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Landau operator on the quaternionic field

The Landau operator on the quaternionic field is a differential operator H B acting on C ∞ (H; C), defined as the Fourier transform of the sub-Laplacian associated to the quaternionic Heisenberg group ℑmH× ω H, where H ∼ R 4 is viewed as the space of quaternions, ω is a canonical ℑmH-valued symplectic form on H, ℑmH ∼ R 3 and B ∈ ℑmH is fixed. H B is the Hamiltonian of a charged particle in H, interacting with a uniform magnetic field B. By a suitable orthogonal change of basis in H, H B is transformed into an other Landau operator H B which is much simpler, B is the norm of the magnetic field B. This new operator is the Hamiltonian of two superposed uncoupled complex harmonic oscillators.

Introduction

Landau operator arises in both physics and mathematics, and appears in the framework of the study of charged particles acted on by magnetic fields. The aim of this paper is to present from a mathematical point of view an operator analogue to the well known quantum mechanical Hamiltonian of a charged particle moving in a uniform magnetic field [START_REF] Landau | Mécanique quantique, Théorie non relativiste[END_REF]; this operator will be denoted by H B . H B acts on C ∞ (H, C), where H is the quaternion space 1 and C is the complex field and B is a uniform magnetic field. In Section 2, we give a brief review of the Schrödinger equation. In Section 3, we construct the Heisenberg group and its Heisenberg algebra from which we derive the Landau operator. In Section 4, we show that the Landau operator H B is defined as the Fourier transform of the sub-Laplacian associated to the quaternionic Heisenberg group of dimension 7; we give the expressions of the Landau operator both in real and complex form; we define also the angular momentum operator on H ∼ R 4 . In section 5, we state a theorem which allows us to give a canonical expression H B of H B , which is more simpler to study. In Section 6, the symmetry group and the gauge invariance of the Landau operator are discussed. Section 7 relates this work with studies by other people on a quantum system in a uniform magnetic field.

Physical motivation and a brief review of Schrödinger equation

The standard procedure for extending the equations of motion of classical mechanics to the quantum Schrödinger equation (in position space) is through a generalization of the Hamiltonian formulation of classical mechanics. For the free particle in one dimension this consist of simply making the identification

H classical = p 2 2m =⇒ Ĥ = p2 2m . (1) 
The classical Hamiltonian function appropriate for a charged particle (of charge q and mass m) acted on by external electric and magnetic fields (in three dimensions) is given by

H classical = 1 2m ( p -q A) 2 + qφ. (2) 
The corresponding quantum mechanical Hamiltonian is obtained by replacing the momentum variable by its operator counterpart giving the Schrödinger equation Ĥψ( r, t) = Eψ( r, t) = i ∂ ∂t ψ( r, t)

where Ĥ = 1 2m ( ˆ p -q ˆ A( r, t)) 2 + q φ( r, t)

and r ∈ R 3 is the position and t ∈ R + is the time.

One must be careful of the ordering of any differential operators, so we find

[ ˆ p -q ˆ A( r, t)] 2 ψ( r, t) = -2 ∇ 2 ψ( r, t) + iq ∇.[ ˆ A( r, t)ψ( r, t)] +iq ˆ A( r, t).[ ∇ψ( r, t)] + q 2 [ ˆ A( r, t). ˆ A( r, t)]ψ( r, t). (5) 
When the magnetic field B is uniform we can take the potential vector on the following form A = 1 2 ( B ∧ r ), where r is the position vector operator. For the sake of simplicity, we will forget the 'hat' symbol on the operators. Suppose the Euclidian oriented space R 3 is endowed with the canonical basis (e ′

1 , e ′ 2 , e ′ 3 ) and coordinates (x 1 , x 2 , x 3 ), the components of the momentum vector op-

erator are (-i ∂ ∂x 1 , -i ∂ ∂x 2 , -i ∂ ∂x 3 ). Let (B 1 , B 2 , B 3
) denote the components of the magnetic field, then the potential vector has components (A 1 , A 2 , A 3 ) given by

A 1 = 1 2 (B 2 x 3 -B 3 x 2 ) A 2 = 1 2 (B 3 x 1 -B 1 x 3 ) A 3 = 1 2 (B 1 x 2 -B 2 x 1 ).
We define the differential 1-form

A = A 1 dx 1 + A 2 dx 2 + A 3 dx 3 .
If we identify at each point (x 1 , x 2 , x 3 ) the basis (dx 2 ∧ dx 3 , dx 3 ∧ dx 1 , dx 1 ∧ dx 2 ) of the 2forms with the canonical basis (e ′ 1 , e ′ 2 , e ′ 3 ) of R 3 , then we get dA = B since the magnetic field is uniform. The corresponding Hamiltonian operator H at

x = (x 1 , x 2 , x 3 ) is then equal to H = - 2 2m ∂ ∂x 1 -i q A 1 2 + ∂ ∂x 2 -i q A 2 2 + ∂ ∂x 3 -i q A 3 2 = - 2 2m ∂ 2 ∂x 2 1 + ∂ 2 ∂x 2 2 + ∂ 2 ∂x 2 3 -i q B 1 x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 -i q B 2 x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 -i q B 3 x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 - q 2 4 2 B 2 x 2 + q 2 4 2 ( B. x) 2 . ( 6 
)
The orbital momentum is :

L = r ∧ p =   L 1 L 2 L 3   = -i        x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1       
.

