

Offline Algorithms for Several Network Design, Clustering and QoS

Optimization Problems

Mugurel Ionut Andreica*, Eliana-Dina Tirsa*, Alexandru Costan*, Nicolae Tapus*

*Computer Science and Engineering Department, Politehnica University of Bucharest, Bucharest, Romania

(e-mail: {mugurel.andreica, eliana.tirsa, alexandru.costan, nicolae.tapus}@cs.pub.ro)

Abstract: In this paper we address several network design, clustering and Quality of Service (QoS)

optimization problems and present novel, efficient, offline algorithms which compute optimal or near-

optimal solutions. The QoS optimization problems consist of reliability improvement (by computing

backup shortest paths) and network link upgrades (in order to reduce the latency on several paths). The

network design problems consist of determining small diameter networks, as well as very well connected

and regular network topologies. The network clustering problems consider only the restricted model of

static and mobile path networks, for which we were able to develop optimal algorithms.

1. INTRODUCTION

Network design, clustering and Quality of Service (QoS)

optimization problems arise in a wide range of fields (such as

efficient data distribution and replication, providing QoS

guarantees, and so on) and developing efficient algorithms

for solving such problems is an important goal in computer

science research. In this paper we address several such

problems from an offline perspective. In Section 2 we discuss

the issue of computing backup shortest paths in a network,

when the last link on the shortest path may fail. In Section 3

we consider two problems regarding network link latency

changes in order to satisfy several QoS constraints. In Section

4 we discuss 2 network design problems with the objectives

of obtaining a bounded network diameter and a k-regular

network topology. In Section 5 we consider several network

clustering problems for the restricted case of path networks.

In Section 6 we discuss related work and we conclude.

2. BACKUP SHORTEST PATHS

We consider a network composed of n nodes and m

undirected edges (links). Each edge (u,v) has a latency l(u,v).

One of the nodes (src) occasionally has to deliver pieces of

content to the other nodes of the network. The content is

delivered along the shortest path from node src to the

destination node d. We are interested in computing backup

paths from the source node src to every other node in the

network, for the case that the last edge on the shortest path

from src to each node d fails. The backup path from src to a

node d is the shortest path between src and d in the graph

obtained from the original network by deleting the last edge

on the (initial) shortest path from src to d. At first, we will

compute the shortest path tree SPT in O(m·log(n)) time (or

even O(m+n·log(n))). This tree, which is rooted at the node

src contains all the shortest paths from src to every other

node. The unique path between src and a node d in SPT is the

shortest path between these two nodes in the original graph.

Each node d has a parent parent(d) in SPT. The last edge on

the shortest path between src and a node d is the edge

(parent(d),d). The level of a node d is the number of edges on

the path from the root src to d: level(src)=0 and

level(d≠src)=level(parent(d))+1. The length of the shortest

path from src to a node d is SP(d). We will traverse the

shortest path tree in a DFS manner, starting from the root and

assign to each vertex d its DFS number DFSnum(d)

(DFSnum(d)=j if d was the j
th

 distinct vertex visited during

the DFS traversal). We will then assign to each node d an

interval I(d)=[DFSnum(d),DFSmax(d)], where DFSmax(d) is

the largest DFS number of a node in T(d) (node d’s subtree).

A simple method of computing backup paths is to recompute

the shortest path in the graph between node src and every

node d, after removing the edge (parent(d),d) from the graph

(network). This approach takes O(n·m·log(n)) (or

O(n·m+n
2
·log(n)) time, which may be too long when the

number of connections is quite large (for instance, if

m=O(n
2
), the time complexity can become as high as O(n

3
),

which is prohibitive for networks composed of a large

number of nodes). We will present two solutions, with

O(n
2
+m) and O((n+m)·log(n)) complexities. The first

approach traverses the shortest path tree SPT in a bottom-up

manner. For each node d, it computes an array BPL(d), where

BPL(d,j) (0≤j<level(d)) is the shortest length of a backup

path which diverges from the shortest path from src to d at

level j. We will initialize BPL(d,j) to +∞. Then, we consider

every son s(d,q) of the node d (1≤q≤ns(d); ns(d)=the number

of sons of node d in SPT) and set BPL(d,j)= min{BPL(d,j),

BPL(s(d,q),j)+l(d,s(d,q))} (0≤j<level(d)). Afterwards, we

consider all the edges (u,d) and compute LCA(u,d) (the

lowest common ancestor of u and d in SPT). If (u≠parent(d))

and (d is not an ancestor of u in SPT), then BPL(d,

level(LCA(u, d))) = min{BPL(d, level(LCA(u, d))), SP(u)+

l(u,d)}. Two methods for testing if d is an ancestor of u are to

check if: (1) (LCA(u,d)=d); or (2) (DFSnum(u)∈ I(d)) (i.e.

DFSnum(d)≤DFSnum(u)≤DFSmax(d)). There are many

techniques for computing the lowest common ancestor, the

fastest of which takes O(n) preprocessing and O(1) time per

query (Bender et al., 2000). The length of the shortest backup

path for every node d is BP(d)=min{BPL(d,j)| 0≤j<level(d)}.

In order to compute the actual backup paths we just need to

trace back the way we computed the BP(*) and BPL(*,*)

values. The second approach improves the first algorithm.

During the bottom-up traversal, we will maintain a data

structure DS which will be used as follows. When we

consider all the edges (u,d) for a node d, if (u≠parent(d)) and

(LCA(u,d)≠d) then we add the tuple (val=SP(u)+l(u,d)-SP(d),

v=d, lca=LCA(u,d)) to DS. Afterwards, we compute BP(d)=

SP(d)+DS.Q(d) (DS.Q(d)=the minimum value of all the

tuples (value, v, lca), where lca is an ancestor of d in SPT and

v is a descendant of d in SPT). We have two choices for DS.

DS can be a 2D dynamic range tree. When we add a tuple

(val, v, lca) to DS, we insert a point (DFSnum(v), level(lca))

with weight val in the range tree (in O(log
2
(n)) time).

DS.Q(d) computes in O(log
2
(n)) time the minimum weight of

a point in the 2D range I(d)x[0, level(d)-1] (or +∞ if no such

point exists). The second choice is a segment tree ST. Every

node d is associated to the leaf DFSnum(d) of ST. Adding a

tuple (val, v, lca) to DS means adding it to a balanced tree

BT(r) stored in the leaf r=DFSnum(v) from ST, as well as to a

list LT(lca). The current value assigned to a leaf of ST is the

minimum value within its balanced tree (or +∞ if this tree is

empty). The non-leaf nodes of ST store the minimum value

assigned to any leaf in their subtree. As soon as the bottom-

up traversal arrives at a node d, all the pairs (val, v, lca=d)

from LT(d) are removed from BT(r) of the leaf

r=DFSnum(v); after every insertion/deletion of a tuple

in/from some tree BT(r), all the values assigned to the leaf r

of ST and to its ancestors in ST are recomputed. Then, we call

DS.Q(d) which computes the minimum value assigned to any

leaf of ST in the interval [DFSnum(d), DFSmax(d)]. We

perform O(n) queries and O(m) insertions/deletions into

BT(*), each of them taking O(log(n)) time.

