T ], s ∈ R+ and b ∈]− 1,∞[.

We now consider an agent in this market who can observe neither the Brownian motion

W nor the drift µ and the process λ, but only the asset price process S and the default

time τ . We shall denote by G = {Gt, 0 ≤ t ≤ T} the P-filtration augmented by the price

process S and the default process N . The trading strategies are defined as in Section 2,

but we add the condition that they are G-predictable. We now want to solve the problem

of maximization of expected utility from terminal wealth. It is not possible to use directly

the results of the full information case because we do not know the Brownian motion, the

drift and the compensator. As in [29], we begin by an operation of filtering.

5.1 Filtering

Recall that we have assumed that θt = µt/σt is uniformly bounded, therefore the fol-

lowing integrability condition holds

∫ T

0
|θt|

2dt < ∞ a.s.

Consider the positive martingale defined by L0 = 1 and dLt = −Lt θtdWt. It is explicitly

given by

Lt = exp
(

−

∫ t

0
θsdWs −

1

2

∫ t

0
|θs|

2ds
)

. (5.2)

11



One can define a probability measure equivalent to P on (Ω,F) characterized by

dQ

dP

∣

∣

∣

Ft

= Lt, 0 ≤ t ≤ T . (5.3)

By Girsanov’s theorem, the process defined by

W̃t = Wt +

∫ t

0
θsds (5.4)

is a (Q,F)-Brownian motion and the compensated martingale M is still a (Q,F)-martingale.

The dynamic of S under Q is given by

dSt = St−(σtdW̃t + βtdNt) . (5.5)

We begin by proving a lemma which will be of paramount importance in the sequel:

Proposition 5.1. Under Assumption 2.1, the filtration G is the augmented filtration of

(W̃ ,N).

Proof. Let FW̃ ,N be the augmented filtration of (W̃ ,N). From (5.5), we have

W̃t =

∫ t

0
σ−1
s S−1

s−
dSs −

∫ t

0
σ−1
s βsdNs ,

for any t ∈ [0, T ], which implies that W̃ is G-adapted and FW̃ ,N ⊂ G. Conversely, under

the assumptions on the coefficients, by a classical result of stochastic differential equation

(see [30], Theorem V 3.7), the unique solution of (5.5), on 0 ≤ t < τ , is FW̃ -adapted, and

by using a Picard sequence and an iteration we prove that the unique solution of (5.5) is

FW̃ ,N -adapted on τ ≤ t. Hence G ⊂ FW̃ ,N and finally G = FW̃ ,N .

Since the processes θ and λ are not G-predictable, it is natural to introduce the G-

conditional law of these random variables, say

λ̃t = E
[

λt

∣

∣Gt

]

and θ̃t = E
[

θt
∣

∣Gt

]

.

Consider the couple of processes (W̄ , M̄) defined by














W̄t = W̃t −

∫ t

0
θ̃sds ,

M̄t = Nt −

∫ t

0
λ̃sds .

(5.6)

These are the so-called innovation processes of filtering theory. By classical results in

filtering theory (see for example [28], Proposition 2.27), we have:

Proposition 5.2. The process M̄ is a (Q,G)-martingale.

Proof. Since the process N and the intensity λ̃ are G-adapted, the process M̄ is G-adapted.

We can write from (2.1)

M̄t = Mt +

∫ t

0
(λs − λ̃s)ds .

By the law of iterated conditional expectation, it is easy to check that M̄ is a (Q,G)-

martingale.
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Remark 5.1. From Proposition 5.1 and (5.6), the filtration G is equal to the augmented

filtration of (W̃ , M̄), since [M̄ ]t = Nt.

We have also the following property about the process W̄ :

Proposition 5.3. The process W̄ is a (P,G)-Brownian motion.

Proof. We can write with (5.4)

W̄t = Wt +

∫ t

0
σ−1
s (µs − µ̃s)ds , (5.7)

where µ̃t = E
[

µt

∣

∣Gt

]

. By Proposition 5.1 and (5.6), W̄ is G-adapted. Moreover, we have

[W̄ , W̄ ]t = t for any t ∈ [0, T ]. By the law of iterated conditional expectation, it is easy to

check that W̄ is a G-martingale. We then conclude by Levy’s characterization theorem on

Brownian motion (see, e.g., Theorem 3.3.16 in [19]).

