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Abstract: In this paper we address several network design, clustering and Quality of Service (QoS) 

optimization problems and present novel, efficient, offline algorithms which compute optimal or near-

optimal solutions. The QoS optimization problems consist of reliability improvement (by computing 

backup shortest paths) and network link upgrades (in order to reduce the latency on several paths). The 

network design problems consist of determining small diameter networks, as well as very well connected 

and regular network topologies. The network clustering problems consider only the restricted model of 

static and mobile path networks, for which we were able to develop optimal algorithms. 

 

1. INTRODUCTION 

Network design, clustering and Quality of Service (QoS) 

optimization problems arise in a wide range of fields (such as 

efficient data distribution and replication, providing QoS 

guarantees, and so on) and developing efficient algorithms 

for solving such problems is an important goal in computer 

science research. In this paper we address several such 

problems from an offline perspective. In Section 2 we discuss 

the issue of computing backup shortest paths in a network, 

when the last link on the shortest path may fail. In Section 3 

we consider two problems regarding network link latency 

changes in order to satisfy several QoS constraints. In Section 

4 we discuss 2 network design problems with the objectives 

of obtaining a bounded network diameter and a k-regular 

network topology. In Section 5 we consider several network 

clustering problems for the restricted case of path networks. 

In Section 6 we discuss related work and we conclude. 

2. BACKUP SHORTEST PATHS 

We consider a network composed of n nodes and m 

undirected edges (links). Each edge (u,v) has a latency l(u,v). 

One of the nodes (src) occasionally has to deliver pieces of 

content to the other nodes of the network. The content is 

delivered along the shortest path from node src to the 

destination node d. We are interested in computing backup 

paths from the source node src to every other node in the 

network, for the case that the last edge on the shortest path 

from src to each node d fails. The backup path from src to a 

node d is the shortest path between src and d in the graph 

obtained from the original network by deleting the last edge 

on the (initial) shortest path from src to d. At first, we will 

compute the shortest path tree SPT in O(m·log(n)) time (or 

even O(m+n·log(n))). This tree, which is rooted at the node 

src contains all the shortest paths from src to every other 

node. The unique path between src and a node d in SPT is the 

shortest path between these two nodes in the original graph. 

Each node d has a parent parent(d) in SPT. The last edge on 

the shortest path between src and a node d is the edge 

(parent(d),d). The level of a node d is the number of edges on 

the path from the root src to d: level(src)=0 and 

level(d≠src)=level(parent(d))+1. The length of the shortest 

path from src to a node d is SP(d). We will traverse the 

shortest path tree in a DFS manner, starting from the root and 

assign to each vertex d its DFS number DFSnum(d) 

(DFSnum(d)=j if d was the j
th

 distinct vertex visited during 

the DFS traversal). We will then assign to each node d an 

interval I(d)=[DFSnum(d),DFSmax(d)], where DFSmax(d) is 

the largest DFS number of a node in T(d) (node d’s subtree). 

A simple method of computing backup paths is to recompute 

the shortest path in the graph between node src and every 

node d, after removing the edge (parent(d),d) from the graph 

(network). This approach takes O(n·m·log(n)) (or 

O(n·m+n
2
·log(n)) time, which may be too long when the 

number of connections is quite large (for instance, if 

m=O(n
2
), the time complexity can become as high as O(n

3
), 

which is prohibitive for networks composed of a large 

number of nodes). We will present two solutions, with 

O(n
2
+m) and O((n+m)·log(n)) complexities. The first 

approach traverses the shortest path tree SPT in a bottom-up 

manner. For each node d, it computes an array BPL(d), where 

BPL(d,j) (0≤j<level(d)) is the shortest length of a backup 

path which diverges from the shortest path from src to d at 

level j. We will initialize BPL(d,j) to +∞. Then, we consider 

every son s(d,q) of the node d (1≤q≤ns(d); ns(d)=the number 

of sons of node d in SPT) and set BPL(d,j)= min{BPL(d,j), 

BPL(s(d,q),j)+l(d,s(d,q))} (0≤j<level(d)). Afterwards, we 

consider all the edges (u,d) and compute LCA(u,d) (the 

lowest common ancestor of u and d in SPT). If (u≠parent(d)) 

and (d is not an ancestor of u in SPT), then BPL(d, 

level(LCA(u, d))) = min{BPL(d, level(LCA(u, d))), SP(u)+ 

l(u,d)}. Two methods for testing if d is an ancestor of u are to 

check if: (1) (LCA(u,d)=d); or (2) (DFSnum(u)∈  I(d)) (i.e. 