3. QoS-CONSTRAINED LINK LATENCY CHANGES

The first problem we consider is the following. We are given

an undirected graph (network) with n nodes and m edges

(links). Each edge (u,v) has a latency l(u,v)≥0. We want to

solve an inverse optimization problem. We want to change

the latency (increase it or decrease it) such that the shortest

path from a source node src to every vertex d is exactly

SP(d). We want to minimize the sum of the values |l'(u,v)-

l(u,v)| over all the edges (u,v), where l’(u,v) is the new

latency of the edge (u,v). The new latency l’(u,v) must satisfy

the constraint: l’(u,v)≥lmin(u,v) (initially, l(u,v)≥lmin(u,v)).

At first, we will increase the latency of every edge (u,v) for

which SP(u)<SP(v) and SP(u)+l(u,v)<SP(v); the new latency

of the edge (u,v), l'(u,v), will be SP(v)-SP(u). For the other

edges, we initialize l'(u,v) to l(u,v). After this initial step, we

will sort the vertices in increasing order of their distances

from the source node src (we will also consider node src,

with SP(src)=0). Each node u will have an associated cost

C(u). Initially, C(src)=0 and C(u≠src)=+∞. We will insert all

the tuples (SP(i),C(i),i) into a min-heap; we have (SP(i),C(i),

i)<(SP(j),C(j),j) if (SP(i)<SP(j)) or ((SP(i)=SP(j)) and (C(i)<

C(j))). As long as the heap contains any elements, we will

extract the minimum element from the heap. We will also

maintain an array extracted, which is initially set to 0 for all

the nodes. Let's assume that we extracted the tuple

(SP(u),C(u),u). We will mark u as being extracted (we set

extracted(u) to 1). Afterwards, we will consider every edge

(u,v). If (SP(u)≤SP(v)) and (extracted(v)=0) and (lmin(u,v)≤

(SP(v)-SP(u))) and (l'(u,v)-(SP(v)-SP(u))<C(v)) then we

remove the tuple (SP(v),C(v),v) from the min-heap, set C(v)

to (l'(u,v)-(SP(v)-SP(u))) and insert the tuple (SP(v),C(v),v)

(with the modified value C(v)) back into the min-heap; we

also set parent(v)=u. When the heap becomes empty, we

traverse all the vertices u≠src and set l'(parent(u),u) to SP(u)-

SP(parent(u)). If any vertex v still has C(v)=+∞, then no

solution exists. The time complexity is O((n+m)·log(n)). A

more applicative version of the problem we have just

described is the following. Let's assume that we are given the

same graph as before, but we want that the latency of the

shortest path from a source node src to every node d is at

most SP(d). In order to solve this problem we compute the

shortest path from src to every other vertex d (let SPlen(d)

denote the length of this shortest path). If SP(d)>SPlen(d),

we set SP(d)=SPlen(d). Afterwards, we solve the problem

described previously, with the new values SP(*). This way,

the initial step of the algorithm presented above, where the

latency of some edges is increased, is not necessary anymore.

In the second problem we are given a (multicast) tree with n

vertices, rooted at a source vertex src. The latency of each

edge (u,v) is l(u,v)≥0. We want to decrease the latencies of

the edges to some new values l’(u,v), such that the maximum

distance from src to every other vertex is as small as possible.

Moreover, the cost, which is represented by the sum of the

values (l(u,v)-l’(u,v)) (over all the edges (u,v)) should be at

most C. An extra condition is that the latency of an edge (u,v)

can be decreased at most down to lmin(u,v)≥0 (i.e.

lmin(u,v)≤l’(u,v)≤l(u,v)). We will traverse the tree and assign

to each vertex i its DFS number and then compute the

interval I(i) (defined previously). We will compute the

distance from src to every vertex of the tree: d(src)=0 and

d(i≠src)=l(parent(i),i)+ d(parent(i)). Let’s consider the

vertices v(1), …, v(n), in increasing order of their DFS

numbers. We will construct a segment tree A (Andreica et al.,

2008) over all the n vertices, sorted according to their DFS

numbers (the segment tree will have n leaves). The value

assigned to every leaf i of the segment tree will be d(v(i)).

The internal nodes of the segment tree will maintain the

maximum value of a leaf in their subtrees. We will construct

another segment tree B over the tree vertices (considered in

the same order), where we will perform range set updates.

Initially, for every son s(src,j) (1≤j≤ns(src)) of the root node

src, we will range update the interval I(s(src,j)) in B, by

setting all the values in the corresponding interval to s(src,j).

We will also maintain a counter Ctotal=the total cost spent

during the algorithm (initially, Ctotal=0). We initialize the

latencies l’(u,v) to l(u,v). A first approach (which works for

integer latency values) proceeds as follows. As long as

Ctotal<C, we perform the following actions: we query the

segment tree A and find the leaf i with the largest value

assigned to it. Then, we query the segment tree B, in order to

find the vertex x to which the leaf i was set by the most recent

range set update. The edge (x,parent(x)) is the edge whose

latency will be decreased by 1 unit (we assume that the

latencies are integers), if possible. If l’(x,parent(x))>

lmin(x,parent(x)), we set l’(x,parent(x))= l’(x,parent(x))-1;

afterwards, we range update the interval I(x) in the segment

tree A, by decreasing by 1 the values assigned to the leaves in

the interval I(x); we also increase Ctotal by 1. If, instead,

l’(parent(x),x)=lmin(parent(x),x) and x is not a leaf in the

tree, we will consider every son s(x,j) (1≤j≤ns(x)) of the

vertex x and range set all the values in the interval I(s(x,j)) of

the segment tree B to s(x,j); if l’(parent(x),x)=

lmin(parent(x),x) and x is a leaf in the tree, then the algorithm

stops and the maximum distance is the one corresponding to

the vertex v(i). This algorithm has time complexity O((C+n)·

log(n)), because every (range) query and every (range) update

can be performed in O(log(n)) time. From an implementation

point of view, we will use the segment tree algorithmic

framework introduced in (Andreica et al., 2008). We could

also use a block partition instead of a segment tree, but the

time complexity would drop to O((C+n)·sqrt(n)). In the

second approach we will binary search the minimum

maximum distance from the source node src to every other

vertex of the tree in the interval [0,DMAX=max{d(i)|1≤i≤n}].

In order to perform the feasibility test for a candidate distance

D, we will traverse the tree vertices i in any order; for each

vertex i, we will use the segment tree A in order to compute

the current distance CD from the root to the vertex i (by

point-querying the value assigned to the leaf DFSnum(i) in

the segment tree A). While (CD>D) we perform the

following actions. Just like in the previous algorithm, we

query the segment tree B in order to find the last value x to

which the leaf DFSnum(i) was set. Then, if (l’(parent(x),x)-

(CD-D)≥lmin(parent(x),x)), we decrease l’(parent(x),x) by

(CD-D), we increase Ctotal by (CD-D) and we range decrease

the values in the interval I(x) of the segment tree A by (CD-

D); afterwards, we query the distance CD again for the leaf

DFSnum(i) from the segment tree A – it should be equal to D.