The Hamiltonian H can be written in the following form :

H = - 2 2m △ + q 2 L. B - q 2 4 2 B 2 x 2 + q 2 4 2 ( B. x) 2
If B is directed along e ′ 3 then :

H = - 2 2m ∂ 2 ∂x 2 1 + ∂ 2 ∂x 2 2 + ∂ 2 ∂x 2 3 -i q B 3 x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 - q 2 4 2 B 3 2 (x 2 1 + x 2 2 ) = H ⊥ + H // .
In the (x 1 , x 2 )-plane, the particle is described by the operator

H ⊥ = - 2 2m ∂ 2 ∂x 2 1 + ∂ 2 ∂x 2 2 -i q B 3 x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 - q 2 4 2 B 3 2 (x 2 1 + x 2 2 ) .
H ⊥ is called the Landau operator.

The operator

H // = - 2 2m ∂ 2 ∂x 2 3
is the Hamiltonian along the x 3 -axis.

If we introduce the complex variable z = x 1 + ix 2 , the Landau operator becomes

H ⊥ = - 2 2m 4 ∂ ∂z ∂ ∂ z + q B 3 z ∂ ∂z - z ∂ ∂ z - q 2 4 2 B 3 2 |z| 2 .
All these expressions of H represent the well known Hamiltonian of a charged particle in a uniform magnetic field (see [START_REF] Landau | Mécanique quantique, Théorie non relativiste[END_REF] and [START_REF] Ghanmi | [END_REF]).

3 Mathematical point of view and the statement of the main results.

The space we work in is the Euclidean space R 4 identified with the quaternionic space H. In the basis (e 0 , e 1 , e 2 , e 3 ), an element x of R 4 is written in the following form :

x = x 0 e 0 + x 1 e 1 + x 2 e 2 + x 3 e 3 (7) = (x 0 , x) (8) 
where

x = (x 1 , x 2 , x 3 ) ∈ R 3 ∼ ℑmH.
Let {1, i, j, k} be the basis of H, with

i 2 = j 2 = k 2 = -1 ij = -ji, ik = -ki, jk = -kj.
An element x of H is written as :

x = x 0 + x 1 i + x 2 j + x 3 k (9) = (x 0 , ℑmx). (10) 
A U(1) potential will be given by functions A µ (x) ∈ R. It will be convenient if we go further to work with the differential 1-form on R 4 defined by

A(x) = 3 α=0 A α (x)dx α . (11) 
The 1-form A has a geometric significance: it is the connection form which is used to define covariant derivatives. We shall also write the curvature F as an exterior 2-form

F = 1 2 F µν dx µ ∧ dx ν . (12) 
The 2-form F is computed from A by

F = dA = 3 µ=0 dA µ ∧ dx µ = 1 2 µ,ν F µν dx µ ∧ dx ν = 1 2 ∂A 1 ∂x 0 - ∂A 0 ∂x 1 dx 0 ∧ dx 1 + 1 2 ∂A 2 ∂x 0 - ∂A 0 ∂x 2 dx 0 ∧ dx 2 + 1 2 ∂A 3 ∂x 0 - ∂A 0 ∂x 3 dx 0 ∧ dx 3 + 1 2 ∂A 2 ∂x 1 - ∂A 1 ∂x 2 dx 1 ∧ dx 2 + 1 2 ∂A 3 ∂x 2 - ∂A 2 ∂x 3 dx 2 ∧ dx 3 + 1 2 ∂A 1 ∂x 3 - ∂A 3 ∂x 1 dx 3 ∧ dx 1 . (13) 
In this work we are concerned by a uniform magnetic field B ∈ R 3 . Since R 3 is identified with ℑmH, we write

B q = B 1 i + B 2 j + B 3 k = B
(B q represents the quaternion version of the magnetic field B ∈ R 3 ). A matrix representation of i, j, k on R 4 is:

i =     0 -1 0 0 1 0 0 0 0 0 0 -1 0 0 1 0     (14) j =     0 0 -1 0 0 0 0 1 1 0 0 0 0 -1 0 0     (15) k =     0 0 0 -1 0 0 -1 0 0 1 0 0 1 0 0 0     . (16) 
The matrix associated to the magnetic field B is :

Ω B =     0 -B 1 -B 2 -B 3 B 1 0 -B 3 B 2 B 2 B 3 0 -B 1 B 3 -B 2 B 1 0     . ( 17 
)
Since we deal with uniform fields, the matrix Ω B can be obtained from (13) by considering that the coefficients of the 2-form F are constants and that F is self-dual 2-form. We have 1 2

∂A 1 ∂x 0 - ∂A 0 ∂x 1 = E 1 , 1 2 
∂A 2 ∂x 0 - ∂A 0 ∂x 2 = E 2 , 1 2 
∂A 3 ∂x 0 - ∂A 0 ∂x 3 = E 3 (18) 1 2 ∂A 3 ∂x 2 - ∂A 2 ∂x 3 = B 1 , 1 2 
∂A 1 ∂x 3 - ∂A 3 ∂x 1 = B 2 , 1 2 
∂A 2 ∂x 1 - ∂A 1 ∂x 2 = B 3 (19)
The matrix associated to F is :

