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Hysteresis thresholding: a graph-based wavelet

block denoising algorithm

Radu Ranta, Valérie Louis-Dorr

Abstract

This communication aims to combine several previously psegd wavelet denoising algorithms into a
novel heuristic block method. The proposed “hysteresiggsholding uses two thresholds simultaneously
in order to combine detection and minimal alteration of infative features of the processed signal. This
approach exploits the graph structure of the wavelet deositipn to detect clusters of significant wavelet
coefficients. The new algorithm is compared with classi@iaising methods on simulated benchmark

signals.

Index Terms

wavelets, block denoising, graphs, transitive closure

. INTRODUCTION

One of the most important applications of wavelets is thealiglenoising. The fundamental hypoth-
esis is that wavelets are correlated with the informatigmai and uncorrelated with the noise, which
globally means that large absolute value coefficients spomrd to signal and small coefficients to noise.
Therefore, noise cancelling (as well as compression) cgreldfermed by thresholding: small coefficients
will be discarded and the few remaining large magnitude faoefits will be used to reconstruct the
informative signal. Several approaches were proposee sirepioneering works of Donotet al. [1, 2]
(see Antoniadi®t al. for a comprehensive review [3, 4]). In this communicatioe, propose to combine
previously introduced thresholds in a novel block-demgjsapproach that takes into account the local
wavelet graph structure.

This paper is organized as follows. In the next section, vealtéhe most critical issues in wavelet
denoising and some of the proposed solutions, emphasib@gnethods at the origin of our work.

Section 3 introduces the graph-based approach and the nestethsis” thresholding. The fourth section
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presents and discusses the simulation results, compdmémy with classic denoising algorithms, and it

is followed by a short conclusion.

[I. WAVELET DENOISING

We consider the modet = x + n, wherez is the noisy discrete-time signal (lengifi), « is the
noise-free unknown version efandn the noise. Synthetically, the discrete orthogonal wavedgtsform

(DWT) of z writes:
z=) wl i Y wllr gMr, (1)

PpsJ p
wherej = [1..M] is the scalep = [1..2~ N] the position,) the waveletg the scaling function and

M is the analysis depth [5]. The wavelet coefficients vectdrs,ar andn are related by:

The denoised signal's coefficients vector, is estimated by modifyingv. = [wPw)?]. Generally,
the approximation coefficients» remain unchanged.
Two main families of approaches are proposed in the liteeatierm-by-term and block approaches.

In the former, the estimated coefficienis, are given by:
Wy = g(wz)wza (3)

with ¢g(w.) a shrinkage function applied on the measured signal caaffisi In the case of block
thresholding, the shrinkage function depends not only endhrrently evaluated coefficient, but also
on a group or block of neighboring coefficients, ; (the b subscript indicates the adjacent coefficients
from the blockB). Moreover, the shrinkage can be applied for the whole camed block or for a given

subsetw ;1 C w, ;. In practice [6], the size of block is 3 and, ;; is the middle element:
'ﬁ]m,bl = g(wz,b)wz,bl- (4)

Several algorithms from these two families are briefly pnése next. They are integrated in the novel

hysteresis algorithm and/or used for comparison.

A. Term-by-term shrinkage

As the noise-free coefficient vector is presumably spatse,stimplest solution is provided by the

well-known hard shrinkage (thresholding):
g(wz) = max (Oa Sign(|wz| - T)) ) (5)

whereT is a threshold value. The most widely used is the universastioldl;; proposed by Donoho and

Johnstone in their algorithiiisuShrink (designated/isu in the sequel) [1]Visu is used to achieve
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complete asymptotic elimination of the normal Gaussias@and it can be shown (using extreme values
statistics) that this is achieved by settiilg = /2log N. This method is very appealing because of its
simplicity and its visually attractive results, howeves focus on eliminating all noise often leads to
less precise reconstruction of the signal of interest aatl ripresents a major drawback.

A different approach is proposed by ttsaire algorithm [2], that aims taestimate as precisely as
possible the “clean” signaby minimizing an estimate of the mean squared erfdrS(F) between the
denoised signal and the original one, known asStein Unbiased Risk Estimatdrhis risk is minimized
by exhaustively searching the optimal threshold among tiedficientsw. . The algorithm was developed
under specific conditions on the functign(weak differentiability). In particular, the most widelsed

is the soft thresholding function:

g(uws) = max (o, “”'—‘T) 6)

|w.|
The obtained thresholéls (or thresholds, as the method is usually implemented byeyseaé lower than
the Ty and the obtained signal has a noisier appearance.