If, instead, (l’(parent(x))-(CD-D)<lmin(parent(x),x)), we

decrease l’(parent(x),x) by dif=(l’(parent(x),x)-

lmin(parent(x),x)), we increase Ctotal by dif and we range

decrease the values in the interval I(x) of the segment tree A

by dif; afterwards, we set l’(parent(x),x) to lmin(parent(x),x)

and we query the distance CD again (from the leaf

DFSnum(i) of the segment tree A). If, after performing these

actions, we have l’(parent(x),x)=lmin(parent(x),x), then: for

every son s(x,j) of vertex x we range set all the values in the

interval I(s(x,j)) of the segment tree B to s(x,j)). If, at some

point, CD>D and the latency of the edge (parent(x),x) cannot

be decreased at all (l’(parent(x),x) is already equal to

lmin(parent(x),x); dif=0) and x is a leaf in the tree, then the

candidate distance D is not feasible. If, at the end, Ctotal is

larger than C, D is not feasible. If D is not feasible, we will

test a larger candidate distance in the binary search;

otherwise, we will test a smaller one. The time complexity of

this approach is O(n·log(n)·log(DMAX)).

4. NETWORK DESIGN PROBLEMS

For the first problem, we are given a complete graph

(network) with n vertices. Every edge (u,v) has a label l(u,v)

(between 1 and q). We want to obtain a spanning subgraph H

of the complete graph, such that the distance between any

two vertices in H is at most three (the shortest path between

any two vertices contains at most three edges) and the

number of distinct labels of the chosen edges is as small as

possible. For this problem we will present a greedy, heuristic

algorithm. We want the obtained network to have the

following structure: a central edge (x,y) to which every other

vertex is connected (i.e. every vertex z≠x and z≠y is

connected either to x or to y). Obviously, such a network has

diameter at most three. Let’s assume that the central edge is

fixed. We will now traverse the remaining n-2 vertices in an

arbitrary order v(1), …, v(n-2) (or we can use a heuristic

algorithm to choose the order). We will maintain an array

used, where used(a)=true if label a has already been used.

Initially, we have used(l(x,y))=true (and

used(e≠l(x,y))=false). For each vertex v(i) (i=1,…,n-2) we

first test if either used(l(x,v(i)))=true (in which case we

connect v(i) to x) or used(l(y,v(i)))=true (in which case we

connect v(i) to y). If both labels (l(x,v(i)) and l(y,v(i))) were

not used, yet, we will need to choose one of the labels. If

l(x,v(i))=l(y,v(i)), then there is no choice to make: we connect

v(i) to x and set used(l(x,v(i))) to true. Otherwise, we will

compute nx (ny), the number of vertices v(j) (i≤j≤n-2) such

that at least one of the labels l(x,v(j)) and l(y,v(j)) is equal to

l(x,v(i)) (l(y,v(i))) and used(l(x,v(j)))=used(l(y,v(j)))=false. If

nx≥ny, we will connect v(i) to x and set used(l(x,v(i))) to true;

otherwise, we connect v(i) to y and set used(l(y,v(i))) to true.

The time complexity of this algorithm is O(n
2
) (if the edge

(x,y) is fixed). If the total number of distinct labels (q) is not

too large, we can compute in the beginning the values

num(j)=the number of vertices v(i) such that: (l(x,v(i))=j) or

(l(y,v(i))=j) (or both) (1≤j≤q). We initialize num(j) to 0

(1≤j≤q) and then we traverse the vertices v(i) (but we skip

over those vertices for which l(x,v(i)) or l(y,v(i)) are equal to

l(x,y)); if l(x,v(i))≠l(y,v(i)), we increment by 1 both

num(l(x,v(i))) and num(l(y,v(i))); otherwise, we only

increment num(l(x,v(i))) by 1. We also maintain q lists Li(1),

…, Li(q). We insert every (non-skipped) vertex v(k) into

Li(l(x,v(k))) and, if l(x,v(k))≠l(y,v(k)), also into Li(l(y,v(k))).

After this, we run the actual algorithm. Whenever we need to

compute nx and ny for a vertex v(i), we have nx=

num(l(x,v(i))) and ny=num(l(y,v(i))). Whenever we set

used(j)=true (where used(j) was previously equal to false),

we traverse the list Li(j) and, for each vertex v(k) in Li(j), we

remove it from Li(j) and from any other list into which it is

contained (v(k) may be contained in at most 2 lists).

Whenever we remove a vertex v(k) from a list Li(p) (into

which it was previously contained), we decrease num(p) by 1.

The time complexity of this approach is O(n+q). By noticing

that there can be at most q’=2·(n-2)=O(n) distinct labels on

the edges adjacent to x or y (which can be renumbered from 1

to q’), the time complexity becomes O(n+q’)=O(n) in any

case. In order to complete the algorithm, we need to test

several possibilities for the edge (x,y). The best approach

would be to consider every edge (u,v) as a candidate edge

(x,y) and run the algorithm for every edge (the time

complexity would be O(n
4
) or O(n

3
)). If the time complexity

is too high, we can choose the vertex x (arbitrarily or

according to some other heuristic, e.g. the vertex which is

adjacent to edges whose set of labels contains the smallest

total number of distinct labels) and consider every edge (x,v)

as a candidate edge (x,y) (this reduces the time complexity by

a factor of O(n), obtaining an O(n
2
) time complexity).

In the second problem, for reliability purposes, we want to

construct a connected graph with n vertices, where the degree

of each vertex is exactly k (a k-regular graph). We will first

present a solution for even k and then we will present a

general solution. In order to generate a k-regular graph we

will start from a complete graph having k+1 nodes (which is,

obviously, k-regular) and we will add one node at a time,

forming a new k-regular graph. We will be interested only in

the nodes 1,2,...,k which are divided into 2 groups {1,2,...,k/2}

and {k/2+1,…,k}. We will ignore the edges between two

nodes of the same group. Under these circumstances, we will

only look at the complete bipartite sub-graph which has

nodes 1,2,…,k/2 on the left side and k/2+1, k/2+2,..., k on the

right side. We will insert node k+2 at the middle of the edges

(1,(k/2+1)), (2,(k/2+2)), ..., ((k/2),k). Inserting a node a at the

middle of an edge (b,c) introduces the new edges (b,a) and

(a,c), but removes the edge (b,c). We notice that all the nodes

from 1 to k+1 maintain their degree k and the newly inserted

node also has degree k. Inserting another node (k+3) is

performed similarly, but the replaced edges will be

(1,(k/2+2)), (2,(k/2+3)), ..., ((k/2-1),k), ((k/2),(k/2+1)). What

is important is that a complete matching of the previously

mentioned bipartite graph can be selected. We can easily find

a way to choose edges so that k/2 nodes are inserted (i.e. k/2

distinct matchings are selected). For instance, when inserting

the node (k+1+x) (1≤x≤k/2), the k/2 replaced edges will be (i,

k/2+((i+x-2) mod (k/2))+1) (1≤i≤k/2). After inserting k/2

nodes, we notice that we would obtain a new bipartite

complete sub-graph if we would consider the nodes

{1,2,..,k/2} and the k/2 newly inserted nodes. Using this

bipartite sub-graph, we can insert another set of (up to) k/2

nodes, and so on (until we insert (n div (k/2)) complete sets of

k/2 nodes, plus (n mod (k/2)) final nodes). The time

complexity is O(n·k). The general solution uses a well-known

algorithm of decomposing the edge set of a complete graph

into ((n-1) div 2) disjoint Hamiltonian cycles (and a 1-factor,

if n is even). We choose any (k div 2) Hamiltonian cycles of

the decomposition. If k is odd, we also choose the 1-factor.

