N

N
N

HAL

open science

Continuum theory of tilted chiral smectic phases.

Jean-Paul Marcerou

» To cite this version:

‘ Jean-Paul Marcerou. Continuum theory of tilted chiral smectic phases.. 2010. hal-00467925

HAL Id: hal-00467925
https://hal.science/hal-00467925

Preprint submitted on 30 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00467925
https://hal.archives-ouvertes.fr

Continuum theory of tilted chiral smectic phases.
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Abstract
We demonstrate that the sequence of distorted commengirases observed in tilted chiral smectics is
explained by the gain in electrostatic energy due to the-lnak the unit cell to a number of layers which is
the integer closest to the ratio pitch over thickness of thgasent Sm-¢ phase. We also explain the sign
change of the helicity in the middle of the sequence by a loaldretween two twist sources one intrinsic

and another due to the distortion of the Sj)-C
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I. INTRODUCTION

Chiral smectics have two proper characteristics, they Hosved to be ferroelectric and to
present a helical precession of the optical axes arounéytee hormal when a tilt of the molecules
appears in the layerf|[1]. Like other mesophafes [2], thefearoquadrupolar phases in the sense
that a large amount of the individual dipoles orient themselcollectively in the bulk and sum
up in an antiparallel way to give sizeable effects like theddectricity [B]. The liquid crystals
molecules bear polar links like C=0, N-O=0l and delocalized electrons (figure 1a), so they
present a distribution of dipoles all along their skeletiigufe[]1b). The Boulder group has shown
that the molecular dipoles can be approximated without éddsgenerality by a longitudinal one
P, and a transverse orér [A] with amplitudes of several debyes.

Most of the literature in this field has dealt only with thensserse polarization which is at

the origin of the ferroelectricity([1] -1 7], and only a feaJe recognized the importance of the

longitudinal one[[4[18].
@ .

Figure 1: dipolar distribution from real molecule to the Bier model.
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In this paper, we will try to explain the mechanisms at thgiorof the formation of the different

tilted chiral smectics.

IIl. THE CHIRAL SMECTIC PHASES

By order of increasing complexity one encounters the folhgyphases which structure is best

described by the distorted clock model mainly developenhftioe data of resonant X-rays scatter-

ing experiments[[19-25].



A. Sm-A

Figure 2: Schematic arrangement of molecules in the Sm-Aghdhe transverse dipoles vanish while
the longitudinal ones are in equal numbers up or down. Natedhch of the sketched molecules represent

symbolically one half of all molecules in the bulk, it is notracroscopic view.

The initial phase which precedes the various tilted phaskgher temperature is the smectic
A (Sm-A). The molecules are normal to the layers. The trarsgvdipoles average to zero due
to a uniform rotation about the long axis. The longitudingdalies adopt equiprobable up and
down orientations (fig[]2) ensuring that there is no macmpiscpolarization but a macroscopic
uniaxial quadrupol®,;. The uniaxial orientational order parameter (OOP) is esggd as5;; =
nin; — 30 where 7 is the director. When it is written in a frame for which the mai to the

smectic layers is taken as thelirection it reads[[2] :

~1/3 0 0
Sij = 0o —-1/3 0 ; Oij = 0.5 (1)
0 0 +2/3

B. Sm-C*

If the preferred layer thickness decreases with tempegatiod becomes smaller than the length
of the molecules, they have to tilt in one direction givinghe simplest case the phase predicted by
Meyer [1], the smectic C(Sm-C') where all the molecules are parallel (figfife 3). The trarsave

dipoles give birth to the macroscopic polarizatiBa when summed up over at least ten layers.



Figure 3: Tilted molecules in a Sm*Qayer, with the longitudinal dipoles in equal number in opit®

directions while the hindered rotation leaves an averagesterse dipole.

The longitudinal ones have to average to zero but they siifl ap in a macroscopic quadrupole
which main axis is tilted with respect to the layer normal.oitfe approximates the OOP of the
Sm-C as being the samg;; as in the Sm-A tilted at an anglewith respect to the layer normal

in the azimuthal directio®,, one gets :

~1/3 0 0
Qij = (1—gsm20) 0 -1/3 0
0 0 +2/3
cos2Py sin2®d, 0
+ %sin29 sin 2@, — cos 2P, 0 (2)
0 0 0

0 0 cos P

— sinfcosf 0 0 sin @

cos ®y sin O 0

Due to the chirality, the structure precesses around tex lagrmalz following the law®, =
g1z With a pitch in the micron range.