Denote by Λ the (Q,F)-martingale given by Λt = 1/Lt. We then have

dP

dQ

∣

∣

∣

Ft

= Λt, 0 ≤ t ≤ T .

Let Λ̃ be the (Q,G)-martingale given by Λ̃t = EQ[Λt

∣

∣Gt]. Recall the classical proposition

(see for example [23] or [29]), which gives the expression of Λ̃:

Lemma 5.1. We have

Λ̃t = exp
(

∫ t

0
θ̃sdW̃s −

1

2

∫ t

0
|θ̃s|

2ds
)

. (5.8)

Proposition 5.4. The process M̄ is a (P,G)-martingale.

Proof. Since dP
dQ

∣

∣

Gt
= Λ̃t, we can apply Girsanov’s theorem and we get that the process M̄

is a (P,G)-martingale.

By means of innovation processes, we can describe from (5.1) and (5.7) the dynamics

of the partially observed default model within a framework of full observation model

{

dSt = St−(µ̃tdt+ σtdW̄t + βtdNt) ,

dM̄t = dNt − λ̃tdt ,
(5.9)

where µ̃ and λ̃ are G-predictable processes.

Hence, the operations of filtering and control can be put in sequence and thus separated.

5.2 Optimization problem for the classical utilities

To apply the results of Section 4, it is sufficient to have a martingale representation

theorem for (P,G)-martingales with respect to W̄ and M̄ . Notice it cannot be directly de-

rived from the usual martingale representation theorem since G is not equal to the filtration

generated by W̄ and M̄ .
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Lemma 5.2. Any (P,G)-local martingale has the representation

mt = m0 +

∫ t

0
asdW̄s +

∫ t

0
bsdM̄s, ∀ t ∈ [0, T ] a.s. , (5.10)

where a ∈ L2
loc(W̄ ) and b ∈ L1

loc(M̄ ). If m is a square integrable martingale, each term on

the right-hand side of the representation (5.10) is square integrable.

The proof of this lemma is postponed in Appendix D.

It is now possible to apply the previous results because the price process evolves ac-

cording to the equation
{

dSt = St−(µ̃tdt+ σtdW̄t + βtdNt),

dM̄t = dNt − λ̃tdt,

where µ̃, λ̃ and σ are G-adapted, and β is G-predictable, and there exists a martingale

representation theorem for (P,G)-martingales. We get the following characterization for

the value functions and the optimal strategies when they exist.

For the logarithmic utility function, we assume that β−1 is uniformly bounded, and we

have:

Theorem 5.1. The solution of the optimization problem for the logarithmic utility function

is given by

V (x) = log(x) + E

[

∫ T

0

(

π̂tµ̃t −
|π̂tσt|

2

2
+ λ̃t log(1 + π̂tβt)

)

dt
]

,

with π̂ the optimal trading strategy defined by

π̂t =























µ̃t

2σ2
t

−
1

2βt
+

√

(µ̃tβt + σ2
t )

2 + 4λ̃tβ
2
t σ

2
t

2βtσ
2
t

if t ≤ τ and βt 6= 0,

µ̃t

σ2
t

if t ≤ τ and βt = 0 or t > τ.

Therefore, we can see that the optimal portfolio in the case of partial information can

be formally derived from the full information case by replacing the unobservable coefficients

µt and λt by theirs estimates µ̃t and λ̃t.

For the power utility function, we have:

Theorem 5.2. – Let (Ȳ , Z̄, Ū) be the minimal solution in L1,+ × L2
loc(W̄ ) × L1

loc(M̄ )

of the BSDE (4.6) and (W, M, µ, λ) replaced by (W̄ , M̄ , µ̃, λ̃), then

Ȳt = ess sup
π∈At

E
[

(Xt,π
T )γ

∣

∣Gt

]

a.s.

– If a strategy π̂ ∈ A is optimal for J0 = supπ∈A E[(Xπ
T )

γ ] then π̂ attains the essential

supremum in the generator of the BSDE (4.6) dt⊗ dP a.s.