Ω E, B =     0 -E 1 -E 2 -E 3 E 1 0 -B 3 B 2 E 2 B 3 0 -B 1 E 3 -B 2 B 1 0     (20) 
Note the analogy of the tensor Ω E, B and the electromagnetic tensor (F µν ), which one can derive from the Maxwell equations (we work in the Euclidean space R 4 instead of the Minkowski space R 3,1 ). This matrix may be interpreted as the matrix associated to an electric and a magnetic uniform fields

E =   E 1 E 2 E 3   , B =   B 1 B 2 B 3   .
We define the connection A associated to these uniform fields by its potential vector

A = Ω E, B x
where

x =     x 0 x 1 x 2 x 3     ∈ R 4 , Ω E, B x =     A 0 A 1 A 2 A 3     =     -E 1 x 1 -E 2 x 2 -E 3 x 3 B 1 x 0 -B 3 x 2 + B 2 x 3 B 2 x 0 + B 3 x 1 -B 1 x 3 B 3 x 0 -B 2 x 1 + B 1 x 2    
Let ⋆ be the Hodge operator; the self-duality of the 2-form F is: ⋆F = F , this implies E = B, hence the matrix (20) becomes :

Ω Bq =     0 -B 1 -B 2 -B 3 B 1 0 -B 3 B 2 B 2 B 3 0 -B 1 B 3 -B 2 B 1 0    
which is exactly the matrix (17). Then,

Ω Bq x =     A 0 A 1 A 2 A 3     =     -B 1 x 1 -B 2 x 2 -B 3 x 3 B 1 x 0 -B 3 x 2 + B 2 x 3 B 2 x 0 + B 3 x 1 -B 1 x 3 B 3 x 0 -B 2 x 1 + B 1 x 2     . (21) 
The Landau operator H Bq is obtained from ( 4) and ( 5) (Quantum Mechanics result), (for simplicity we take = 1, q = 1, and 2m = 1):

H Bq = - ∂ ∂x 0 + iA 0 2 + ∂ ∂x 1 + iA 1 2 + ∂ ∂x 2 + iA 2 2 + ∂ ∂x 3 + iA 3 2 = -∆ -2i < Ω Bq x, ∇ > + Ω Bq x 2 (22)
which is the Hamiltonian of a charged particle in H ∼ R 4 acted on by a uniform magnetic field B q ∈ ℑmH ∼ R 3 .

Heisenberg group

We will derive the Landau operator (22) from a Lie group and its associated Lie algebra approach. This Landau operator on the quaternionic field may be viewed as the Fourier transform of the sub-Laplacian associated to the quaternionic Heisenberg group ℑmH × ω H of dimension 7, where H ∼ R 4 is viewed as the space of quaternions, ω is a canonical ℑmH-valued symplectic form on H, ℑmH ∼ R 3 and ν ∈ ℑmH is fixed. This Heisenberg group is associated to the exact sequence

0 -→ ℑmH -→ ℑmH × ω H -→ H -→ 0 that is, 0 -→ R 3 -→ R 3 × ω R 4 -→ R 4 -→ 0. 3.1.1 Canonical form on H Define a 2-form ω on H by ω (x, y) = 1 2 (y x -xȳ)
for every x, y ∈ H, where x = x 0 1 -

x 1 i -x 2 j -x 3 k is the quaternionic conjugate of x. It is easily checked that ω(x, y) ∈ ℑm (H) can be written ω(x, y) = ω 1 (x, y)i + ω 2 (x, y)j + ω 3 (x, y)k
where ω 1 , ω 2 , ω 3 are real valued 2-forms on H.

ω 1 (x, y) = x 0 y 1 -x 1 y 0 + x 2 y 3 -x 3 y 2 ω 2 (x, y) = x 0 y 2 -x 2 y 0 + x 3 y 1 -x 1 y 3 ω 3 (x, y) = x 0 y 3 -x 3 y 0 + x 1 y 2 -x 2 y 1 .
ω 1 , ω 2 , ω 3 are symplectic forms on R 4 , so that ω can be viewed as a R 3 -valued symplectic form on R 4 given by

ω (x, y) = ω 1 (x, y)e ′ 1 + ω 2 (x, y)e ′ 2 + ω 3 (x, y)e ′ 3
where (e ′ 1 , e ′ 2 , e ′ 3 ) is the canonical basis of R 3 corresponding to the basis (i, j, k) of ℑm(H). In the following we consider the quaternionic Heisenberg group

N ω = R 3 × ω R 4 associated to the symplectic form ω defined above. Note that N ω is topologically R 3 × R 4 ∼ = R 7 .