The macroscopic quadrupots; will be to first order proportional t6);;. The more realistic
case of biaxiab;; is treated in appendix B and keeps the same symmetry as if@ggith slightly

involved factorized coefficients.



This expression with three basic matrices will be found irtte tilted phases and is funda-

mental for the continuum theory we have developed.

Figure 4: in the anticlinic Sm-§ phase, the transverse and longitudinal dipoles are corapeghsvhen

pairing the layers, so the phase is ferro-quadrupolar.

In the anticlinic phase with a period of two layers (fig{ire @dth longitudinal and transverse
dipoles contribute to a macroscopic biaxial quadrupolectvinias the three C2 directiomsy and
z as symmetry axes. This phase is misleadingly referred totieaoelectric due to the alternate
orientations ofP}, one should notice that there is also an alternan(midhat leads to an other
periodic array in ther direction [4,[18]. So it is better to characterize this phagés quadrupole
WhereP} contributes t®,, andﬁL to ©,, ando .,

As the Sm-C is built by combiningy = ®, andy = &, + 7, the OOP reads :

~1/3 0 0
3 .
Qij = (1 ~ 3 sin” 0) 0 —-1/3 0
0 0 +2/3

3)
cos2®Py sin2®;, 0
+ % sin? 0 | sin2®, —cos2®, 0
0 0 0

with again a precessiob, = ¢,z whereg, has the opposite sign tg in a given compound.
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Figure 5: left : side view of the 3 layers unit cell of a Snj-C at right top view assuming a clockwise

rotation, the difference in azimuthal angles between kgeand 2 or between 2 and 3 is taken.dB3, [26].

The in-plane projection of the director of layer 1 makes thgled, with x.

This phase presents a unit cell commensurate to three laydgrsinequal changes of the az-
imuthal angle from layer to layerNy = p or 2(m — p)) see e.g figurd]5) with the consequences
that there is a neat polarization at larger scale (the Sm4i€ferrielectric) and a macroscopic pre-
cession of the structure around the layer norda¥ d, z). All these informations can be gathered

when writing the OOP of the phase :

-1/3 0 0
Qi = <1 — g sin® e) 0 -1/3 0
0 0 +2/3
cos2®y sin2d, 0
+ %SiHQH sin2®, —cos2®, 0 (4)

0 0 0

0 0 cos &
— I sinfcos@ 0 0 sin P

cos O sin Py 0

taking the definitions oft and ®, given in the figure[(5), one find§ [P6] that the polarizatign
is proportional ta/ = (1 + 2 cos i) /3 while the macroscopic quadrupdg; is a function off, I

andJ = (1 + 2cos2u)/3 and is tilted with respect to the layer normal.
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Figure 6: left : side view of the 4 layers unit cell of a Snj-C. at right top view assuming a clockwise

rotation, the difference in azimuthal angles between Egeand 2 or between 3 and 4 is taken'dg3, [26].

The in-plane projection of the bhissectrix of layers 1 and Xesahe angl&, with x.

The unit cell is commensurate to four layers with unequahglea of the azimuthal angle from
layer to layer \¢ = v or 7 — v) see e.g figurg]]6) with now no neat polarization at largetesca
(the Sm-G.,, is not ferrielectric !) and a macroscopic precession of thecture around the layer
normal @, = d,z, in almost all the studied compounds,and d, have the same sign whilg and

g, have the opposite). All these informations are gatherederGOP of the phase :

~1/3 0 0
3 .
Qij = (1 ~3 s1n29) 0 —1/3 0
0 0 +2/3

(5)
cos2®Py sin2®, 0
J
+ ) sin®f | sin2®, —cos2®, 0
0 0 0

with the definitions ofv and ®, given in the figure [(6), one find$ ]26] that the macroscopic
quadrupole©,;; which has the layer normal as one of its eigenaxes is a funaifod and

J = —coswv.