The iterative method we proposed in [7, 8] follows a diffarapproach, inspired by [9-11]: the
thresholdT’; is obtained by a fast fixed-point parameter-free algorittaseld on a generalized Gaussian
(GG) modelling of the wavelet coefficients. The resultingirimal denoising”, called hereaftélinD,
ensures robust detection of high value coefficients (asjliand thus leads to maximum information
extraction from the measured signal.

As the universal threshold proposed in thiésu algorithm, the threshold computed ByinD does
not impose specific characteristics on the functigr). Therefore, both methods can be applied either

with hard (5) or soft (6) shrinkage.

B. Block shrinkage

A quite natural hypothesis, most of the times verified in agions, is that large wavelet coefficients
appear in clusters, or blocks. The approaches introducétblly Kerkyacharian and Picard [12] and Cai
et al.[6, 13, 14] aim to take into account local features of the aidoy adapting thresholds to blocks of
neighboring coefficients. The most well-known methods Ateck.J.S (B.JS) and NeighBlock (N B),
with its simpler versionNVeighCoef [6, 13]. The two algorithms propose a similar philosophySase:
estimate as precisely as possible a signal corrupted by riisminimizing the James-Stein estimate
of the M SE risk. This minimization leads to a particular form of the iskage functiong(.), which

applies to all coefficientsv, ; in a given block of sizel:

[|wol* - TL)
lw=pl> )

g(w,p) = max (0, @)

with ||z ||? the energy of the block arifi;, a block-size depending threshold. #87 S, Ty, = ALo?, with
A =4.505..., L = log N (N being the signal length) andthe estimated noise power (by scale or global,
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for colored and white noise respectively). The differeneeneenBJ.S and N B consists in the use of
the functiong(.): while in BJS all coefficients in the block are shrunk by the same amoufwy( ;)),

in N B this is done only for thel./2 coefficients located in the center of the considered blockhis
case, the blocks will not be disjoints but overlappedbyt (see [6] for more details). The neighborhood
proposed in these approaches is constructed scale-hbg;-ggtiout inter-scale dependencies. Extensions

taking into account this last item were proposed recentlyitsy 16}

[1l. GRAPH-BASED HYSTERESIS APPROACH

Most of the wavelet denoising algorithms treat the coeffitseither individually or in blocks grouped
by scale. These approaches don't take into account moreaereghborhoods, spanned over scales as

well as in time. This point is easily captured by the graphctire of the DWT.

A. Graph structures

Currently, the most complete investigation of the graphcitrre of the DWT, implicitly addressing
both inter- and intra-scale relations between coefficieistdlone by Crouset al. [20]. The authors,
who attach a Hidden Markov Model (HMM) to the graph to comptite thresholds, propose three
different architectures and thus types of neighborhoddstridependent Mixture IMi.g., the neighboring
coefficients are not considered in the procedure), the Hiddarkov Chain HMC {.e., considering
dependencies by scale) and the Hidden Markov Tree HMT (bitraes resulting from the wavelet
decomposition). A graphical representation is given Feglr

An implicit advantage of the graph representation, eviéenby [20], is that it emphasizes two
important properties of real signalpersistence and clustering. Persistence implies that “large/small
values of wavelet coefficients tend to propagate acrosgscalhich means that the binary trees of
wavelet coefficients (Figure 1a) tend to contain similar htuge coefficients. Therefore, if a high value
coefficients is selected by a thresholding algorithm, it esyvlikely that the the connected coefficients
in the graph,i.e., belonging to the same tree, should be selected also. @hgstelefined as the fact
that “if a particular wavelet coefficients is large/smalfieh adjacent coefficients are very likely to also
be large/small”, considers that connected neighborindficants belonging to the same scale should be
selected together if one of them is superior to the thresfiatgire 1b). If both persistence and clustering
are considered, all the coefficients are linked together éGoraplete graph (Figure 1c).

A formal representation of graphs is given by the adjacenatrimmA. For a graph havingv nodes
(wavelet coefficients)A is a squaréV x N boolean matrix with elementd(i, j) = 1 if there is an edge

between nodes and j and O elsewhere. The obtained matrix is symmetric, and timezeoo elements

!Bayesian block denoising methods (for example [17-19])netetreated here.
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Fig. 1. Graph types: (a) tree; (b) scale; (c) complete.

on line (column)i correspond to the coefficients connected to elemerit) of the wavelet coefficients

vectorw .. By convention, we consider every node connected to itdedf diagonal elementé(i, i) = 1).