DFSnum(d)≤DFSnum(u)≤DFSmax(d)). There are many 

techniques for computing the lowest common ancestor, the 

fastest of which takes O(n) preprocessing and O(1) time per 

query (Bender et al., 2000). The length of the shortest backup 

path for every node d is BP(d)=min{BPL(d,j)| 0≤j<level(d)}. 

In order to compute the actual backup paths we just need to 



 

 

     

 

trace back the way we computed the BP(*) and BPL(*,*) 

values. The second approach improves the first algorithm. 

During the bottom-up traversal, we will maintain a data 

structure DS which will be used as follows. When we 

consider all the edges (u,d) for a node d, if (u≠parent(d)) and 

(LCA(u,d)≠d) then we add the tuple (val=SP(u)+l(u,d)-SP(d), 

v=d, lca=LCA(u,d)) to DS. Afterwards, we compute BP(d)= 

SP(d)+DS.Q(d) (DS.Q(d)=the minimum value of all the 

tuples (value, v, lca), where lca is an ancestor of d in SPT and 

v is a descendant of d in SPT). We have two choices for DS. 

DS can be a 2D dynamic range tree. When we add a tuple 

(val, v, lca) to DS, we insert a point (DFSnum(v), level(lca)) 

with weight val in the range tree (in O(log
2
(n)) time). 

DS.Q(d) computes in O(log
2
(n)) time the minimum weight of 

a point in the 2D range I(d)x[0, level(d)-1] (or +∞ if no such 

point exists). The second choice is a segment tree ST. Every 

node d is associated to the leaf DFSnum(d) of ST. Adding a 

tuple (val, v, lca) to DS means adding it to a balanced tree 

BT(r) stored in the leaf r=DFSnum(v) from ST, as well as to a 

list LT(lca). The current value assigned to a leaf of ST is the 

minimum value within its balanced tree (or +∞ if this tree is 

empty). The non-leaf nodes of ST store the minimum value 

assigned to any leaf in their subtree. As soon as the bottom-

up traversal arrives at a node d, all the pairs (val, v, lca=d) 

from LT(d) are removed from BT(r) of the leaf 

r=DFSnum(v); after every insertion/deletion of a tuple 

in/from some tree BT(r), all the values assigned to the leaf r 

of ST and to its ancestors in ST are recomputed. Then, we call 

DS.Q(d) which computes the minimum value assigned to any 

leaf of ST in the interval [DFSnum(d), DFSmax(d)]. We 

perform O(n) queries and O(m) insertions/deletions into 

BT(*), each of them taking O(log(n)) time. 

3. QoS-CONSTRAINED LINK LATENCY CHANGES 

The first problem we consider is the following. We are given 

an undirected graph (network) with n nodes and m edges 

(links). Each edge (u,v) has a latency l(u,v)≥0. We want to 

solve an inverse optimization problem. We want to change 

the latency (increase it or decrease it) such that the shortest 

path from a source node src to every vertex d is exactly 

SP(d). We want to minimize the sum of the values |l'(u,v)-

l(u,v)| over all the edges (u,v), where l’(u,v) is the new 

latency of the edge (u,v). The new latency l’(u,v) must satisfy 

the constraint: l’(u,v)≥lmin(u,v) (initially, l(u,v)≥lmin(u,v)). 