F. Sm-Cj

A last commensurate phase with six layers has been predigtet& T [£3, 27] and recently
evidenced by Shun Wan et &]28]. We will not develop on it blieis a symmetry close to that of

Sm-C,.,, and similar properties.

G. Sm-C

o

Last but not least, this phase shows a periodic precessittmnavshort period which is not

commensurate to the layer thickness. Its macroscopic OGRm@™y uniaxial :

; 13 0 0
Qij = (1 3 sin” 9) 0 —-1/3 0 (6)
0 0 +2/3

H&T have shown that the SmGs fundamental for the obtention of the commensurate sudgsha
In short the incommensurate period varies continuouslig wie temperature taking values com-
prised in a subset of the interval of 2 to 8 layers. They hawsvsh23,[27] that when this period
gets close to an integer number of layers, the system prefdosk-in at this integer value at the
expense of the twist energy compensated by some other gdieg.have proposed that this gain
scales at/? due to an anisotropy of in-plane elastic energy. What wegsemere is that the lock-
in allows the onset of macroscopic quadrupole and sometiipese with./? and? contributions

that explain the development of the full set of subphases.

. THE SEQUENCE OF TILTED PHASE
A. The macroscopic and microscopic orientational order paameters (OOP & oop)

We have just seen that all the phases described by the ddtddack model are characterized by
their macroscopic orientational order parameter (OQR)which general form valid in all phases
has been given in equatiofi (4). It is defined on a scale of at tea layers like the quadrupole
©,; and the polarizatiorﬁg. We have also recalled the fundamental statement of H&T thieat
helicity of the Sm-C, governs the appearance of other phases. So one has to deestbpory of

the Sm-C, phase and its transition from the Sm-A. For that we consiusreach layer in a tilted



smectic phase is such that the director makes an @ngith > while its in-plane projection makes
the anglep with = ; so we express the result of the rotationSf in the zyz frame as the tensor

s;; Which is the microscopic orientational order parametepjad the layer :

/3 0 0
3 .,
Sij = 1—5 sin” 6 0 —1/3 0
0 0 +2/3

cos2¢ sin2p 0
1

+ 3 sin?f | sin 20 —cos2p 0 (7)
0 0 0
0 0 cosyp

— sinfcosd 0 0 sing
cosp sinp 0

As already reported i [29, 30] the oop splits into threedlass invariants, namely a bulk
3D-uniaxial tensor which depends only 6rand two in-plane tensors respectively 2D-biaxial and
2D-uniaxial depending also an This local tensor will be used to compute the bulk OOP of each

tilted phase by including the dependence of the azimuth angle

B. Landau - de Gennes free energy

The free energy density describing the phase transitian fiee Sm-A to tilted phases can be

written as a power series of the local ogp:

1
Fy = §az’jkl5ij5kl + gQijklmnSijSklsmn + Zbijklmnopsijsklsmnsop (8)

Following the Smith and Rivlin theoren [31] we express thesteial coefficientsi;x, ijximn
andb;;rimnop as products of the elementary tensors like the Kronegkethe Sm-A OORS;;, the
vacuum tensoV;; and as we deal with chiral compounds the fully antisymméitena-Civita odd
tensore; .

After some tedious calculationg ]J29] 30] one gets rathepkimesults which are functions of

the invariants introduced if(7) :



1 1 1 1
§aijk15ij5kl = 5(1,1 SEZ + 5(1,2 ((Smm — Syy)2 + 453}3/) + 5&3 (Siz + SZQJZ) (9)

1 1 1
gQijklmnSijSlemn = ng Szz (Siz + 832) + gQQ Sz ((Sxx — Syy)2 + 4Siy)
1
+ §Q3 (<S$$ - S?J?J) (Siz - 852) - 43:vy3:cz3yz) (10)

1 1 1 9 1 2
Zbijklmnopsijsklsmnsop = Zbl Siz + Zb2 ((Sm - Syy)2 + 4592cy) + Zb3 (Siz + ‘93212)
1 1
 gbe s (see = s3)° +4s3,) + 705 5%, (2. + 55.) (11)
1
+ 166 ((Sm - Syy)2 + 4Siy) (Siz + ‘932;2)

using the approximatiosin @ o 6 in ([4), the free energy density can then be developed in a
power series i, without any dependence on the azimuythThis is not surprising aéandy can

be considered as the modulus and the phase of the Sm-C coangdexparametet exp(ip) [B] :

1 1
F1 = 5&302 + Zb04 + (12)

wherea; = a3(T — T.) governs the Sm-A to Sm-C phase transition. THiserm comes from
the 2D-uniaxial invariant while thé* one is the sum of,, a,, Q;, Q23 andbs contributions.