Heisenberg group associated to ω

Let (t,x) be an element of (R 3 × R 4 ), where:

t ∈ R 3 , t = t 1 e ′ 1 + t 2 e ′ 2 + t 3 e ′ 3 x ∈ R 4 , x = x 0 e 0 + x 1 e 1 + x 2 e 2 + x 3 e 3 .
We define the multiplication law

• ω in R 3 × R 4 by (t, x) • ω (t ′ , x ′ ) = t + t ′ + ω(x, x ′ ), x + x ′ . It is easily verified that R 3 × R 4 ,
• ω is the Heisenberg group associated to the form ω. A matrix representation of the Heisenberg group element (t, x) is :

ζ(t, x) =             1 0 0 -x 1 x 0 -x 3 x 2 t 1 0 1 0 -x 2 x 3 x 0 -x 1 t 2 0 0 1 -x 3 -x 2 x 1 x 0 t 3 0 0 0 1 0 0 0 x 0 0 0 0 0 1 0 0 x 1 0 0 0 0 0 1 0 x 2 0 0 0 0 0 0 1 x 3 0 0 0 0 0 0 0 1             . It is easily checked that ζ(t, x)ζ(t ′ , y) = ζ(t + t ′ + ω(x, y), x + y)
and ζ(t, x) is an invertible matrix with inverse ζ(-t, -x). Hence N ω = R 3 × ω R 4 may be viewed as a Lie subgroup of the affine group of R 7 :

N ω ⊂ Aff (R 7 ) ⊂ GL(R 8 ).

Lie algebra of the Heisenberg group

One can determine in the usual manner the infinitesimal generators which characterize the Lie algebra of the Heisenberg group. We obtain a Heisenberg algebra h of dimension 7 generated by the following vector fields:

F 0 = ∂ ∂x 0 -x 1 ∂ ∂t 1 -x 2 ∂ ∂t 2 -x 3 ∂ ∂t 3 (23) 
F 1 = ∂ ∂x 1 + x 0 ∂ ∂t 1 + x 3 ∂ ∂t 2 -x 2 ∂ ∂t 3 (24) 
F 2 = ∂ ∂x 2 -x 3 ∂ ∂t 1 + x 0 ∂ ∂t 2 + x 1 ∂ ∂t 3 (25) 
F 3 = ∂ ∂x 3 + x 2 ∂ ∂t 1 -x 1 ∂ ∂t 2 + x 0 ∂ ∂t 3 (26) 
and

T 1 = ∂ ∂t 1 , T 2 = ∂ ∂t 2 , T 3 = ∂ ∂t 3 .
The commutation relations between the generators are:

[T λ , T µ ] = 0 (λ, µ = 1, 2, 3), [F α , T λ ] = 0 (α = 0, . . . , 3; λ = 1, 2 , 3) 
and

[F α , F β ] = 2T γ
where (αβγ) is a circular permutation of (123). The center of the algebra h is the abelian ideal generated by T 1 , T 2 and T 3 . This algebra is a 2-step nilpotent Lie algebra.

The Landau operator H ν

In the universal envelopping algebra U(h) of h, we define the following quadratic operator, which is the Laplace element in U(h):

Q = F 2 0 + F 2 1 + F 2 2 + F 2 3 + T 2 1 + T 2 2 + T 2 3 .
Explicitly, Q takes the following form:

Q = ∂ ∂x 0 -x 1 ∂ ∂t 1 -x 2 ∂ ∂t 2 -x 3 ∂ ∂t 3 + 2 + ∂ ∂x 1 + x 0 ∂ ∂t 1 + x 3 ∂ ∂t 2 -x 2 ∂ ∂t 3 2 + ∂ ∂x 2 -x 3 ∂ ∂t 1 + x 0 ∂ ∂t 2 + x 1 ∂ ∂t 3 2 + ∂ ∂x 3 + x 2 ∂ ∂t 1 -x 1 ∂ ∂t 2 + x 0 ∂ ∂t 3 2 + ∂ 2 ∂t 2 1 + ∂ 2 ∂t 2 2 + ∂ 2 ∂t 2 3 ( 27 
)
and may be written

Q = ∆ Nω sub + ∆ R 3 where ∆ R 3 = ∂ 2 ∂t 2 1 + ∂ 2 ∂t 2 2 + ∂ 2 ∂t 2 3
is the standard Laplacian on R 3 and ∆ Nω sub is the sub-Laplacian associated to the Heisenberg group

N ω = R 3 × ω R 4 . The partial Fourier transform F (Q) of Q on the t-variable is obtained by replacing ∂ ∂t λ by iν λ , λ = 1, 2, 3, ( where 
ν = (ν 1 , ν 2 , ν 3 ) is the dual variable of t = (t 1 , t 2 , t 3 
)); this defines an operator denoted by F (Q) which has the form:

F (Q) = F (∆ Nω sub ) + F (∆ R 3 ) = ν 2 1 + ν 2 2 + ν 2 3 + ∂ ∂x 0 + i (-ν 1 x 1 -ν 2 x 2 -ν 3 x 3 ) 2 + ∂ ∂x 1 +i (ν 1 x 0 -ν 3 x 2 + ν 2 x 3 ) 2 + ∂ ∂x 2 + i (ν 2 x 0 + ν 3 x 1 -ν 1 x 3 ) 2 + ∂ ∂x 3 + i (ν 3 x 0 -ν 2 x 1 + ν 1 x 2 ) 2 (28) 
with