At first, we will increase the latency of every edge (u,v) for 

which SP(u)<SP(v) and SP(u)+l(u,v)<SP(v); the new latency 

of the edge (u,v), l'(u,v), will be SP(v)-SP(u). For the other 

edges, we initialize l'(u,v) to l(u,v). After this initial step, we 

will sort the vertices in increasing order of their distances 

from the source node src (we will also consider node src, 

with SP(src)=0). Each node u will have an associated cost 

C(u). Initially, C(src)=0 and C(u≠src)=+∞. We will insert all 

the tuples (SP(i),C(i),i) into a min-heap; we have (SP(i),C(i), 

i)<(SP(j),C(j),j) if (SP(i)<SP(j)) or ((SP(i)=SP(j)) and (C(i)< 

C(j))). As long as the heap contains any elements, we will 

extract the minimum element from the heap. We will also 

maintain an array extracted, which is initially set to 0 for all 

the nodes. Let's assume that we extracted the tuple 

(SP(u),C(u),u). We will mark u as being extracted (we set 

extracted(u) to 1). Afterwards, we will consider every edge 

(u,v). If (SP(u)≤SP(v)) and (extracted(v)=0) and (lmin(u,v)≤ 

(SP(v)-SP(u))) and (l'(u,v)-(SP(v)-SP(u))<C(v)) then we 

remove the tuple (SP(v),C(v),v) from the min-heap, set C(v) 

to (l'(u,v)-(SP(v)-SP(u))) and insert the tuple (SP(v),C(v),v) 

(with the modified value C(v)) back into the min-heap; we 

also set parent(v)=u. When the heap becomes empty, we 

traverse all the vertices u≠src and set l'(parent(u),u) to SP(u)-

SP(parent(u)). If any vertex v still has C(v)=+∞, then no 

solution exists. The time complexity is O((n+m)·log(n)). A 

more applicative version of the problem we have just 

described is the following. Let's assume that we are given the 

same graph as before, but we want that the latency of the 

shortest path from a source node src to every node d is at 

most SP(d). In order to solve this problem we compute the 

shortest path from src to every other vertex d (let SPlen(d) 

denote the length of this shortest path). If SP(d)>SPlen(d), 

we set SP(d)=SPlen(d). Afterwards, we solve the problem 

described previously, with the new values SP(*). This way, 

the initial step of the algorithm presented above, where the 

latency of some edges is increased, is not necessary anymore. 

In the second problem we are given a (multicast) tree with n 

vertices, rooted at a source vertex src. The latency of each 

edge (u,v) is l(u,v)≥0. We want to decrease the latencies of 

the edges to some new values l’(u,v), such that the maximum 

distance from src to every other vertex is as small as possible. 

Moreover, the cost, which is represented by the sum of the 

values (l(u,v)-l’(u,v)) (over all the edges (u,v)) should be at 

most C. An extra condition is that the latency of an edge (u,v) 

can be decreased at most down to lmin(u,v)≥0 (i.e. 

lmin(u,v)≤l’(u,v)≤l(u,v)). We will traverse the tree and assign 

to each vertex i its DFS number and then compute the 

interval I(i) (defined previously). We will compute the 

distance from src to every vertex of the tree: d(src)=0 and 

d(i≠src)=l(parent(i),i)+ d(parent(i)). Let’s consider the 

vertices v(1), …, v(n), in increasing order of their DFS 

numbers. We will construct a segment tree A (Andreica et al., 

2008) over all the n vertices, sorted according to their DFS 

numbers (the segment tree will have n leaves). The value 

assigned to every leaf i of the segment tree will be d(v(i)). 

The internal nodes of the segment tree will maintain the 

maximum value of a leaf in their subtrees. We will construct 

another segment tree B over the tree vertices (considered in 

the same order), where we will perform range set updates. 

Initially, for every son s(src,j) (1≤j≤ns(src)) of the root node 

src, we will range update the interval I(s(src,j)) in B, by 

setting all the values in the corresponding interval to s(src,j). 