In the mean-field approximation, the anglébehaves Iikea%\/ﬁ in the tilted smectic
phases. This looks like previous theori¢k [[9, [[Q, 15] whickkenuse only of the 2D-uniaxial
invariant missing somewhat the other terms which are attiiggnaf the Hamaneh-Taylor (H&T)
theory [28[26[ 27].

From now on we have considered only the case of constant #zangley like in achiral
smectics. As we are dealing with chiral compounds, we canduice the gradients of in the z

direction to take into account the helicity of chiral smesti

C. helicity of the first tilted phase

When the tilt appears at the transition, the first phase tiaienses can be the Smi-@r the
Sm-C, they are distinguished by the value of the pitch of the héNe have to add to the; term

the energy contributions (ﬁ@ coming from the gradients of the oop :

10



1
Fy = F1 — Nijkim 5ijViStm + §kijklmnvi5jkvl3mn (13)

The only gradients which do not perturb the symmetry of tlyerds are the twisting ones which
induce a rotation of the 2D-uniaxial and biaxial invariaatsund the layer normal. So we assume
that the first term linear irﬁap measures the twisting power of the phase while the second one

guadratic, reflects the cost in twist elastic energy. Ondlyiigets :

)\ijklm Sijvkslm - >\1 ((Sxx - Syy)azsaﬂy - Sxyaz(sxx - Syy)) + )\Q(szazsyz - Syzazsxz) (14)

kijklmnvisjkvlsmn = kl ((azszms — azsyy)z + 4 (azs:cy)z) + k2 ((azs:cz)z + (8,233/2)2) (15)
when reduced to functions éfandy it remains :
1

with the trivial solutionp = ¢+ ¢z describing an helicoidal rotation at the wave vegter \/k.
The introduction of helicity renormalizes slightly the gatic term in the free energy leading
to a small displacement of the transition temperafures 7, [[L7].

Two cases must be distinguished now, depending on the nuagndf the helical pitchp =
27/q.

1. small pitch : the SmA to Sn-C;, phase transition

When the helical pitch takes values typically from 2 to 8 layéhe Sm-G, phase appears at the
transition [3P]. Although it has been reported in a few coonpis a Sm-¢ phase with 15 to 50
layers [2B[32], some caution must exercised as it is on this b&D.S.C. data taken at C mn 1,
with a small bump appearing above a large peak, that the pizssecen reportefl |33]. To be sure
of the phase identification this bump should have been fatbat lower speeds as was done in
MHPOBC [34].

The Sm-C, phase is fundamental in order to get the full sequence of cemsorate subphases.
It governs the number of layers of the unit cell by means ofttimuth increment as developed

in H&T theory. One of the experimental challenges risen bg theory is the measurement of

11



a = 2w d/p by means of the pitch of the Sm-C phase. Let us point out that= 27 /p is the

ratio of two polynomials ird without any critical dependence :

b+ N0

17 2 + 20,07

we expect it to vary smoothly from,/k, at the transition to finite values later on. In all the
known experiments to daté¢ [1B,] 21 42] 24] B2, 3%, 36] them general trend of increasing

a = qd ~ qdo(1 — 6%/2) when cooling down at the exception of one compoundl [3R, 333reh

(17)

the Sm-C denomination subject to caution. Let us remark that thenthéwariation ofgd is the
product of two terms and cannot be predicted for sure. Closke transition, the decrease of
when cooling down may be dominant but it seems that laterwill increase and at the end will

determine the response.