F (∆ R 3 ) = ν 2 1 + ν 2 2 + ν 2 3 ( 29 
)
and

F (∆ Nω sub ) = ∂ ∂x 0 +i (-ν 1 x 1 -ν 2 x 2 -ν 3 x 3 ) 2 + ∂ ∂x 1 +i (ν 1 x 0 -ν 3 x 2 + ν 2 x 3 ) 2 + ∂ ∂x 2 +i (ν 2 x 0 + ν 3 x 1 -ν 1 x 3 ) 2 + ∂ ∂x 3 +i (ν 3 x 0 -ν 2 x 1 + ν 1 x 2 ) 2 . (30) 
By identifying ν λ with B λ , λ = 1, 2, 3 we have

H ν = -F (∆ Nω sub ) (31) 
which is exactly the expression (22); then we can say that the variables (t 1 , t 2 , t 3 ) are the dual variables of the components of the magnetic field B = (B 1 , B 2 , B 3 ) = (ν 1 , ν 2 , ν 3 ); and that the Landau operator is equal to minus the partial Fourier transform of the sub-laplacian associated to the Heisenberg group R 3 × ω R 4 . F (∆ R 3 ) is the intensity of the magnetic field.

Angular momentum in R 4

The momentum operator of a particle in R 3 with coordinates (x 1 , x 2 , x 3 ) is defined by p = -i ∇ and its components are:

px = -i ∂ ∂x 1 , py = -i ∂ ∂x 2 , pz = -i ∂ ∂x 3 .
The angular momentum operator l is defined by l = x ∧ p, where x is the position operator of the particle defined by its components (x 1 , x2 , x3 ). Thus

x ∧ p has components lx = -i x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 ly = -i x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 lz = -i x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1
and these operators verify the commutation relations: lx , ly = i lz , ly , lz = i lx , lz , lx = i ly .

In R 4 the position operator is :

x = x 0 e 0 + x 1 e 1 + x 2 e 2 + x 3 e 3 and the nabla operator

∂ x = ∂ ∂x 0 e 0 + ∂ ∂x 1 e 1 + ∂ ∂x 2 e 2 + ∂ ∂x 3 e 3 .
Here x and ∂ x are meant to be elements of the free module A e 0 , e 1 , e 2 , e 3 ∼ = A ⊗ R R e 0 , e 1 , e 2 , e 3 with basis (e 0 , e 1 , e 2 , e 3 ) and coefficients in the Weyl algebra A of linear operators on C ∞ (R 4 ; C) with generators: the identity map on C ∞ (R 4 ; C), multiplication by x α , partial derivatives ∂ ∂xα and relations: [ ∂ ∂xα , x β ] = δ αβ , for α, β = 0, ..., 3, the other commutators being zero. We now consider the exterior product x ∧ ∂ x , belonging to the module Λ 2 (A e 0 , e 1 , e 2 , e 3 ) which is contained in A ⊗ R Λ 2 (R 4 ):

x ∧ ∂ x = x 0 ∂ ∂x 1 -x 1 ∂ ∂x 0 e 0 ∧ e 1 + x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 e 2 ∧ e 3 + + x 0 ∂ ∂x 2 -x 2 ∂ ∂x 0 e 0 ∧ e 2 + x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 e 3 ∧ e 1 + + x 0 ∂ ∂x 3 -x 0 ∂ ∂x 3 e 0 ∧ e 3 + x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 e 1 ∧ e 2 .
In the orthonormal direct basis (e 0 , e 1 , e 2 , e 3 ) of R 4 , the Hodge ⋆-operator is a linear involution of Λ 2 (R 4 ) (i.e. ⋆ 2 = id R 4 ) given by ⋆ e 0 ∧ e 1 = e 2 ∧ e 3 ⋆ e 0 ∧ e 2 = e 3 ∧ e 1 ⋆ e 0 ∧ e 3 = e 1 ∧ e 2 .

We have:

x ∧ ∂ x + ⋆ x ∧ ∂ x = = x 0 ∂ ∂x 1 -x 1 ∂ ∂x 0 + x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 (e 0 ∧ e 1 + e 2 ∧ e 3 ) + + x 0 ∂ ∂x 2 -x 2 ∂ ∂x 0 + x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 (e 0 ∧ e 2 + e 3 ∧ e 1 ) + + x 0 ∂ ∂x 3 -x 0 ∂ ∂x 3 + x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1 (e 0 ∧ e 3 + e 1 ∧ e 2 ) . (32) 
The space of self-adjoint elements of Λ 2 (R 4 ) is a 3-dimensional vector space with basis (e 0 ∧ e 1 + e 2 ∧ e 3 , e 0 ∧ e 2 + e 3 ∧ e 1 , e 0 ∧ e 3 + e 1 ∧ e 2 ) , which we identify with the basis (e ′ 1 , e ′ 2 , e ′ 3 ) of R 3 , so that the self-adjoint elements of Λ 2 (A e 0 , e 1 , e 2 , e 3 ) can be viewed as elements of