5. NETWORK CLUSTERING IN PATH NETWORKS

In this section we present efficient algorithms for several

constrained and unconstrained clustering problems in path

networks. These problems are better expressed in geometric

terms. We consider n points located on the real line, given in

increasing order of their x-coordinates: x(1)≤x(2)≤...≤x(n).

Each point i is located at coordinate x(i) and has T (or k·T)

non-negative weights: w(i,[j,]1), ..., w(i,[j,]T) (1≤j≤k). We

want to split the points into several disjoint intervals

(clusters), such that the value of an objective function (objf)

is minimized. A cluster [a,b] contains all the points i with

a≤i≤b. The objective function will be an aggregate (sum,

max) over the costs of the clusters. For each cluster type tc

(1≤tc≤T) we have an aggregate function ctype(tc) which

aggregates the weights w(i,[j,]tc) of the points i in the cluster.

For a given cluster c, let tcagg(c,tc) be the result of the

function ctype(tc), applied to all the points in c. Then, the

cost function of each cluster c will be an aggregate (ccost)

over the tcagg(c,tc) values (any function with T parameters is

correct), plus a fixed value F. The clustering constraints will

be given as the number of clusters (1≤k≤n) and/or as some

values 1≤l(i,[j,]tc)≤u(i,[j,]tc)≤i, denoting the smallest index

of a point which can be included in the same cluster as point i

(l(i,[j,]tc)) and the smallest index of a point which must

necessarily be included in the same cluster as point i

(u(i,[j,]tc)), if the cluster’s type is tc and point i is the

rightmost point in the cluster (its representative). These

values may be given implicitly, by stating, for instance, that

each point i may be the representative (rightmost point) of a

cluster of type tc of length at most lmax(i,[j,]tc) and at least

lmin(i,[j,]tc), or that the total weight of the points inside a

cluster of type tc whose representative is point i is at most

wmax(i,[j,]tc) and at least wmin(i,[j,]tc). If given implicitly,

we can compute all the l(i,[j,]tc) and u(i,[j,]tc) values in

O(n·T) time by sweeping the points (when lmin(i,[j,]tc)≤

lmin(i-1,[j,]tc)+|x(i)-x(i-1)| and lmax(i,[j,]tc)≤lmax(i-1,[j,]

tc)+|x(i)-x(i-1)|, or wmax(i,[j,]tc)≤wmax(i-1,[j,]tc)+w(i,[j,]

tc) and wmin(i,[j,]tc)≤wmin(i-1,[j,]tc)+w(i,tc) for all 2≤i≤n),

or by binary searching and prefix weight-sum computations

(for arbitrary values of lmin(i, [j,] tc), lmax(i, [j,] tc), wmin(i,

[j,] tc) or wmax(i, [j,] tc)). In the first case, once we

computed l(i-1, [j,] tc) (u(i-1, [j,] tc)), we can compute l(i,

[j,] tc) (u(i, [j,] tc)) by initializing it to l(i-1, [j,] tc) (u(i-1,

[j,] tc)) and increasing it by 1 until we reach i or the first

point l(i, [j,] tc) (last point u(i, [j,] tc)) for which the distance

between point i and this point is at most lmax(i, [j,] tc) (at

least lmin(i, [j,] tc)) (or for which the sum of the weights

w(*,[j,]tc) of the points in the interval [l(i,[j,]tc),i] ([u(i,[j,]

tc),i]) is at most wmax(i,[j,]tc) (at least wmin(i,[j,]tc))). In the

second case, we binary search l(i,[j,]tc) (u(i,[j,]tc)) in the

interval [1,i], because we have the property that for all the

points p from 1 to l(i,[j,]tc)-1 (u(i,[j,]tc)), the distance up to

point i [sum of the weights w(*,[j,]tc) of the points in the

interval [p,i]] is larger than lmax(i,[j,]tc) [wmax(i,[j,]tc)]

(larger than or equal to lmin(i,[j,]tc) [wmin(i,[j,]tc)]), and for

p≥l(i,[j,]tc) (u(i,[j,]tc)+1), the distance up to i [sum of

weights of the points in the interval [p,i]] is smaller than or

equal to lmax(i, [j,]tc) [wmax(i,[j,]tc)] (smaller than lmin(i,

[j,]tc) [wmin(i, [j,]tc)]). The middle argument j of any value

val(i,j,tc) will always refer to the case when point i belongs to

the j
th

 cluster, counting from left to right, and the number of

clusters k is given (if k is not given, we will have val(i,tc),

instead of val(i,j,tc)). When the number of clusters is fixed (k)

we will compute Cmin(i,j)=the minimum value of the

objective function, if the points 1,2,…,i are split into j

clusters. We have Cmin(0,0)=0 and Cmin(i>0,0)=

Cmin(0,j>0)=+∞. For i≥j>0, we will initialize Cmin(i,j)=+∞

and then we will consider every point p as the first point of

the j
th

 cluster (the last point is point i), in decreasing order

(starting from p=i and ending at p=j). We will maintain the

values tcagg(tc) of the weights of the points in the interval

[p,i] (initially, these values will be undefined). When we

reach a new value of p, we update the values tcagg(tc)

(1≤tc≤T): tcagg(tc)= ctype(tc)(w(p,[j,]tc), tcagg(tc)) (if the

previous value tcagg(tc)=undefined, then tcagg(tc) will be

equal to w(p, [j,]tc)). If p<l(i,[j,]tc) or p>u(i,[j,]tc), we will

set tcagg2(tc) at a value which shows that a constraint is

violated (e.g. we set tcagg2(tc)=+∞), i.e. a value which will

increase the value of the functions ccost and objf very much;

otherwise, we set tcagg2(tc)=tcagg(tc). Then, we recompute

the aggregate cost of the cluster: cc=ccost(tcagg2(1), …,

tcagg2(T)). We set Cmin(i,j)=min{Cmin(i,j), objf(Cmin(p-1, j-1),

F+cc)}. This algorithm has an O(n
2
·k·T) time complexity.

When the number of clusters k is not given, we can drop the

second index (j) from the state of the dynamic programming

(DP) algorithm and compute Cmin(i)=the minimum value of

objf, if the points 1,2,…,i are split into any number of clusters

(Cmin(0)=0 and Cmin(i>0)=+∞, initially; Cmin(i)=min{Cmin(i),

objf(Cmin(p-1), F+cc)}). In this case, the time complexity is

O(n
2
·T). In the rest of the section we will only be interested in

the case ccost=min and ctype(tc)=ctype()=sum or max, i.e.

the cost of a cluster is the minimum of the costs of each

cluster type and we use the same aggregation function to

compute the cost for each cluster type tc (and this function is

either sum or max). This is the same as choosing the most

convenient type of cluster. In the unconstrained case, for

objf=max, ctype=sum or max, the optimal solution consists of

n clusters: [1,1], …, [n,n]; the type tc of each cluster i is the

one for which w(i,tc)=min{w(i,t’)|1≤t’≤T}. We will present

next significant improvements for the constrained cases for

each of the 4 pairs (objf, ctype). Every time we will ask for

the min (max) element (field of a tuple) of an empty set or

data structure, the result will be +∞ (-∞). All the used data

structures are emptied after computing all the values Cmin(*,j)

(for every 1≤j≤k, when k is given); when k is not given, the

data structures are only emptied once, in the beginning.