2. largepitch : thedirect SmA to Sm-C* phase transition

When the preferred pitch is typically larger than @3, the tilted phase can be considered
locally as a Sm-Cwhich precesses slowly around the layer normal. One hastthtake into
account the macroscopic polarizatigh [1] which rotates tamrder to be coherenf; is defined
over a few layers~ 10), while s is relative to one layer and the layer polarization is not a
macroscopic quantity [B7]. One has to introduce the maopmis®©OP(Q),;, =< s;;, > which is an
average over the same area. This ensures that when thegsotaller than 10 layers, i.e. in the
Sm-C, phase, both and the extra parts i s;; > vanish. As already stated earlig} [3] £9, 30],
the polarization can be formally introduced within lineauplings with the 2D-uniaxial invariant
of the OOP, one describing the ferroelectricitly [1] and theeothe flexoelectricity[[3, 38] :

AFp = Ciji Py Qi + fijiu Pi 0; Qi (18)

= —C (P, Q. — P, Qu.) (19)

_'_f (P:v az sz +Py az Qyz)

The total polarization is obtained by the minimization wi#spect toP of the following en-

12



ergy :

P2+ P?
F=-"""Y L AFp (20)
2e0x
One gets :
P =Pt P (21)

P:c = &oX (C Qyz - f azQ:cz)
Py = &oX (C sz - f 62@3;2)

As expected by symmetry the polarization is an in-planearaghich maximizesA F» when
it is normal to the projection of the directdf), ., ),.) or equivalently parallel to the gradient
(0.Qs2,0.Qy). Both contributions taP are collinear, they follow the helical precession of the
director and they change sign with the chirality. The paktion which is measured usually in
unwound samples is the ferroelectric one, as the otheribatitn disappearg[17].

Here again the introduction of the macroscopic ferroeiegmlarization renormalizes slightly
the quadratic termin the free energy leading to anotherlshsplacement of the transition temper-
atureTy, to T, [BQ]. Conversely, the flexoelelectric polarization chasmtiee twist elastic constant

and the helical pitch.

IV. THE COMMENSURATE SUBPHASES

The Sm-C and Sm-C, phases are not the only ones encountered in these compauimeis,
further cooling down a sequence of commensurate phasesimittbells of 1 to 6 layers have been
reported [P 48] which are best described by the distorteckanodel [IP]. The fundamental idea
in H&T theory is that the basic tilted phase obtained belosv3m-A phase is the Smi@ne, with
a short pitch varying from about 2 to 8 layers. When the valuth® pitch is close to an integer
number of layers, there can be a lock-in of the structureiatitbeger number at the expense of
the twist energy, provided that there is a gain in electtmsta elastic energy[[23, 26, R7].

Let us enforce the fact that in these subphases, the tile@ragid then parameter are functions

of the temperature only given by the resolution of equati{fid} and [1j6) respectively.

13
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Figure 7: Sketch of azimuthal angles in the unit cells of Sp);Gtop) and Sm-G,, phases (bottom). The

real distribution in the center is a combination of XY (led)d Ising models (right).
A. Hamaneh-Taylor theory (H&T)

The commensurate subphases of the distorted clock modalcam@apromise between the pure
XY clock model [19] that requires a regular increase of thenath and the old Ising mod€l|[[/,]18]
that obliges the tilt to lie in one direction of the plane (seg figure[Jr)). The azimuthal anglesina
subphase deviate from the regular XY behavior at the expefitbe twist elastic energy while the
Ising model favours in-plane anisotropy. H&T have introeld¢he angles\p anda to describe
the distance from the XY model and the parameter (cos2y¢) < 1 to describe the biaxial
Ising-like tendency[[2d3, 27]. We have further defined theapester—1 < [ = (cosp) < 1that
measures the in-plane uniaxial charadief [26].

I andJ have already been introduced in the definition of the GQP=< s;; > in equation
(@), which is a function of the tilt anglé and of &, defined as the angle between the origin of
azimuthal angles in the unit cell and the x aXis| [26]. The ltesyiorder paramete);; is unique ;

itis only its expression in a given frame which dependsbgn

B. cost of lock-in : the short range term

From equation[(16) one knows the amount of twist energy pinvotume lost when the wave
vector is slightly different from its preferred valge= 27 /p. It amounts toAF;, = k(dp/0z —
q)?/2. Introducing the azimuthal angle incremekp and the layer thickness one gets\F; =
k(Ap — qd)?/2d?, AF; has a zero minimum value whexy = gd = a.