A e ′ 1 , e ′ 2 , e ′ 3 ∼ = A ⊗ R R e ′
1 , e ′ 2 , e ′ 3 . We define the angular momentum operator of a particle in R 4 as the element l of A ⊗ R C e ′ 1 , e ′ 2 , e ′ 3 given by

l = -i x ∧ ∂ x + ⋆ x ∧ ∂ x .
The components of l are :

l 1 = -i x 0 ∂ ∂x 1 -x 1 ∂ ∂x 0 + x 2 ∂ ∂x 3 -x 3 ∂ ∂x 2 l 2 = -i x 0 ∂ ∂x 2 -x 2 ∂ ∂x 0 + x 3 ∂ ∂x 1 -x 1 ∂ ∂x 3 l 3 = -i x 0 ∂ ∂x 3 -x 3 ∂ ∂x 0 + x 1 ∂ ∂x 2 -x 2 ∂ ∂x 1
The components of l in terms of the complex variables z ′ 1 = x 0 + ix 1 and z ′ 2 = x 2 + ix 3 are :

l 1 = z ′ 1 ∂ ∂z ′ 1 -z′ 1 ∂ ∂ z′ 1 + z ′ 2 ∂ ∂z ′ 2 -z′ 2 ∂ ∂ z′ 2 l 2 = -i z′ 1 ∂ ∂z ′ 2 -z′ 2 ∂ ∂z ′ 1 -z ′ 2 ∂ ∂ z′ 1 + z ′ 1 ∂ ∂ z′ 2 l 3 = z′ 1 ∂ ∂z ′ 2 -z′ 2 ∂ ∂z ′ 1 -z ′ 1 ∂ ∂ z′ 2 + z ′ 2 ∂ ∂ z′ 1 .
The expressions ( 22) and ( 31) can be written in terms of the angular momentum as follows

H ν = -∆ + 2 < ν, l > + ν 2 x R 4 (33) 4.2 Complex form of H ν = H B
Since R 4 is isomorphic to C 2 , we define the complex coordinates on R 4 by z ′ 1 = x 0 + ix 1 and z ′ 2 = x 2 + ix 3 ; we have:

∂ ∂z ′ 1 = 1 2 ( ∂ ∂x 0 -i ∂ ∂x 1 ), ∂ ∂ z′ 1 = 1 2 ( ∂ ∂x 0 + i ∂ ∂x 1 ) ∂ ∂z ′ 2 = 1 2 ( ∂ ∂x 2 -i ∂ ∂x 3 ), ∂ ∂ z′ 2 = 1 2 ( ∂ ∂x 2 + i ∂ ∂x 3 ) then H ν = -4 ∂ 2 ∂ z ′ 1 ∂ z′ 1 -4 ∂ 2 ∂z ′ 2 ∂ z′ 2 + 2ν 1 z ′ 1 ∂ ∂z ′ 1 -z′ 1 ∂ ∂ z′ 1 + z ′ 2 ∂ ∂z ′ 2 -z′ 2 ∂ ∂ z′ 2 -2iν 2 z′ 1 ∂ ∂z ′ 2 -z′ 2 ∂ ∂z ′ 1 -z ′ 2 ∂ ∂ z′ 1 + z ′ 1 ∂ ∂ z′ 2 +2ν 3 z′ 1 ∂ ∂z ′ 2 -z′ 2 ∂ ∂z ′ 1 + z ′ 2 ∂ ∂ z′ 1 -z ′ 1 ∂ ∂ z′ 2 + | ν| 2 (|z ′ 1 | 2 + |z ′ 2 | 2 ).
By introducing the angular momentum l, the precedent formula may be condensed into

H ν = -4 ∂ 2 ∂ z ′ 1 ∂ z′ 1 -4 ∂ 2 ∂z ′ 2 ∂ z′ 2 + 2 < ν, l > +| ν| 2 (|z ′ 1 | 2 + |z ′ 2 | 2 ).
5 Canonical Landau operator H ν

Canonical form of the matrix Ω ν

As we have seen above, for each uniform magnetic field B = ν = (ν 1 , ν 2 , ν 3 ), we associate the linear operator Ω ν acting on R 4 , defined by its matrix in the canonical basis (e 0 , e 1 , e 2 , e 3 )

Ω ν =     0 -ν 1 -ν 2 -ν 3 ν 1 0 -ν 3 ν 2 ν 2 ν 3 0 -ν 1 ν 3 -ν 2 ν 1 0    
We remark that:

Ω ν 2 = -ν 2 I 4 (34) 
I 4 is the identity matrix on R 4 . Since i 2 = j 2 = k = -1, as particular solutions of the equation (34) we have:

Ω ν = ± ν i (35) 
Ω ν = ± ν j (36) 
Ω ν = ± ν k (37) 
We have three particular orthogonal complex structures ; these solutions have a physical interpretation, since ℑmH ∼ R 3 , the equation (35) means that the magnetic field is taken along the x 1 axis, the equation (36) means that the magnetic field is taken along the x 2 axis and the equation (37) means that the magnetic field is taken along the x 3 axis. We will prove that, for any ν ∈ R 3 there exist an orthogonal transformation which passes from Ω ν to Ω ν = ν i or to Ω ν = ν j or to Ω ν = ν k ; i, j, k are represented by the matrices ( 14), (15) and (16).

Theorem 5.1.

For every ν = (ν 1 , ν 2 , ν 3 ) ∈ R 3 , there exists R ∈ SO(4) such that R Ω ν R -1 = Ω ν (38) 
Proof. We give the proof for the case Ω ν = ν i; the proof for the other cases is similar to this one. We denote as above (e 0 , e 1 , e 2 , e 3 ) the canonical basis of oriented Euclidian space R 4 and we identify a linear operator in R 4 with its matrix in this basis.