5.1. objf=sum, ctype=sum

For each cluster type tc (and every cluster index j+1) we will

compute in O(n) time the prefix sums wp(i,[j+1,]tc)=

w(1,[j+1,]tc)+...+w(i,[j+1,]tc) = wp(i-1,[j+1,]tc)+w(i,[j+1,]

tc) (wp(0,[j+1,]tc)=0). When we have l(*,[*,] *)=1 and the

number of clusters k is given, we will use the following

strategy. Let’s assume that all the values Cmin(*,j) were

computed and we are ready to begin computing the values

Cmin(i,j+1) (in increasing order of i=1,…,n). While doing this,

we will compute a table Dj(i,tc). We have Dj(0,tc)=Cmin(0,j)

and Dj(i>0,tc)=min{Dj(i-1,tc), Cmin(i,j)-wp(i,[j+1,]tc)}. We

compute Dj(i-1,tc) just before computing Cmin(i,j+1). Then,

with this table, we can compute Cmin(i,j+1) in O(T) time, as

min{Dj(u(i,[j+1,]tc)-1,tc)+wp(i,[j+1,]tc)+F|1≤tc≤T}. Thus,

the complexity becomes O(n·k·T). When the constraints

l(i,[j,]tc) are arbitrary, we can use a similar approach. After

computing all the values Cmin(*,j) for a given j, we will

compute a table Ej(*,tc), with Ej(i≥0,tc)=Cmin(i,j)-wp(i,

[j+1,]tc). Cmin(i,j+1)=F+min{wp(i,[j+1,]tc)+min{Ej(p,tc)|l(i,

[j+1,]tc)-1≤p≤u(i,[j+1,]tc)-1}|1≤tc≤T}. By building a

segment tree over each column Ej(*,tc) of each table Ej, we

can find the minimum value in any interval of rows of any

column in O(log(n)) time, improving the overall complexity

to O(n·log(n)·k·T). The segment tree also supports updates,

s.t. we can initialize the Ej(*,tc) to +∞ and set Ej(i-1,tc) to the

correct value right before computing Cmin(i,j+1). An

alternative is to construct the whole table Ej(*,*) and then

preprocess it, in order to answer range minimum queries on

each column - the complexity may drop by an O(log(n))

factor. Further improvements are possible if l(a,[j,]tc)≤

l(b,[j,]tc) and u(a,[j,]tc)≤u(b,[j,]tc) for every cluster type tc,

any 1≤j≤k, and any two points a<b (the non-decreasing

property). When computing the values Cmin(i,j+1), we will

maintain an array DQ of T double-ended queues (deques);

each deque contains (index, value) pairs. We initialize

DQ[tc] (1≤tc≤T) by inserting the pair (-1,+∞). Then, we

begin computing the values Cmin(i,j+1) in increasing order of

i. For a given i, and every cluster type tc, we insert in

increasing order of p at the end of each deque DQ[tc], the

pairs pr(i,[j+1],tc,p)=(index=p, value=Cmin(p,j)-wp(p, [j+1,]

tc)), with u(i-1,[j+1,]tc)≤p≤u(i,[j+1,]tc)-1 (we consider u(0,

[*,]*)=0). Before inserting a pair (idx,val) into a deque, we

repeatedly remove from the end of the deque the last pair, as

long as its value field is larger than val (and the deque is not

empty). Afterwards, we repeatedly remove from the

beginning of each deque DQ[tc] the first pair, as long as its

index field is smaller than l(i,[j+1,]tc)-1. After all these

operations, we compute (in O(T) time) the value V=min{

DQ[tc].getFirst().value+wp(i,[j+1,]tc)|1≤tc≤T} and set

Cmin(i,j+1) to V+F. The total number of insertions (deletions)

into (from) each deque is O(n) and each such operation is

performed in O(1) (amortized) time. The time complexity of

the algorithm is O(n·k·T). Instead of deques, we could have

used two arrays of min-heaps, Hidx[*] and Hval[*]: before

computing Cmin(i,j+1), for every cluster type tc, we: (1) insert

all the pairs pr(i,[j+1],tc,p) into both Hval[tc] and Hidx[tc]; (2)

while Hidx[tc].getMinIndex() is smaller than l(i,[j+1,]tc)-1,

we remove the tuple with the smallest index field both from

Hidx[tc] and Hval[tc]. Cmin(i,j+1)=min{Hval[tc].getMinValue()

|1≤tc≤T}+wp(i,[j+1,]tc)+F. In this case, the time complexity

is O(n·log(n)·k·T). When the number of clusters k is not

given, we can modify the solutions presented above by

dropping the index j (the number of clusters) from the state of

the DP (except for the RMQ approach for the tables Ej). We

compute Cmin(i) instead of Cmin(i,*), we replace Cmin(i-1,*) by

Cmin(i-1) and we drop the index j from the definitions of the

tables D and E. The tables D and E, the deques (or heaps) are

updated during the single traversal of the points i=1,…,n. The

complexities mentioned before are decreased by a factor of k.

These techniques work even with negative weights.

5.2. objf=sum, ctype=max and u(i,[*,]*)=i

When all the l(i,[j,]tc) values are 1 and the number of clusters

k is given, we will maintain an array S of T stacks, each stack

containing (index, vmax, pcmin, smin) tuples. Before

computing a value Cmin(i,j+1) (in increasing order of

i=1,…,n), we perform the following computations for each

cluster type tc: (1) we build a tuple tu(i,[j+1,]tc)=(index=i,

vmax=w(i,[j+1,]tc), pcmin=Cmin(i-1,j), smin=w(i,[j+1,]tc)+

Cmin(i-1,j)); (2) while the topmost tuple tp in S[tc] has

tp.vmax≤tu(i,[j+1,]tc).vmax, we pop tp from the stack, set

tu(i,[j+1,]tc).pcmin to min{tu(i,[j+1,]tc).pcmin, tp.pcmin}

and, after this, we set tu(i,[j+1,]tc).smin to w(i,[j+1,]tc)+tu(i,

[j+1,]tc).pcmin; (3) if S[tc] is not empty, let tp be the

topmost tuple in S[tc]: we set tu(i,[j+1,]tc).smin to min{tu(i,

[j+1,]tc).smin, tp.smin}; (4) we push tu(i,[j+1,]tc) on S[tc].