14



This expression averaged over the unit cell of any distarteck model structure can be related
to the short range terfis; introduced empirically by H&T[[23].Fsr = Fy < cos(Ap — o) >
is a positive energy which takes its maximum valdein the Sm-C, phase whem\y = a. On
taking Fy = k/d*> andcos(Ap — a) ~ 1 — (Ap — a)?/2 one getsFsr = Fy — AF;.

We then know how much it costs to lock-in the average increameiy >= 27 /n at a value
close toa. In the initial clock model this increment was supposed tadrestant in the locked-in
phases but they would only be commensurate Sppitaises without any change in energy. In that
case the unit cells are uniaxial without in-plane anisotepthat the extra parametdrand.J are

identically null.

C. gain from quadrupolar and dipolar ordering : the I? and J? terms

Uniaxial nematic and Sm-A phases are well known to be feuadgupolar [[B] i.e. the
molecules are arranged at rest so that their microscopatrielalipoles and quadrupoles sum
up cooperatively to give a macroscopic quaqrupole densdpartional to the uniaxial OOP of
the phase :

0y = 0, Sj; (22)

This can be demonstrated the following way : the quadrupddasity has a quadratic self-
energy@fj/QX@ and is linearly coupled to the OOP by the term®,0,,5;;/2xe, this leads to
the result given in equatiof (22) and to the expression oétiexgy gained by the creation of the

guadrupolar density :
@2
AF = ——2 23
=50 (23)

In the Sm-C, phase, this energy decreases withs :

. Q2 3 . ?
AF@ = _3X—6 <1 — 5 Sln2 8) (24)

the lock-in to commensurate subphases allows to recovertapthis loss. In the uniaxial ap-

proximation we are using, the quadrupolar energy in the SmHase is the same as in the Sm-A,
AF§ = AFg so:

@2

AFS = —
© 3Xe

2
<<1 — ; sin? 9) + Z sin? @ 4 3 sin?  cos? 9) (25)

a straightforward generalization to any value/aind.J reads :

15



02 3 > 3.
AFéJ:_gX—Z) ((1—5511129) +Tsin49+3[2 sin2900529> (26)

We are eventually left with the gain of lock-in which reads :

IJ o e: (J* . 4 2 . 9 2
AF =AFg —AF§ = —= | —sin" 0 + I” sin” 0 cos™ 0
Xe \ 4

= R (P +nynl®) ~ —F 70" +3.6* 1% (27)

When completed by the similar term due to the presence of taaacopic polarizatio@) if
I # 0 as developed by Dhaouadi et d1.][26], one gets :

Ps = eqxC10
(28)
AFp = — 255)( — —8°X§29212
the full energy gain reads with this n el term :
AF = —Fy(nJ> +ynI?) ~ —F, (70" J* +7 6 I?) (29)

D. balance between short range loss and long range gain

When a phase described by the distorted clock model appeesrsharacterized by non zero

values of/ and.J that minimize the following energy at a negative value :

1
F=F|5(Ap- a)? —nJ? — vyl (30)

The phase diagrams in the plarte{ o« < 7, 0 < 1 < 1) have been computed by H&T
[B3, 27] with the J? term and Dhaouad[26]/¢) together with their behavior under an applied
electric field ({.F) in the last case.

Let us remark that up to now we have discussed the commeasubphases in the unwound
geometry although we know that they are all precessing artlum layer normal. We propose to
treat this problem now and compare our results with the wedlkn pitch inversion at the Sm3G;

to Sm-G,,, phase transition.
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0 € Ap

Figure 8: Sketch of the short range term expressing the ¢dstlk-in from Sm-G, (Ay = ¢) to Sm-C

phase Q¢ = 0). A small positive incremeni(Ay) would reduce the cost.
E. helicity of the subphases

We have considered when computing the phase diagrams thanthcells of the commen-
surate subphases were frozen and did not rotate while thacguh Sm-G phase experiences a
strong spontaneous twist. We first examine graphically itihele cases of the Sm*Gnd Sm-C
phases where the azimuth increase between layers is eqhalt00 or Ay = 7w while the Sm-C,
phase that would take place otherwise has a small value in the first case (figurg 8) or is close
to w in the secondd, = 7 —« figure[®). The figures show that the cost in twist energy of tle&4in
will be reduced if the Sm-Crotates in the same direction as the Sipvhile the Sm-C has to
take the opposite sense. This illustrates the general tleserved in the experimen{s]39] that the
sense of the helix is opposite in the two phases for a giverpoomd. We have thus shown that
the would-be Sm-Cphase exercises a kind of torque on the azimuthal abgleith a non trivial
sign. It has to be completed by a spontaneous twist we wikdg@mow.