– Moreover the process Ȳ is the non-decreasing limit of the process (Ȳ k)k∈N, where

(Ȳ k, Z̄k, Ūk) is the solution in S2×L2(W̄ )×L2(M̄ ) of the BSDE (4.5) and (W,M,µ, λ)

replaced by (W̄ , M̄ , µ̃, λ̃).
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5.3 Optimization problem for the exponential utility function and indif-

ference pricing

We can also apply the results of [25] for the exponential utility function. In this case,

we assume that the agent faces some liability, which is modeled by a random variable ξ (for

example, ξ may be a contingent claim written on some default events affecting the prices of

the underlying assets). We suppose that ξ is a non-negative GT -adapted process (note that

all the results still hold under the assumption that ξ is only lower bounded). Without loss

of generality we can use a somewhat different notion of trading strategy: φt corresponds to

the amount of money invested in the asset at time t. The number of shares is φt/St. With

this notation, under the assumption that the trading strategy is self-financing, the wealth

process Xx,φ associated with a trading strategy φ and an initial capital x is equal to

Xx,φ
t = x+

∫ t

0
φsµ̃sds+

∫ t

0
φsσsdWs +

∫ t

0
φsβsdNs.

Our goal is to solve the optimization problem for an agent who buys a contingent claim ξ

V (x, ξ) = sup
φ∈A(x)

E
[

− exp
(

− γ
(

Xx,φ
T + ξ

))]

= exp(−γx)V (0, ξ), (5.11)

where A(x) is defined by:

Definition 5.1. The set of admissible trading strategies A(x) consists of all G-predictable

processes φ = (φt)0≤t≤T , which satisfy
∫ T

0 |φtσt|
2ds +

∫ T

0 |φtβt|
2λ̃tdt < ∞, P − a.s. and

such that for any φ fixed and any t ∈ [0, T ], there exists a constant Kt,π such that for any

s ∈ [t, T ], we have Xt,π
s ≥ Kt,π, P− a.s.

To solve this problem, it is sufficient to study the case x = 0. For that we give a dynamic

extension of the initial problem as in Section 4. For any initial time t ∈ [0, T ], we define

the value function Jξ(t) by the following random variable

Jξ(t) = ess inf
φ∈At

E
[

exp
(

− γ
(

Xt,0,φ
T + ξ

))
∣

∣Gt

]

,

with At is the admissible portfolio strategies set defined by:

Definition 5.2. The set of admissible trading strategies At consists of all G-predictable

processes φ = (φs)t≤s≤T , which satisfy
∫ T

t
|φsσs|

2ds +
∫ T

t
|φsβs|

2λ̃sds < ∞, P − a.s. and

such that for any φ fixed and any s ∈ [t, T ], there exists a constant Ks,π such that for any

u ∈ [s, T ], we have Xs,π
u ≥ Ks,π, P− a.s.

We introduce the two following sets:

– S+,∞ is the set of positive G-adapted P-essentially bounded càd-làg processes on

[0, T ].

– A2 is the set of the increasing adapted càd-làg processes K such that K0 = 0 and

E|KT |
2 < ∞.

15



By applying the results of the companion paper Lim and Quenez [25], we get the following

characterizations of the value function:

Theorem 5.3. – Let (Ȳ , Z̄, Ū , K̄) be the maximal solution2 in S+,∞×L2(W̄ )×L2(M̄ )×

A2 of






















− dȲt =− Z̄tdW̄t − ŪtdM̄t − dK̄t + ess inf
φ∈A

{γ2

2
|φtσt|

2Ȳt − γφt(µ̃tȲt + σtZ̄t)

−
(

1− e−γφtβt
)

(λ̃tȲt + λ̃tŪt)
}

dt,

ȲT = exp(−γξ),

(5.12)

then Ȳt = J̄ξ(t), P− a.s., for any t ∈ [0, T ].

– J̄ξ(t) = limn→∞ ↓ J̄ξ,k(t), with J̄ξ,k(t) = ess infφ∈Ak
t
E[exp(−γ(Xt,0,φ

T + ξ))|Gt] and

Ak
t is the set of strategies of At uniformly bounded by k.