We will set Cmin(i,j+1) to F+min{S[tc].getTopmostTuple().

smin|1≤tc≤T}. The time complexity is O(n·k·T). When

l(i,[j,]tc)≤l(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T), we can use

an array of deques DQ (instead of an array of stacks). Each

deque DQ[tc] stores (index, vmax, pcmin) tuples (we dropped

the smin field). Then, before computing the value Cmin(i,j+1),

we perform the same operations as in the previous solution,

with the following differences: the tuple tu(i,[j+1,]tc) does

not have the smin field; the top of the stack S[tc] now

becomes the end of the deque DQ[tc]; popping a tuple from

the stack=removing the last tuple in the deque; pushing a

tuple on the stack S[tc]=inserting a tuple at the end of the

deque DQ[tc]; any operation referencing the field smin is

dropped. We perform the following extra action: as long as

the index field of the tuple located at the beginning of the

deque DQ[tc] (1≤tc≤T) is smaller than l(i,[j+1,]tc), we

remove the tuple from DQ[tc]. If DQ[tc] is not empty, we set

the pcmin field of the first tuple (at the front) of DQ[tc] to

min{Cmin(p,j)|l(i,[j+1,]tc)-1≤p≤DQ[tc].getFirst().index-1}; in

order to compute this minimum value in O(log(n)) time, we

can construct a segment tree STj over the values Cmin(*,j) and

set the value of the leaf i-1 of STj to Cmin(i-1,j) right before

computing Cmin(i,j+1); we can also preprocess all the values

Cmin(*,j), in order to answer RMQ queries in O(1) time; or we

can use deques to maintain the minimum in a window whose

endpoints, l(i,[j+1,]tc)-1 and DQ[tc].getFirst().index-1, only

increase, in O(1) amortized time. After this, we need to

compute the value V=min{tp.vmax+tp.pcmin|tp∈DQ[tc],

1≤tc≤T} and set Cmin(i,j+1) to F+V. We will maintain all the

tuples tp inside all the deques in a min-heap H, where their

key is (tp.vmax+ tp.pcmin). Whenever we remove a tuple

from a deque, insert a new tuple inside a deque or change the

vmax or pcmin fields of a tuple in a deque, we also update the

heap H (by inserting/removing/changing the key of the tuple

in/from/in H). The overall time complexity is O(n·log(n·T)·

k·T) (if we maintain a different min-heap HP[tc] for every

cluster type tc and compute each value Cmin(i,*) in O(T) time,

the time complexity would be O(n·log(n)·k·T)). When k is not

given, we can drop the index j (j+1) from the DP state and

replace every reference Cmin(i,*) by Cmin(i); the RMQ

approach cannot be extended to this case this time, either.

5.3. objf=max, ctype=sum

An easy solution when all the values l(*,[*,]*) are 1, u(i,

[*,]*)=i and w(i,[*,]tc) are equal (i.e. w(i,[1,]tc)=

…=w(i,[k,]tc); we will denote these values by w(i,tc), as the

middle argument j makes no difference), would be to binary

search the optimal value OPT of the objective function. Let’s

assume that we want to test the value Ocand, selected by the

binary search. We can do this by traversing the points from 1

to n and maintaining several counters: nc, representing the

number of clusters (initialized to 1), and tsum[tc] (initialized

to 0). Then, for each point i and each cluster type tc, we add

w(i,tc) to tsum[tc]; if all the counters tsum[tc] become larger

than Ocand-F, we increment nc by 1 and set the values of each

counter tsum[tc] to w(i,tc). If w(i,tc)>Ocand-F (1≤tc≤T), then

we will always have tsum[tc]=+∞ from now on (for the next

points i+1,…,n). If, at some point, all the values tsum[*] are

+∞, then Ocand is not feasible (we set nc=k+1). This test

minimizes the number of clusters, such that the sum of the

weights of the points in each cluster is at most Ocand-F. If

(nc>k), then Ocand is not feasible. If Ocand is feasible, we can

test a smaller value than Ocand next; otherwise, we will test a

larger one. It is obvious that if we can split the n points into

nc<k clusters such that the value of the objective function is

at most Ocand, we can always split further some of the clusters

and form exactly k clusters, without increasing the value of

the objective function. The time complexity of this approach

is O(n·T·log(WMAX)), where WMAX is the sum of the largest

weights of the points. If the weights are integers, we always

find the optimal solution; if they are real numbers, we can

only approximate the optimal answer with any accuracy ε>0.

An exact solution for the more general case with l(*,[*,]*)=

1, u(i,[j,]tc)≤u(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T) and not

necessarily equal w(i,[*,]tc) values, is the following. We

compute the prefix sums wp(i,[j+1,]tc) (defined previously).

Then, after computing a value Cmin(i,j), we compute the

indices r(i,tc,j) of the rightmost points, such that the

condition wp(r(i,tc,j), [j+1,] tc)-wp(i, [j+1,] tc)≤Cmin(i,j)

holds. We can compute every index in O(log(n)) time, by

using binary search. However, in this case, we can do better.

Because Cmin(i+1,j)≥Cmin(i,j) (for i=pf,…,n-1, where pf is the

smallest index with Cmin(pf,j)<+∞) and wp(i+1,[j+1,]tc)≥

wp(i,[j+1,] tc), we have that r(i+1,tc,j)≥r(i,tc,j) (pf≤i≤n-1).

Thus, we can search for r(i+1,tc,j) by initializing it to r(i,tc,j)

(or to 1, if Cmin(i,j)=+∞, in which case r(i,tc,j)=n) and

repeatedly increasing it by 1, as long as the condition holds.

Thus, O(n) time is spent overall for computing all the values

r(*,tc,j) (1≤tc≤T). While computing the values Cmin(*,j+1),

we will maintain an array DQ of T deques; each deque

DQ[tc] contains (index, limit, value) tuples. We will also

maintain an array smax of T values; each value smax[tc] is

initialized to -∞. Before computing a value Cmin(i,j+1)

(i=1,…,n), for each cluster type tc we perform the following

actions: (1) we insert the tuples tu(i,p)=(index=p,

limit=r(p,tc,j), value=Cmin(p,j)), with u(i-1,[j+1,]tc)≤p

≤u(i,[j+1,]tc)-1 (u(0,[*,]*)=0), in increasing order of p, at

the end of the deque DQ[tc] (we only insert a tuple tu(i,p)

after repeatedly removing the last tuple tlp from DQ[tc],

while tlp.value≥tu(i,p).value); (2) while the first tuple tp of

the deque DQ[tc] has the limit field smaller than i, we

remove tp from DQ[tc] and set smax[tc]=max{smax[tc],

wp(tp.index,[j+1,]tc)}. Then, we compute V=min{DQ[tc].

getFirst().value|1≤tc≤T, DQ[tc] is not empty} and U=min{

wp(i,[j+1,]tc)-smax[tc]|1≤tc≤T} and set Cmin(i,j+1) to min{U,

V}+F. U is the minimum sum of the weights of the points in

the cluster containing point i, with the property that this sum

is larger than the sum of all the previous clusters. V is the

minimum cost of a previous cluster, with the property that

this cost is the largest among all the chosen clusters

(including point i’s cluster). The complexity is O(n·k·T). The

case with non-decreasing values l(i,[j,]tc) and u(i,[j,]tc) can

be solved by adapting the solution mentioned above. We

transform the smax array into an array of deques; each deque

contains (index, value) pairs. Then, before computing Cmin(i,

j+1), we remove the first tuples of DQ[tc] and smax[tc], as

long as their index field is smaller than l(i,[j+1,]tc)-1 (for

1≤tc≤T). Afterwards, while the limit field of the first tuple tp

of DQ[tc] (1≤tc≤T) is smaller than i, we remove it from

DQ[tc] and insert tnew=(index=tp.index, value=wp(tp.index,

[j+1,]tc)) at the end of smax[tc]; before doing this, we

repeatedly remove the tuple tlast from the end of smax[tc], as

long as smax[tc] is not empty and tlast.value≤tnew.value.