We first take into account the preceding remarks by repladidy = Fy (Ap — «)?/2 by
AF, = Fy (Ap + d 9.9, — a)%/2. We then state that the macroscopic anbies subject to the

same laws than the microscopic
~ 1
Fy=Fy(Ap +d 0.0 — a)?/2 — A0, + 5K(azopo)? (31)

17
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m—¢ T Ag

Figure 9: Sketch of the short range term expressing the €tmtlein from Sm-G, (Ap = 7—¢) to Sm-C;
phase Q¢ = 7). A smallerAy would reduce the cost.
replacingFy by k/d?, one has to minimize :

1 9 k

yielding :

A —k(Ap—a)/d
B k+ K
thus the wave vector of the macroscopic helicity is givensaguby the ratio of the twist sources

9, ®, (33)

to the rigidity. We already know that the pitches are mucbdathan in the Sm-Cphase so one
may assume safelif’ > k. The source in the numerator is made of two terms. The firsi®ne
the intrinsic twisting powe\ which we take as having the same sign as the microscopic\pne
this remaining to be checked in real world. The second onesponds to the discussion we just
developed with the help of figuref§ (8) aridl (9).

Let us briefly determine the sign 6f®, in the different commensurate subphases :
1. in Sm-C the second term dominates and has the sign of
2. in Sm-C, the second term dominates with the opposite sign.

3. inSm-G,,, if the angleu is much larger thafiwr /3 as reported in literatur¢ [P6], the opposite

sign comes again.
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4. the Sm-G,,, is more involved as it seems that the first source dominatsaour hypoth-

esis on the sign af, the helix has the same signas

So we have found that usual sequence with a sign change in ithelenof the range is well

explained in our theory.

V. CONCLUSION

We have demonstrated that the sequence of distorted comnagmphases observed in tilted
chiral smectics is explained by the gain in electrostatiergy due to the lock-in of the unit cell
to a number of layers which is the integer closest to the mtah over thickness of the subjacent
Sm-C, phase. We also explain the sign change of the helicity in titelie of the sequence by a

balance between two twist sources.

Appendix A: T, shifts
1. due to the helicity

remembering equatiof (16) and introducing the preferrecewactorqg = \/k, one getsﬁ =
Fy — k¢?/2 = Fy — \?/2k. F) is an even polynomial i? as well as the correction term, the
leading term reads now after equatin] (b2)7T — T.)0%/2 — \3/2ky = a3(T — T)0?/2 with a

straightforward definition of* > T..

2. due to the polarization

Here again the correction term due to the macroscopic fiectee polarization can be ex-

pressed ad F;, = —x(C?6? leading to another shift in the transition temperathf&* = xC? /.
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Appendix B: biaxiality vs uniaxiality

All the unwound phases in the distorted clock model are bhiaxith the in-plane C2 axis as

one eigenaxis. Their OOP;; and the rotation matrices should read :

—a 0 0 cosf 0 sind cosp singp 0
Sij=1 0 =b 0 Pz = 0 1 0 Pf =1 —sinp cosp 0 (B1)
0 0 a+b —sinf 0 cosf 0 0 1

when one executes a rotation of anglaround this axis and another of anglearound3, one

gets :

-1/3 0 0
3
Qij = ) (a00820+600820) 0 —-1/3 0
0 0 +2/3
cos2¢ sin2p 0
1
+ 3 (—acos20 +b(1+sin*0)) | sin2p —cos2p 0 (B2)
0 0 0
0 0 cosp

(2a + b) sin 0 cos 0 0 0 sing
cosp singp 0

this differs only slightly in the coefficients from the uniakform we have used. We took
a = b = 1/3, we could have been closer to reality with= 1/3, b = 1/3 + ¢ because of

fluctuations evidenced by conoscopy under figld [5].
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