B. Pruned graphs

The three term-by-term denoising methods presented inrthequs section have different rationales:
the universal thresholdingisu uses a high threshold aiming select onlyinformative coefficients and
eliminate allnoise, whileSure and MinD use a low threshold teliminate onlynoise and therefore to
select allthe signal. A heuristic combination can be then proposesaisisu computed high threshold
T, = Ty to selectblocks of significant wavelet coefficients, and $ure or MinD low threshold
T, = Ts(Tyr) to fix the limits of the selected blocks. In the graph struetuhe neighborhood of a
“very large” coefficientjw.| > T}, selected byl isu will be formed by the connected “large enough”
coefficients selected h§ure or MinD (|w.| > T;). These coefficients are called furtherioax-selected
and min-selectedrespectively. The resulting blocks, withoatpriori predefined shapes, will naturally
integrate both persistence and clustering propertiesaifsignals.

The previous approach was implemented in a three-stepitilgorillustrated also in Figure 2:

1) For the considered graph adjacency matdx(corresponding to graph 2a), keep only the 1's

corresponding to min-selected elements (marked nodesdrging other lines and columns to O:
Al ) = Al,1) =0, ¥ |w.(i) < T (8)

Note the newly obtained adjacency mati . The resulting graph (Figure 2b) is a collection of
disjoint blocks (clusters) of min-selected coefficientsr & given cluster, we not8 the set of the
indicesb of the coefficients belonging to itw. (b)| > T;.

2) Apply a transitive closure procedure on the pruned gréptinere is a path between two nodes

add a new edge between them. This approach leads to anviéecatinputation of a new adjacency
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Fig. 2. Pruning algorithm: (a) Original graph: max-seléici@nd min-selected coefficients are figured in black and gray
respectively; (b) First pruning: discard the small valués), Transitive closure; (d) Second pruning and final resthe
approximation scale is not affected.

matrix, known as Warshall's algorithm [21]: at each step

Ava(es B) = Avia(e, A (Avia(e,y) A Avia (1, 8)) (©)

At convergence, all the nodes in a clusigwill be connected by an edge (Figure 2c¢). Consequently,
if the nodesb; andb; belong to the clusteB, the elements of the obtained adjacency ma#ix
are Ay (b;,b;) = As(b;,b;) =1, V b, b; € B. An implementation issue must be noted here: a
complete iterative transitive closure (9) may lead to a \&oyw and memory consuming algorithm,
especially for long and not very sparse signals (la¥geThis problem depends on the chosen graph
structure: tree-type graphs (Figure 1a) have a limited rerab possible connections depending
on the wavelet decomposition depth, while scale-type (feidib) or complete graphs (Figure 1c)
are only limited by the length of the signal. Therefore, theximum number of iterations should
be limited by the user. We propose here to limit them to theimam number of levels of the
wavelet decomposition;

3) Construct a final adjacency matriks by selecting the blocks containing at least one max-salecte
coefficient,i.e., only the lines (columns) of A, corresponding to the coefficients. (i)| > T
(Figure 2d):

As(iy.) = Ax(,4) =0, YV |w. ()] < T. (10)

The non-null lines (columns) afA; correspond to the wavelet coefficients used for reconsmict
The final denoising algorithm will have the following strups:

1) Wavelet transform the measured signal.

2) Choose the graph type: scale, tree or complete.
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3) Apply Sure or MinD, global or scale by scale, to mark min-selected coefficiant$ the corre-
sponding nodes of the graph.

4) Apply Visu to mark max-selected coefficients and nodes.

5) Prune according to the given procedure the chosen graph.

6) Reconstruct by inverse wavelet transform.

IV. RESULTS AND DISCUSSION

Several versions of the hysteresis approach were impladent

o considering eithefure (notedHyV S) or MinD (notedHyV M) algorithms for the low threshold,
and Visu for the high threshold;

« considering the three types of graph-structures: by sealescripts, by binary tree, subscrigtand
the complete graph, subscrigt

« adapted to white or colored noise (white: the noise powesignated on the first details level for
Visu and Sure, fixed point iterations are performed on all coefficients AdinD; colored: scale
by scale noise estimation fdrisu and Sure, by-scale fixed-point descent far inD);

« considering soft (6) or hard (5) thresholding.

The algorithms were compared using the mean squared &fi®F to classical term-by-ternVisu,
Sure and MinD, as well as to the block method3JS and N B, adapted from the scripts of the free
toolbox of Antoniadiset al. [22].