1. If ν 2 = ν 3 = 0 then Ω ν =     0 -ν 1 0 0 ν 1 0 0 0 0 0 0 -ν 1 0 0 ν 1 0    
and if ν 1 0, we have Ω ν = Ω ν and we can choose for instance R = I 4 . If ν 1 < 0 , we have Ω ν = -Ω ν and we can choose

R =     1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 -1     .
This matrix evidently belongs to SO(4).

2. Suppose ν 2 2 + ν 2 3 = 0 and set λ = ν 2 2 + ν 2 3 . Define

ε 0 : = e 0 ε 1 : = - 1 ν Ω ν e 0 hence Ω ν ε 0 = -ν ε 1 Ω ν ε 1 = - 1 ν Ω 2 ν e 0 = ν ε 0 .
We seek now ε 2 as a linear combination of e 2 and e 3 , ε 2 = ae 2 + be 3 , with the orthonormality conditions:

ε 2 2 = 1, ε 1 , ε 2 R 4 = 0.
We get thus a = ± ν 3 λ and b = ∓ ν 2 λ , we write ε 2 in the form: ε 2 = ν 3 λ e 2 -ν 2 λ βe 3 . The vector ε 3 is defined as

ε 3 = - 1 ν Ω ν ε 2 ,
is one-to-one and continuous, as we can see by the formulas (39), ( 40) and (41). Since R ε ′ 1 can be identified with σ, R extends to an homeomorphism R : S 2 -→ SO (4)/U (2). In other words: each direction ν ∈ S 2 defines an orthogonal complex structure on R 4 to which will correspond a quaternionic Landau operator H ν .

canonical form of the Landau operator

Recall that by a suitable orthogonal change of basis R : (e α ) 3 α=0 → (e ′ α ) 3 α=0 of R 4 , we have

RΩ ν R -1 =     0 -ν 0 0 ν 0 0 0 0 0 0 -ν 0 0 ν 0     = Ω ν = ν i
where i is the element of the base of ℑmH represented by ( 14) and

ν = ν 2 1 + ν 2 2 + ν 2 3
. Let (y 0 , y 1 , y 2 , y 3 ) denote the new coordinates in the basis (e ′ α ) 3 α=0 . We consider the connection defined by

A ′ =     0 -ν 0 0 ν 0 0 0 0 0 0 -ν 0 0 ν 0         y 0 y 1 y 2 y 3     that is A ′ =     -ν y 1 ν y 0 -ν y 2 ν y 3     =     A ′ 0 A ′ 1 A ′ 2 A ′ 3    
and the covariant derivative is :

∇ A ′ α = ∂ ∂y α + iA ′ α (y).
The corresponding Hamilton operator is

H ν = - ∂ ∂y 0 -i ν y 1 2 - ∂ ∂y 1 + i ν y 0 2 - ∂ ∂y 2 -i ν y 3 2 - ∂ ∂y 3 + i ν y 2 2 = -∆ R 4 (y 0 ,y 1 ,y 2 ,y 3 ) -2i ν y 0 ∂ ∂y 1 -y 1 ∂ ∂y 0 + y 2 ∂ ∂y 3 -y 3 ∂ ∂y 2 + ν 2 y 2 0 + y 2 1 + y 2 2 + y 2 3 .
One can show from Section 4 that the Landau operator H ν may be defined as the partial Fourier Transform of the sub-Laplacian associated to the Heisenberg group R × R 4 ; the Lie algebra h ′ of this group is generated by the following vector fields:

F ′ 0 = ∂ ∂y 0 -y 1 ∂ ∂t ′ , F ′ 1 = ∂ ∂y 1 + y 0 ∂ ∂t ′ , F ′ 2 = ∂ ∂y 2 -y 3 ∂ ∂t ′ , F ′ 3 = ∂ ∂y 3 + y 2 ∂ ∂t ′ and T ′ = ∂ ∂t ′ .
The quotient of h by the ideal generated by T 2 , T 3 is none other than the Heisenberg algebra h ′ of dimension 5.

The partial Fourier transform with respect to the variable t is iϑ, ϑ is identified with ν .

Complex form of H ν

We define the new complex coordinates on R 4 by z 1 = y 0 + iy 1 and z 2 = y 2 + iy 3 . We get,

H ν = -4 ∂ ∂z 1 ∂ ∂ z1 + ∂ ∂z 2 ∂ ∂ z2 + ν 2 z 1 ∂ ∂z 1 -z1 ∂ ∂ z1 + z 2 ∂ ∂z 2 -z2 ∂ ∂ z2 - ν 2 2 |z 1 | 2 + |z 2 | 2 . ( 42 
)
The precedent expression (42) is much simpler to study than the expression (34).