– Let (Ȳ k, Z̄k, Ūk) be the unique solution in S2×L2(W̄ )×L2(M̄) of the following BSDE






















− dȲ k
t =− Z̄k

t dW̄t − Ūk
t dM̄t + ess inf

φ∈Ak

{γ2

2
|φtσt|

2Ȳ k
t − γφt(µ̃tȲ

k
t + σtZ̄

k
t )

− (1− e−γφtβt)(λ̃tȲ
k
t + λ̃tŪ

k
t )
}

dt,

Ȳ k
T = exp(−γξ),

(5.13)

then Ȳ k
t = J̄ξ,k(t), P− a.s., for any t ∈ [0, T ].

We can now define the indifference pricing of the contingent claim ξ. The Hodges ap-

proach to pricing of unhedgeable claims is a utility-based approach and can be summarized

as follows: the issue at hand is to assess the value of some (defaultable) claim ξ as seen from

the perspective of an investor who optimizes his behavior relative to some utility function,

in our case we use the exponential utility function. The investor has two choices:

– he only invests in the risk-free asset and in the risky assets, in this case the associated

optimization problem is

V (x, 0) = sup
φ∈A(x)

E
[

− exp
(

− γ
(

Xx,φ
T

))]

,

– he also invests in the contingent claim, whose price is p̄ at 0, in this case the associated

optimization problem is

V (x− p̄, ξ) = sup
φ∈A(x−p̄)

E
[

− exp
(

− γ
(

Xx−p̄,φ
T + ξ

))]

.

Definition 5.3. For a given initial capital x, the Hodges buying price of a defaultable

claim ξ is the price p̄ such that the investor’s value functions are indifferent between holding

and not holding the contingent claim, i.e.

V (x, 0) = V (x− p̄, ξ).

2That is for any solution (J̄ , Z̄, Ū , K̄) of the BSDE (5.12) in S+,∞ × L2(W̄ ) × L2(M̄) × A2, we have

J̄t ≤ Jt, ∀ t ∈ [0, T ], P− a.s.
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The Hodges price p̄ can be derived explicitly by applying the results of Theorem 5.3. If

the agent buys the contingent claim at the price p̄ and invests the rest of his wealth in the

risk-free asset and in the risky assets, the value function is equal to

V (x− p̄, ξ) = − exp(−γ(x− p̄))J̄ξ(0).

If he invests all his wealth in the risk-free asset and in the risky assets, the value function

is equal to

V (x, 0) = − exp(−γx)J̄0(0).

The Hodges price for the contingent claim ξ is clearly given by the formula

p̄ =
1

γ
ln

( J̄0(0)

J̄ξ(0)

)

.

Remark 5.2. If we restrict the admissible strategies to the bounded set Ak, the indifference

price p̄k can also be defined by the same method. More precisely,

p̄k =
1

γ
ln

( J̄0,k(0)

J̄ξ,k(0)

)

,

where J̄ξ,k(0) is defined in Theorem 5.3.

Note that

p̄ = lim
k→∞

p̄k.

This allows to approximate the indifference price by numerical computation, since the value

functions (J̄ξ,k(t))k∈N are the solution of a Lipschitz BSDE and the results of [3] can be

applied.

We assume that there are two kinds of agents in the market: the insider agents and the

classical agents. We define the information price d for a contingent claim as the difference

between the buying price for a classical agent and the buying price for an insider agent.

The buying price, if the agent knows the full information, is defined by (see [25])

p =
1

γ
ln

(J0(0)

Jξ(0)

)

,

where (Jξ, Z, U,K) is the maximal solution of the BSDE (5.12) with (W̄ , M̄ , µ̃, λ̃) replaced

by (W, M, µ, λ).

Then the benefit of an insider agent who has a full information is the information price

d = p̄− p.

This price can be computed as the limit of the information prices (dk)k∈N, where dk is the

information price if we restrict the admissible strategies to the bounded set Ak

dk =
1

γ

(

ln
( J̄0,k(0)

J0,k(0)

)

− ln
( J̄ξ,k(0)

Jξ,k(0)

))

,

17



where Jξ,k is the solution of the BSDE (5.13) with (W̄ , M̄ , µ̃, λ̃) replaced by (W, M, µ, λ).

Then we have

d = lim
k→∞

dk.