Then, the value U is defined as min{wp(i,[j+1,]tc)-

smax[tc].getFirst().value|1≤tc≤T, smax[tc] is not empty}. The

complexity for this case is O(n·k·T), too. The case with

arbitrary l(i,[j,]tc) and u(i,[j,]tc) values is handled differently.

While computing the values Cmin(*,j+1), we will maintain

two arrays of T 2D range trees, A and B. In each tree we

insert n+1 dummy points (i,-∞) with weights +∞ for A[tc],

and -∞ for B[tc] (i=0, …, n). A 2D range tree is a segment

tree, where each leaf stores a point; the points are sorted

according to the x-coordinate from the leftmost leaf to the

rightmost one. Each internal node stores all the points

contained in the leaves of its subtree; thus, every point is

stored in O(log(n)) tree nodes. Each tree node q of the range

tree stores all of its points in an augmented balanced tree Tq

(e.g. AVL tree, red-black tree, scapegoat tree). The points are

inserted in Tq with their y-coordinate as the key. Each node q’

in Tq also maintains the smallest weight minw(q’) of a node in

its subtree (in Tq). We can insert or delete a pair (y, weight) in

Tq and maintain the values minw in logarithmic time. We can

also search for the smallest weight within an interval [y1,y2]

with the same complexity, if we additionally maintain in

every node of Tq the smallest and largest y-coordinates of a

point in its subtree. The function findMinW(x1,y1,x2,y2) of a

range tree returns the minimum weight of a point (x,y) in the

tree, with x1≤x≤x2 and y1≤y≤y2 (or +∞ if no point lies in the

range), in time O(log
2
(n)). Similarly, we can support a

findMaxW(x1,y1,x2,y2) function for a range tree, which returns

the maximum weight of a point in the given range (or -∞ if

no point exists in the range). We will compute the r(*,*,*)

values by binary searching each of them. Before computing

Cmin(i,j+1) (i=1,…,n), for each cluster type tc, as before, we

consider the values p, u(i-1,[j+1,]tc)≤p≤u(i,[j+1,]tc)-1; for

each value, if the dummy points (p,-∞) exist in A[tc] and

B[tc], we remove them from there and we insert the point (p,

r(p,tc,j)) with the weight Cmin(p,j) into the range tree A[tc]

and the point (p, r(p,tc,j)) with the weight wp(p,[j+1,]tc) into

the range tree B[tc] (1≤tc≤T). We define V=min{

A[tc].findMinW(l(i,[j+1,] tc)-1,i,u(i,[j+1,]tc)-1,+∞)| 1≤tc≤T}

and U=min{wp(i,[j+1,] tc)-B[tc].findMaxW(l(i,[j+1,]tc)-1,-

∞,u(i,[j+1,]tc)-1,i-1)|1≤tc≤T} and, like before, we set

Cmin(i,j+1)=min{U,V}+F. When k is not given, we modify

the above solutions by dropping the index j (the cluster’s

index) from the DP state and from all equations and by

traversing the points from 1 to n only once.

5.4. objf=max, ctype=max

When the number of clusters k is given, all the values l(*,[*,]

) are 1, u(i,[,]*)=i and w(i[,*],tc) are equal, we can use the

binary search approach in this case, too. The difference

consists of replacing the tsum[tc] counters by the tmax[tc]

values (1≤tc≤T). We initialize tmax[*] to -∞. Then, we

traverse the points from i=1 to n and set tmax[tc]=

max{tmax[tc], w(i,tc)}. When all the values tmax[*] exceed

Ocand-F after considering point i, we increase the number of

clusters nc and reset tmax[tc] to w(i,tc) (1≤tc≤T). If w(i,tc)>

Ocand-F (1≤tc≤T), then we will always have tmax[tc]=+∞

from now on (for the next points i+1,…,n). If, at some point,

all the values tmax[*] exceed Ocand-F, then Ocand is not

feasible. If the candidate values Ocand are taken from the

sorted list of n·T point weights (increased by F), the answer is

exact and the time complexity is O(n·T·log(n·T)). When l(*,

[*,]*)=1, u(i,[j,]tc)≤u(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T)

and we have no constraints on the non-negative values

w(*,[*,]*), we will compute again the values r(i,tc,j)=the

largest index of a point such that max{w(i+1,[j+1,]tc), ...,

w(r(i,tc,j),[j+1,]tc)}≤Cmin(i,j). In this case, for fixed tc and j,

these values are non-decreasing (as i increases, starting from

the smallest value pf≥0 with Cmin(pf,j)<+∞; for 0≤i≤pf-1,

r(i,tc,j)=n) and can be computed in O(n) time (otherwise, we

can binary search them). We can compute RMQwmax(a,b,

[j,]tc)=the maximum weight w(q,[j,]tc), with a≤q≤b, in O(1)

time using RMQ (Bender et al., 2000) (with O(n[·k]) or

O(n[·k]·log(n)) preprocessing) for each cluster type tc. We

adapt the solutions from the previous case. For non-

decreasing l(i,[j,]tc) and u(i,[j,]tc) values, we will use the

same smax[tc] values as in the case l(*,[*,]*)=1. Whenever

we remove a tuple tp=(index=idx, limit=lim, value=val)

from the front of DQ[tc] because lim<i, we set

smax[tc]=max{smax[tc], tp.index}. Then U is defined as

min{RMQwmax(smax[tc]+1,i,[j+1,]tc)|1≤tc≤T, smax[tc]≥l(i,

[j+1,]tc)-1}. For arbitrary l(i,[j+1,]tc) and u(i,[j+1,]tc)

values, we compute the r(*,*,*) values by binary searching

each of them. The weights of the points (p, r(p,tc,j)) inserted

in B[tc] will be p, and U is defined as min{

RMQwmax(B[tc].findMaxW(l(i,[j+1,]tc)-1,-∞,u(i,[j+1,]tc)-1,

i-1)+1,i,[j+1,]tc) (or +∞, if B[tc].findMaxW(l(i,[j+1,]tc)-1, -

∞, u(i,[j+1,]tc)-1, i-1)<0) | 1≤tc≤T}. The case when k is not

given is handled by transforming the solutions mentioned

above, just like in all the other cases.

5.5. Clustering of Mobile Network Devices

The final clustering problem that we consider consists of a

network of mobile devices. Each device i (1≤i≤n) is a point

on the real line initially located at position x(i) and moves in

direction d(i) (d(i)=-1 for left or +1 for right) at a speed of

v(i) distance units per time unit. We want to find the earliest

time moment when we can place K identical intervals of

fixed given length L, such that every point is inside one of the

intervals (if possible). The motivation is given by the fact that

we want to send a piece of content to K devices. Each device

can send data within an interval of length L containing its

location. Then, when all the devices can be contained within

K intervals of length L, the K chosen devices (which will be

the leftmost devices in each of the K intervals) will send the

data to all the other devices. Due to budget constraints, we

cannot send the data to more than K devices initially. We will

interpret the points as straight lines in the time x distance

plane. Point i is transformed into the line y(i,t)=y(i,0)+w(i)·t,

where y(i,0)=x(i) and w(i)=d(i)·v(i). Let’s consider a time

moment tc. At such a moment, the positions of the points are

y(1,tc), …, y(n,tc). We consider the points sorted according to

their position, i.e. y(o(1),tc)≤y(o(2),tc)≤…≤y(o(n),tc). For the

time moment tc it is easy to decide if we can place K intervals

of fixed length L which contain all the n points inside them.