Concerning the thresholding strategy, it must be mentiodmer@ thatSure, BJS and NB were
specifically developed for soft-type shrinkage functigis), while Visu and MinD only compute
threshold values and the user can choose the shrinkagegstrathe results presented here in details
concern only the soft thresholding, the low threshold vaiven by Sure or by MinD being subtracted
from the selected coefficients. Hard thresholding paricties will be briefly exposed at the end of the
section. The approximation scale was kept unchanged,ujthfor sparse signals the results might be
improved if the approximation is thresholded also.

The tested signals were the usdamps, Blocks, HeaviSine and Doppler [1], with lengths from
512 to 16384. Gaussian noise was added, with signal to natees(SNR) of 3, 5 and 7. Three types
of noise were used: white, low-pass filtered”( order Butterworth filter, normalized cut-off frequency
at 0.25) and high-pass filtered{ order Butterworth filter, normalized cut-off frequency a2®).

Twenty simulations were performed for each combinationighal type, length and SNR. For the
white noise case, the most significant numerical resultpi@®ented in Table |. These results are averaged
by signal type, signal length and signal to noise ratio, ideorto illustrate independently the influence

of these parameters on the algorithms’ performances.
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Visu Sure MinD BJS NB HyVSs HyV S, HyVS. HyV M.
Blocks 0.4786  0.1999 0.4435 0.3051 0.3313] 0.2304 0.2030  0.1852 0.4465
g_’ Bumps 0.6512 0.1772 0.6400 0.2460 0.2904, 0.1790 0.1772  0.1615 0.6399
n Heavisine | 0.0437  0.0450 0.0421 0.0433  0.0443| 0.0408 0.0399  0.039%6 0.0410
Doppler 0.1596 0.0797 0.1479 0.0618 0.0752| 0.0665 0.0731 0.0663| 0.1473
512 0.8813 0.2721  0.9266 0.4062  0.4564 0.2920 0.2730  0.2527 0.9275
1024 0.5192 0.1866 0.4973 0.2304 0.2630| 0.1914 0.1797  0.1657 0.4980
ﬁm 2048 0.2988 0.1209 0.251§ 0.1414 0.1750| 0.1223 0.1173  0.1057 0.2534
e 4096 0.1580 0.0783 0.1229 0.0975 0.1015 0.0755 0.0750 0.0674 0.1230
8192 0.0894 0.0543 0.0682 0.0641  0.0689| 0.0538 0.0550 0.0494 0.0680
16386 0.0530 0.0405 0.0440 0.0447 0.0471 0.0400 0.0399  0.0380 0.0423
x 3 0.5311 0.2238 0.4829 0.2942 0.3269 0.2335 0.2216  0.2031 0.4835
(% 5 0.2857  0.0974 0.2825 0.1277  0.1461] 0.0997 0.0953  0.0874 0.2828
7 0.1831 0.0551 0.1897 0.0702  0.0829| 0.0544 0.0531  0.0490 0.1898
TABLE |

MSE FOR WHITE NOISE CASE COMPARISONTHE RESULTS ARE DISPLAYED FOR THE BEST VERSIONS OF THE HYSTERES

ALGORITHM.

As it can be seen Table I, the signal type has a certain butdihinfluence on the performances:
for the first 2 signalsBlocks and Bumps), the novel hysteresis approach based on universal and SURE
thresholds and applied on a complete-type graphy¥(.S.) performs slightly better thabure. The
other two graph types (scal#yV S and treeHyV'S;) follow closely, with a rather important gap
between them and the block-approactiesS and NB. On Heavisine, all hysteresis type approaches
perform better than the other algorithmig V" M. included), whileSure shows the worst performances,
MinD being better than the other term-by-term thresholding odthas well as than the tested block
approaches. On the contrary, on the frequency Belpler, BJS shows the best performance, followed
by the threeHyV S algorithms. The ratios of improvement varkfyV' S. outperformsSure and BJ S
by mean squares errors smaller by 8 to 40% Barmps, Blocks and HeaviSine while BJS is better
by about 8% for theDoppler signal.

The signal lengthV plays an important role in the algorithms performances.oflthem improve
when N increases, the amelioration being more marked for asymppobcedures ad’isu and for
probability density estimation methods like/inD. Globally, for the three graph types, théyV S
algorithm shows very good performances regardless of theakiength, compared to the others, with
the complete graph approadtiyV' S. being constantly the most efficienfure is the next in line,
followed by the block-thresholding methods/.S and N B. For the longest tested signal¥ (= 16386),
minimal denoising based methodsyV M. and MinD outperform these last two algorithnis/S and
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NB. On the other hand, the computational burden and thus theugBea time increases differently
with N. If for 2048 samples signald/yV S. and HyV M. are slightly faster tharB.JS (but slower
than Sure), for 16386 length signals the difference becomes impartahile BJS is only 1.5 times
slower, both hysteresis methods slow their execution adOutimes. This augmentation is due to the
fact that completeV x N graph adjacency matrices (although sparse) are stored anguated in
our implementation, but more optimal programming solwi@an be found by taking into account the
proposed bound for the block size (depth of the wavelet deoaition).