Appendix

A Proof of Propositions 4.2 and 4.3

The proofs of these two propositions are based on the following lemma:

Lemma A.1. The set {Jπ
t , π ∈ At} is stable by supremum for any t ∈ [0, T ], i.e. for any

π1, π2 ∈ At, there exists π ∈ At such that Jπ
t = Jπ1

t ∨ Jπ2

t .

Furthermore, there exists a sequence (πn)n∈N ∈ At for any t ∈ [0, T ], such that

J(t) = lim
n→∞

↑ Jπn

t , P− a.s.

Proof. Let us introduce the set E = {Jπ1

t ≥ Jπ2

t )} which belongs to Ft. Let us define the

strategy π by the formula πs = π1
s1E + π2

s1Ec for any s ∈ [t, T ]. It is obvious that π ∈ At.

And by construction of π, it is clear that Jπ
t = Jπ1

t ∨ Jπ2

t .

The second part of the lemma follows by classical results on the essential supremum (see

[27]).

We first prove that the process (Xπ)γJ(.) is a supermartingale for any π ∈ A. For that

it is sufficient to show for any s ≤ t that

E
[

(Xs,π
t )γJ(t)

∣

∣Fs

]

≤ J(s) a.s.

By Lemma A.1, there exists a sequence (πn)n∈N of At such that J(t) = lim ↑ Jπn

t a.s. We

define the strategy π̃n by π̃n
u = πu1[s,t](u)+πn

u1]t,T ](u), which is clearly admissible. By the

monotone convergence theorem and using the definition of J(.), one can easily show that

E
[

(Xs,π
t )γJ(t)

∣

∣Fs

]

= lim
n→∞

↑ E
[

(Xs,π̃n

T )γ
∣

∣Fs

]

≤ J(s) a.s.

Hence, the process (Xπ)γJ(.) is a supermartingale for any π ∈ A.

Second, we prove that J(.) is the smallest process satisfying (Xπ)γJ(.) is a supermartin-

gale for any π ∈ A. For that we suppose that J̄ is an F-adapted process such that (Xπ)γ J̄

is a supermartingale for any π ∈ A with J̄T = 1. Fix t ∈ [0, T ]. For any π ∈ A, we have

E[(Xπ
T )

γ |Ft] ≤ (Xπ
t )

γ J̄t a.s. This inequality is equivalent to E[(Xt,π
T )γ |Ft] ≤ J̄t. Which

implies

ess sup
π∈At

E
[

(Xt,π
T )γ

∣

∣Ft

]

≤ J̄t a.s. ,

which clearly gives that Jt ≤ J̄t a.s.
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At last, we prove the optimality criterion, that is Proposition 4.3. Suppose that the

strategy π̂ is an optimal strategy, hence we have

J(0) = sup
π∈A

E
[(

Xπ
T

)γ]
= E

[(

X π̂
T

)γ]
.

As the process (X π̂)γJ(.) is a supermartingale by Proposition 4.2 and that J(0) = E[(X π̂
T )

γ ],

the process (X π̂)γJ(.) is a martingale.

To show the converse, suppose that the process (X π̂)γJ(.) is a martingale, then E[(X π̂
T )

γ ] =

J(0). Moreover E[(Xπ
t )

γJ(t)] ≤ J(0) for any π ∈ A by Proposition 4.2. Which implies that

J(0) = sup
π∈A

E
[(

Xπ
T

)γ]
= E

[(

X π̂
T

)γ]
.

B Proof of Theorem 4.1

The proof of this theorem is based on Propositions 4.2 and 4.3, on Doob-Meyer’s de-

composition and on the martingale representation theorem.

Since the process J is a supermartingale, it can be written under the following form by

using Doob-Meyer’s decomposition (see [5]) and the martingale representation theorem

dJt = ZtdWt + UtdMt − dAt , (B.1)

with Z ∈ L2
loc(W ), U ∈ L1

loc(M) and A is a non-decreasing F-adapted process with A0 = 0.

From product rule, the derivative of process (Xπ
t )

γJ can be written under the form

d((Xπ
t )

γJt) = (Xπ
t−)

γ
(

dAπ
t + dMπ

t

)

,

with Aπ
0 = 0 and







dAπ
t =

[

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt + λt((1 + πtβt)

γ − 1)(Jt + Ut)
]

dt− dAt ,

dMπ
t = (γπtσtJt + Zt)dWt + (Ut + ((1 + πtβt)

γ − 1)(Jt + Ut))dMt .