We place the first interval with its left endpoint at y(o(1),tc).

Then we place the next interval with its left endpoint at the

position of the leftmost point not contained in any of the

previous intervals. We repeat this procedure until every point

is part of an interval. If the number PI of intervals we placed

is at most K, then a solution exists for the time moment tc.

The following algorithm computes for each position i (in an

interval [p,q]) the minimum number of intervals m(i) which

are required to cover the points o(i), o(i+1), …, o(q). It also

computes next(i), the point at which the second interval starts,

and last(i), the point where the last interval starts, in an

optimal cover of the points o(i), o(i+1), …, o(q).

ComputeMinimumNumberOfIntervals(tc, L, p, q):

right=q

for i=q down to p do

 while (y(o(right),tc)-y(o(i),tc)>L) do right=right-1

 next(i)=right+1;m(i)=1+(if right=q then 0 else m(right+1))

 if (right=q) then last(i)=i else last(i)=last(right+1)

The time complexity of the algorithm is linear. Let’s consider

two sets of time moments: Sclose = { tc |
L|)-tcy(j,)-tcy(i,| and L|tc)y(j,tc)y(i,|s.t.j,ij),(i, ≠−=−≠∃ εε

 }, where ε>0 is an arbitrarily small constant, and Scross=

{tc|)-tcy(j,)-tcy(i, and tc)y(j,tc)y(i, s.t.j,ij),(i, εε ≠=≠∃ }.

The earliest time moment te when the points can be covered

by K intervals belongs to the set }0{∪∪= crossclose SSS .

This can be easily proven in the following way. Let’s assume

that we run the algorithm described above for tc=0, p=1,

q=n. The next time moment tc’ when the values m(i) change

(and, thus, the value m(1) which is the minimum number of

intervals required for covering all the points) is one of the

time moments in S. The set S has cardinality O(n
2
). By

sorting the time moments in S and running the described

algorithm for each time moment tc, we obtain an O(n
3
)

solution to our problem; we maintain an array o with the

order of the points, i.e. y(o(1),tc)≤y(o(2),tc)≤…≤y(o(n),tc);

when we reach a time moment tc from the set Scross, we need

to swap the order of two lines o(i) and o(i+1) in the array o

before running the linear algorithm. An interesting question is

whether the value m(1) can be maintained more efficiently

than recomputing it from scratch at every time moment tc. An

affirmative answer was provided by Dr. M. Patrascu, in a

personal communication (July 2008). I will briefly describe

his approach here. We will split the lines into n/k groups of

(approximately) k lines each. Each group is composed of

lines which are consecutive in the y-ordering (the o array).

For each group of lines we compute, in the beginning, the

values mlocal(i), nextlocal(i) and lastlocal(i) for each line o(i) in

the group, having the same meaning as m(*), next(*) and

last(*), except that they are computed considering only the

lines from the group (taking O(k) time for each group, using

the algorithm presented previously). We also compute in the

beginning the values m(*), next(*) and last(*), considering all

the lines ([p,q]=[1,n]). During the algorithm we will not

actively maintain the values m(*) and last(*), but the next(*)

values need to be maintained updated. At every time moment

tc from Scross, we just swap the order of the two crossing

lines, while the values mlocal(*), nextlocal(*), lastlocal(*) and

next(*) do not change. At every time moment tc from Sclose,

when two lines i and j are at distance L, we distinguish two

cases. Let’s assume that o(a)=i and o(b)=j (a<b). We can

compute a and b by maintaining a reverse mapping o
-1

, where

o
-1

(o(p))=p (1≤p≤n). In the first case, right before time

moment tc, the lines o(a) and o(b) were located at a (vertical)

distance smaller than L. Thus, in the future, the distance

between them will increase. At time tc, we need to set

next(a)=b. All the other next(p) values (p≠a) remain

unchanged. If o(a) and o(b) are in the same group G, then we

will recompute the values mlocal(i), nextlocal(i) and lastlocal(i)

for all the lines o(i) in group G. In the second case, the lines

o(a) and o(b) were located at a (vertical) distance larger than

L right before time moment tc. Thus, right before time tc, we

have that next(a)=b. Since o(a) and o(b) will be at a distance

smaller than L in the near future, we need to change the value

next(a) and set it to b+1. Like in the first case, if lines o(a)

and o(b) are located in the same group, we will recompute the

mlocal(*), nextlocal(*) and lastlocal(*) values for all the lines in

the group. After updating the computed values, at every time

moment tc, we need to compute m(1), which is the minimum

number of intervals required to cover all the 1D points at the

given time moment. We can compute m(1) in O(n/k) time, as

follows. We initialize m(1) to mlocal(1) and a pointer po to

lastlocal(1). Then, while po is not in the last group, we perform

the following actions: (1) we set po to next(po); (2) we

increment m(1) by mlocal(po); (3) we set po to lastlocal(po). The

time complexity is O(k+n/k) for every time moment tc from

S. By choosing k=O(n
1/2

), the overall complexity is O(n
2.5

).

6. RELATED WORK AND CONCLUSIONS

In this paper we presented efficient, exact and heuristic

algorithms for several offline network optimization problems,

like network design, network clustering and QoS

improvement. These topics are of great interest in the

research community and the discussed problems have several

applications in practical settings. Network inverse

optimization and network design problems have been studied

extensively, due to their large theoretical and practical

interest: see, e.g. (Farago et al., 2003) and (Duin et al., 1996).

Network improvement problems based on budget constrained

network upgrades were presented in (Krumke et al., 1998).

Clustering problems similar to those discussed in this paper

were addressed in (Chen et al., 2007).

REFERENCES

Andreica, M. I. and N. Tapus (2008). Efficient Data

Structures for Online QoS-Constrained Data Transfer

Scheduling. In: Proc. of the Intl. Symp. on Par.

and Distrib. Comput., pp. 285-292. IEEE Press.

Bender, M. A. and M. Farach-Colton (2004). The LCA

Problem Revisited. Lecture Notes in Computer

Science, vol. 1776, pp. 88-94.

Chen, D. Z., M. A. Healy, C. Wang and B. Xu (2007).

Geometric Algorithms for the Constrained 1-D K-Means

Clustering Problems and IMRT Applications. Lecture

Notes in Computer Science, vol. 4613, pp. 1-13.

Duin, C. W. and A. Volgenant (1996). An Addendum to the

Hierarchical Network Design Problem. European J. of

Operational Research, vol. 92, pp. 214-216.

Farago, A., A. Szentesi and B. Szviatovszki (2003). Inverse

Optimization in High-Speed Networks. Discrete

Applied Mathematics, vol. 129, pp. 83-98.

Krumke, S.O., M. V. Marathe, H. Noltemeier, R. Ravi and S.

S. Ravi (1998). Approximation Algorithms for Certain

Network Improvement Problems. J. of

Combinatorial Optimization, vol. 2, pp. 257-288.