From the second quantization formalism [7], we define the annihilation operators in the following manner:

a 1 = ∂ ∂ z1 + ν 2 z 1 , a 2 = ∂ ∂ z2 + ν 2 z 2
and the corresponding creation operators are

a † 1 = - ∂ ∂z 1 + ν 2 z1 , a † 2 = - ∂ ∂z 2 + ν 2 z2 .
They satisfy the following commutation relations:

[a i , a j ] = [a † i , a † j ] = 0 [a i , a † j ] = ν δ ij A straightforward calculation gives a † 1 a 1 = - ∂ ∂ z1 ∂ ∂z 1 + ν 2 z 1 ∂ ∂z 1 -z1 ∂ ∂ z1 + ν 2 2 |z 1 | 2 - ν 2 a † 2 a 2 = - ∂ ∂ z2 ∂ ∂z 2 + ν 2 z 2 ∂ ∂z 2 -z2 ∂ ∂ z2 + ν 2 2 |z 2 | 2 - ν 2 
We have, H ν = 4 a † 1 a 1 + a † 2 a 2 + 4 ν which is the Hamiltonian of two superposed uncoupled harmonic oscillators. The spectral analysis of this operator is well known [START_REF] Ghanmi | [END_REF] and references there in.

Symmetry group of the Landau operator

Here we examine a group theoretical aspect of the quantum system in a magnetic field. It is known that the translation symmetry group becomes noncommutative when a uniform magnetic field is introduced into the Euclidean space. Theorem 6.1. Let T a be the operator defined by

(T a f )(x) = e i A(a), x f (x + a)
where , denotes the scalar product in R 4 . Then

T a • H ν = H ν • T a .
Proof. We set, for every x ∈ R 4 , g(x) = e i A(a), x f (x + a). Thus for α = 0, . . . , 3, we have the following expressions: that is

∂ ∂x α g(x) = ∂ ∂x α (e i A(a), x f (x + a)) = iA α (a)e i A(a), x f (x + a) + e i A(a), x ∂f ∂x α (x + a) ∂ 2 ∂x 2 α g(x) = e i A(a), a -A 2 α (a)f (x + a) +2iA α (a) ∂f ∂x α (x + a) + ∂ 2 f ∂x 2 α (x + a) 20 ∆ R 4 g(x) = e i A(a), a - 3 α=0 A 2 α (a)f (x + a) +2i 3 α=0 A α (a) ∂f ∂x α (x + a) + ∆ R 4 f (x + a) 2i 3 α=0 A α (x) ∂ ∂x α g(x) = 2ie i A(a), x 3 α=0 A α (x) iA α (a)f (x + a) + ∂f ∂x α (x + a) = e i A(a), x -2 3 α=0 A α (x)A α (a)f (x + a) +2i 3 α=0 A α (x) ∂f ∂x α (x + a) -ν 2 R 3 x 2 R 4 g(x) = -ν 2 R 3 x 2 R 4 e i A(a), x f (x + a) = - 3 α=0 A 2 α (x) e i A(
∇ α • T a (f ) = T a • ∇ α (f ).
Since

H ν = 3 α=0
∇ 2 α , we obtain immediately

H ν • T a = T a • H ν .
It is to be noted that T a is a combination of a translation in the a-direction and a gauge transformation. We have unitary transformations, the set of these transformations form a noncommutative group, which is the magnetic translation group; the law of the group is: The precedent relation means that the translation symmetry group becomes noncommutative when a uniform magnetic field is introduced into the Euclidean space.

T b T a f (x) = e i A(

Concluding remarks and comments

In the preceding sections, we have derived the Landau operator from a Lie group theoretical approach. We have shown that there exists a canonical form of this operator which is easier to handle. An interesting investigation involving theta functions, which describes a charged particle moving in a uniform magnetic field on a lattice of R 4 , was done in [START_REF] Ghanmi | [END_REF]. Other connections with this work via the magnetic translation group can be found in [START_REF] Tanimura | [END_REF] and [7] and references therein. Tanimura [START_REF] Tanimura | [END_REF] studied the magnetic translation groups in a n-dimensional torus and their representations. Brown [7] found that the translation symmetry if an electron in a lattice in a uniform magnetic filed is noncommutative and that the quantum system obeys a projective representation of the translation group.
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that is ε 3 = -λ ν e 1 + ν 1 ν 2 λ ν e 2 + ν 1 ν 3 λ ν e 3 . We can easily verify that Ω ν ε 2 = -ν ε 3 , Ω ν ε 3 = ν ε 3 and that the matrix

Remark 5.2. One can easily show that the centralizer of Ω ν in SO(4) is U(2). For a fixed ν ∈ R 3 {0}, the set of orthonormal changes of basis 2) is the so called space of orthogonal complex structures on R 4 and it is diffeomorphic to the projective line CP 1 (i.e. the sphere S 2 ).

Remark 5.3. The construction of R can be done in the following way. Let (e ′ 1 , e ′ 2 , e ′ 3 ) be the canonical basis of the Euclidian oriented space R 3 endowed with the vector product ∧.

we set λ = ν 2 2 + ν 2 3 and we define

The relating matrix between the basis (ε

3 ) is easily seen to be a direct orthonormal basis of R 3 . We consider the embedding Φ : R 3 ֒→ R 4 given by Φ(x

)) is a direct orthonormal basis of R 4 which represents an element of the quotient space SO(4)/U(2). Denote σ the coset of U(2) in SO(4)/U(2). When restricted to the punctured sphere S 2 {ε ′ 1 } of R