(B.2)

From Proposition 4.2, we have dAπ
t ≤ 0 for any π ∈ A, which implies

dAt ≥ ess sup
π∈A

{

γπt(µtJt + σtZt) +
γ(γ − 1)

2
π2
t σ

2
t Jt + λt((1 + πtβt)

γ − 1)(Jt + Ut)
}

dt .

From [21], there exists an optimal strategy π̂ ∈ A to the optimization problem and from

Proposition 4.3, we get

dAt =
[

γπ̂t(µtJt + σtZt) +
γ(γ − 1)

2
π̂2
t σ

2
t Jt + λt((1 + π̂tβt)

γ − 1)(Jt + Ut)
]

dt .

Which imply that

dAt = ess sup
π∈A

{

γπt(µtJt+σtZt)+
γ(γ − 1)

2
π2
t σ

2
t Jt+λt((1+πtβt)

γ −1)(Jt+Ut)
}

dt . (B.3)
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Therefore the process (J,Z,U) is a solution of the BSDE (4.6).

We now prove that it is the minimal solution. Let (J̄ , Z̄, Ū) be a solution of the BSDE

(4.6). Let us prove that (Xπ)γ J̄ is a supermartingale for any π ∈ A. From the product

rule, we can write the derivative of this process under the form

d
(

(Xπ
t )

γ J̄t
)

= (Xπ
t−)

γ
[

dM̄π
t + dĀπ

t − dĀt

]

, (B.4)

where Ā and M̄π are given by (B.3) and B.2 with (J,Z,U) replaced by (J̄ , Z̄, Ū ), and

Āπ
0 = 0 and

dĀπ
t =

[

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
]

dt .

By integrating (B.4), we get

(Xπ
t )

γ J̄t − J̄0 =

∫ t

0
(Xπ

s−)
γdM̄π

s −

∫ t

0
(Xπ

s )
γ(dĀs − dĀπ

s ) .

As dĀs ≥ dĀπ
s , we have

∫ t

0 (X
π
s−
)γdM̄π

s ≥ (Xπ
t )

γ J̄t − J̄0 ≥ −J̄0. It implies that M̄π is a

supermartingale, since it is a lower bounded local martingale. Hence, the process (Xπ)γ J̄

is a supermartingale for any π ∈ A, because it is the sum of a supermartingale and a

non-increasing process. Proposition 4.2 implies that Jt ≤ J̄t, ∀ t ∈ [0, T ] a.s., which ends

this proof.

C Proof of Theorem 4.2

We first remark that Jk satisfies the following property:

Lemma C.1. The process Jk is the smallest F-adapted process such that (Xπ)γJk is a

supermartingale for any π ∈ Ak with Jk
t = 1.

To prove this lemma, we use exactly the same arguments as in the proof of Proposition 4.2,

since Lemma A.1 is still true with Ak
t instead of At.

Fix t ∈ [0, T ]. It is obvious with the definition of sets At and Ak
t that Ak

t ⊂ At for each

k ∈ N and hence

Jk
t ≤ Jt a.s. (C.1)

Moreover, since Ak
t ⊂ Ak+1

t for each k ∈ N, it follows that the positive sequence (Jk)k∈N is

non-decreasing. Let us define the random variable

J̃(t) = lim
k→∞

↑ Jk
t a.s.

It is obvious that J̃(t) ≤ Jt a.s. from (C.1) and this holds for any t ∈ [0, T ]. It remains to

prove that for any t ∈ [0, T ], Jt ≤ J̃(t) a.s. As in the proof of Theorem 4.2 of the companion

paper [25], we first prove that the process J̃(t+) is càd-làg and satisfies J̃(t+) ≤ J̃(t) a.s.

The process ((Xπ
t )

γ J̃(t+)) is a supermartingale for any bounded strategy π ∈ A. In the
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sequel, we shall denote J̄t instead of J̃(t+). We now prove that J̄t ≥ Jt, ∀ t ∈ [0, T ] a.s.

Since J̄ is a càd-làg supermartingale, it admits the following Doob-Meyer’s decomposition

dJ̄t = Z̄tdWt + ŪtdMt − dĀt ,

with Z̄ ∈ L2
loc(W ), Ū ∈ L1

loc(M) and Ā is a non-decreasing G-adapted process with Ā0 = 0.