We will also maintain a counter Ctotal=the total cost spent 

during the algorithm (initially, Ctotal=0). We initialize the 

latencies l’(u,v) to l(u,v). A first approach (which works for 

integer latency values) proceeds as follows. As long as 

Ctotal<C, we perform the following actions: we query the 

segment tree A and find the leaf i with the largest value 

assigned to it. Then, we query the segment tree B, in order to 

find the vertex x to which the leaf i was set by the most recent 

range set update. The edge (x,parent(x)) is the edge whose 

latency will be decreased by 1 unit (we assume that the 

latencies are integers), if possible. If l’(x,parent(x))> 

lmin(x,parent(x)), we set l’(x,parent(x))= l’(x,parent(x))-1; 

afterwards, we range update the interval I(x) in the segment 

tree A, by decreasing by 1 the values assigned to the leaves in 



 

 

     

 

the interval I(x); we also increase Ctotal by 1. If, instead, 

l’(parent(x),x)=lmin(parent(x),x) and x is not a leaf in the 

tree, we will consider every son s(x,j) (1≤j≤ns(x)) of the 

vertex x and range set all the values in the interval I(s(x,j)) of 

the segment tree B to s(x,j); if l’(parent(x),x)= 

lmin(parent(x),x) and x is a leaf in the tree, then the algorithm 

stops and the maximum distance is the one corresponding to 

the vertex v(i). This algorithm has time complexity O((C+n)· 

log(n)), because every (range) query and every (range) update 

can be performed in O(log(n)) time. From an implementation 

point of view, we will use the segment tree algorithmic 

framework introduced in (Andreica et al., 2008). We could 

also use a block partition instead of a segment tree, but the 

time complexity would drop to O((C+n)·sqrt(n)). In the 

second approach we will binary search the minimum 

maximum distance from the source node src to every other 

vertex of the tree in the interval [0,DMAX=max{d(i)|1≤i≤n}]. 

In order to perform the feasibility test for a candidate distance 

D, we will traverse the tree vertices i in any order; for each 

vertex i, we will use the segment tree A in order to compute 

the current distance CD from the root to the vertex i (by 

point-querying the value assigned to the leaf DFSnum(i) in 

the segment tree A). While (CD>D) we perform the 

following actions. Just like in the previous algorithm, we 

query the segment tree B in order to find the last value x to 

which the leaf DFSnum(i) was set. Then, if (l’(parent(x),x)-

(CD-D)≥lmin(parent(x),x)), we decrease l’(parent(x),x) by 

(CD-D), we increase Ctotal by (CD-D) and we range decrease 

the values in the interval I(x) of the segment tree A by (CD-

D); afterwards, we query the distance CD again for the leaf 

DFSnum(i) from the segment tree A – it should be equal to D. 

If, instead, (l’(parent(x))-(CD-D)<lmin(parent(x),x)), we 

decrease l’(parent(x),x) by dif=(l’(parent(x),x)-

lmin(parent(x),x)), we increase Ctotal by dif and we range 

decrease the values in the interval I(x) of the segment tree A 

by dif; afterwards, we set l’(parent(x),x) to lmin(parent(x),x) 

and we query the distance CD again (from the leaf 

DFSnum(i) of the segment tree A). If, after performing these 

actions, we have l’(parent(x),x)=lmin(parent(x),x), then: for 

every son s(x,j) of vertex x we range set all the values in the 

interval I(s(x,j)) of the segment tree B to s(x,j)). If, at some 

point, CD>D and the latency of the edge (parent(x),x) cannot 

be decreased at all (l’(parent(x),x) is already equal to 

lmin(parent(x),x); dif=0) and x is a leaf in the tree, then the 

candidate distance D is not feasible. If, at the end, Ctotal is 

larger than C, D is not feasible. If D is not feasible, we will 

test a larger candidate distance in the binary search; 

otherwise, we will test a smaller one. The time complexity of 

this approach is O(n·log(n)·log(DMAX)). 