As for the influence of the noise power, all algorithms arecttd in the same way and their order
remains generally unchangefdy V'S shows constantly the best performances, while the otherittigns
from the same family (tree and scale based graphs)Sand come next.

For the low-frequency and high-frequency noise cases, siedeversions of the described algorithms
adapted to colored noisége. scale by scale estimation af for Visu and Sure based methods,
respectively scale by scale probability density estinmatiod thresholding fodinD based methods.
The relative performances of the algorithms are quite simiihost of the time, therefore the complete

numerical results are not given here. Still, some particptants must be outlined:

« the performances of minimal denoising based algoritidis. D and HyV M degrade sharply when
the signal lengthV is low, as the estimation of the generalized Gaussian (G&npeters becomes
problematic. Therefore, their use is not recommended sariee signal length is important and/or
the coefficient distribution is close to a GG;

« for low-frequency noise, scale adapted denoising tend tondee harm than good: the noise power
might be over-estimated on the low frequency scales andethdting thresholds might be too high,
degrading the signal. This is especially true when the SNRvis the algorithms using a unique

noise estimation perform better than the scale-adaptesl. one

Finally, we should note that the comparative results olethiior hard-thresholding confirm the better
performances of the hysteresis algorithms. As expectesl,nthin challengers among term by term
thresholding aréd/isu and MinD, Sure being designed for soft-thresholding. Among block demgjsi
approaches, botB.J.S and N B perform better than term-by-term methods, but they areastdpmed by
hysteresis implementations, eithdy V.S or HyV M. Between these two familieSure baseddyV S
gives better results than minimal denoising bagegh” M.

Denoising examples for the best algorithm of each familynftéy-term, classical block-thresholding

and hysteresis thresholding) are given Figure 3.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we present a new heuristic method for wavedebising. Our approach, which can

be considered a block-denoising type method, is based ogréph structure of the orthogonal wavelet
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Fig. 3. Denoising example. White noise was added to a 204&sBiocks signal (SNR=3): (a) original signal; (b) noisy signal;
(c) SureShrink denoising (MSE=0.1514); (dBlock.JS denoising (MSE=0.2354); (eflyV S. denoising (MSE=0.1382).

decomposition. We propose to combine previously devel@gdrithms to modify the graph structure
of the wavelet decomposition. This two thresholds apprpaaled “hysteresis denoising”, aims to take
into account the property of real signals to have waveleffictents grouped in clusters, spanned both
over time and over scales. Therefore, a high valued thrdseamplemented to select only informative
signal coefficientsi.e., to eliminate asymptotically all the noise, while a low thineld is used to define
neighborhoods, or clusters, of the selected coefficientahiich the signal of interest is accurately
estimated. The newly proposed method is compared suctigsgitn other wavelet denoising algorithms,
which it outperforms most of the time.

By its nature, the hysteresis thresholding is adapted tad#tiection and the denoising of isolated
transients in long time seriese., very sparse signals. The validation of this hypothes@m@with some
new improvements on the minimal denoising method, itsedfpdeld to transient detection, and with more
extensive comparisons, for example with the recently psed6ureBlock shrinkage [14], which shows

rather similar results, are currently under study and walken the subject of a future work.

VI. APPENDIX

The proposed hysteresis approach is based on the follolwnegttolds:
« high threshold {isu universal threshold):

TH = TU = 0'\/210gN,
with N the signal length and the noise’ (robust) standard deviation;

o low threshold forHyV'S (Sure threshold):

Tr=Ts= arg_ mir% . N02+T2P+Z fw- (k)*-2(N —P)o?

e{w. (k

k,
|lw. (k)|<T
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10

with P the number of wavelet coefficients having absolute val€s;

o low threshold forHyV M (MinD threshold)T;, = Ty, is obtained from the fixed-point iteration:

T = Fam\/ S () e 0, sz ()|~ T
k

3L
with  F,,, = () (ue)
u

2=

wherew is the estimated shape parameter of the GG distributionefuivelet coefficients:

Dou(W) = ae 18" with
1 [T(3/u) _ Bu I A
b=\ T/ @~ /) F(“)_/O ¢ et de,
All thresholds can be computed globally (regardless of ttaded or scale by scale, to deal with colored

noise / signal (see cited references [1, 5, 8] for details).
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