As before, we use the fact that the process (Xπ)γ J̄ is a supermartingale for any bounded

strategy π ∈ A to give some conditions satisfied by the process Ā. Let π ∈ A be a uniformly

bounded strategy, the product rule gives

d((Xπ
t )

γ J̄t) = (Xπ
t−)

γ
(

dĀπ
t + dM̄π

t

)

, (C.2)

where Āπ and M̄π are given by (B.2) with (J,Z,U,A) replaced by (J̄ , Z̄, Ū , Ā).

Let Āt be the subset of uniformly bounded strategies of At. Since the process (Xπ)γ J̄

is a supermartingale for any π ∈ Ā, we have

dĀt ≥ ess sup
π∈Ā

{

γπt(µtJ̄t+σtZ̄t)+
γ(γ − 1)

2
π2
t σ

2
t J̄t+λt((1+πtβt)

γ −1)(J̄t+ Ūt)
}

dt . (C.3)

It is not possible to give an exact expression of Āt as in the previous proof, because we

do not know if π̂ ∈ Ā. But this inequality is sufficient for the demonstration. Now, the

following equality holds dt⊗ dP a.s.

ess sup
π∈Ā

{

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
}

=

ess sup
π∈A

{

γπt(µtJ̄t + σtZ̄t) +
γ(γ − 1)

2
π2
t σ

2
t J̄t + λt((1 + πtβt)

γ − 1)(J̄t + Ūt)
}

. (C.4)

We now want to show that (Xπ)γ J̄ is a supermartingale for any π ∈ A. Fix π ∈ A (not

necessarily uniformly bounded), we get

(Xπ
t )

γ J̄t − J̄0 =

∫ t

0
(Xπ

s−)
γdM̄π

s +

∫ t

0
(Xπ

s )
γdĀπ

s ,

with Āπ and M̄π given by (B.2) with (J,Z,U,A) replaced by (J̄ , Z̄, Ū , Ā).

Inequality (C.3) and equality (C.4) imply that dĀπ
t ≤ 0 a.s. Therefore, we have

∫ t

0
(Xπ

s−)
γdM̄π

s ≥ (Xπ
t )

γ J̄t − J̄0 ≥ −J̄0 .

Thus, M̄π is a supermartingale, since it is a lower bounded local martingale. As M̄π is

a supermartingale and Āπ is non-increasing, the process (Xπ)γ J̄ is a supermartingale and

this holds for any π ∈ A. Since J is the smallest process (see Proposition 4.2) satisfying

these properties, we have Jt ≤ J̄t a.s. Which ends the proof.

D Proof of Lemma 5.2

First, recall Bayes formula: for any t ∈ [0, T ] and X ∈ L1(Ω,Ft,P), one has

E
[

X
∣

∣Gt

]

=
EQ

[

ΛtX
∣

∣Gt

]

Λ̃t

. (D.1)

21



Let ξ be the optional projection of the P-martingale L to G, so

ξt = E
[

Lt

∣

∣Gt

]

.

By applying relation (D.1) to X = Lt, we immediately obtain ξt = 1/Λ̃t and thus

ξt = exp
(

−

∫ t

0
θ̃sdW̄s −

1

2

∫ t

0
|θ̃s|

2ds
)

.

Let m be a (P,G)-local martingale. From Bayes rule, the process m̃ defined by

m̃t = mtξ
−1
t , 0 ≤ t ≤ T,

is a (Q,G)-local martingale. From Remark 5.1 and Lemma 5.2, there exists a couple of

processes (ã, b̃) with ã ∈ L2
loc(W̃ ) and b̃ ∈ L1

loc(M̄) such that

m̃t =

∫ t

0
ã′sdW̃s +

∫ t

0
b̃′sdM̄s, 0 ≤ t ≤ T.

By Itô’s formula applied to mt = m̃tξt, definition of W̄ and M̄ (see (5.6)), we obtain that

mt =

∫ t

0
a′sdW̄s +

∫ t

0
b′sdM̄s,

with at = ξtãt − m̃tξtρ̃t and bt = ξt− b̃t.
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