4. NETWORK DESIGN PROBLEMS 

For the first problem, we are given a complete graph 

(network) with n vertices. Every edge (u,v) has a label l(u,v) 

(between 1 and q). We want to obtain a spanning subgraph H 

of the complete graph, such that the distance between any 

two vertices in H is at most three (the shortest path between 

any two vertices contains at most three edges) and the 

number of distinct labels of the chosen edges is as small as 

possible. For this problem we will present a greedy, heuristic 

algorithm. We want the obtained network to have the 

following structure: a central edge (x,y) to which every other 

vertex is connected (i.e. every vertex z≠x and z≠y is 

connected either to x or to y). Obviously, such a network has 

diameter at most three. Let’s assume that the central edge is 

fixed. We will now traverse the remaining n-2 vertices in an 

arbitrary order v(1), …, v(n-2) (or we can use a heuristic 

algorithm to choose the order). We will maintain an array 

used, where used(a)=true if label a has already been used. 

Initially, we have used(l(x,y))=true (and 

used(e≠l(x,y))=false). For each vertex v(i) (i=1,…,n-2) we 

first test if either used(l(x,v(i)))=true (in which case we 

connect v(i) to x) or used(l(y,v(i)))=true (in which case we 

connect v(i) to y). If both labels (l(x,v(i)) and l(y,v(i))) were 

not used, yet, we will need to choose one of the labels. If 

l(x,v(i))=l(y,v(i)), then there is no choice to make: we connect 

v(i) to x and set used(l(x,v(i))) to true. Otherwise, we will 

compute nx (ny), the number of vertices v(j) (i≤j≤n-2) such 

that at least one of the labels l(x,v(j)) and l(y,v(j)) is equal to 

l(x,v(i)) (l(y,v(i))) and used(l(x,v(j)))=used(l(y,v(j)))=false. If 

nx≥ny, we will connect v(i) to x and set used(l(x,v(i))) to true; 

otherwise, we connect v(i) to y and set used(l(y,v(i))) to true. 

The time complexity of this algorithm is O(n
2
) (if the edge 

(x,y) is fixed). If the total number of distinct labels (q) is not 

too large, we can compute in the beginning the values 

num(j)=the number of vertices v(i) such that: (l(x,v(i))=j) or 

(l(y,v(i))=j) (or both) (1≤j≤q). We initialize num(j) to 0 

(1≤j≤q) and then we traverse the vertices v(i) (but we skip 

over those vertices for which l(x,v(i)) or l(y,v(i)) are equal to 

l(x,y)); if l(x,v(i))≠l(y,v(i)), we increment by 1 both 

num(l(x,v(i))) and num(l(y,v(i))); otherwise, we only 

increment num(l(x,v(i))) by 1. We also maintain q lists Li(1), 

…, Li(q). We insert every (non-skipped) vertex v(k) into 

Li(l(x,v(k))) and, if l(x,v(k))≠l(y,v(k)), also into Li(l(y,v(k))). 

After this, we run the actual algorithm. Whenever we need to 

compute nx and ny for a vertex v(i), we have nx= 

num(l(x,v(i))) and ny=num(l(y,v(i))). Whenever we set 

used(j)=true (where used(j) was previously equal to false), 

we traverse the list Li(j) and, for each vertex v(k) in Li(j), we 

remove it from Li(j) and from any other list into which it is 

contained (v(k) may be contained in at most 2 lists). 

Whenever we remove a vertex v(k) from a list Li(p) (into 

which it was previously contained), we decrease num(p) by 1. 

The time complexity of this approach is O(n+q). By noticing 

that there can be at most q’=2·(n-2)=O(n) distinct labels on 

the edges adjacent to x or y (which can be renumbered from 1 

to q’), the time complexity becomes O(n+q’)=O(n) in any 

case. In order to complete the algorithm, we need to test 

several possibilities for the edge (x,y). The best approach 

would be to consider every edge (u,v) as a candidate edge 

(x,y) and run the algorithm for every edge (the time 

complexity would be O(n
4
) or O(n

3
)). If the time complexity 

is too high, we can choose the vertex x (arbitrarily or 

according to some other heuristic, e.g. the vertex which is 

adjacent to edges whose set of labels contains the smallest 

total number of distinct labels) and consider every edge (x,v) 

as a candidate edge (x,y) (this reduces the time complexity by 

a factor of O(n), obtaining an O(n
2
) time complexity). 

In the second problem, for reliability purposes, we want to 

construct a connected graph with n vertices, where the degree 

of each vertex is exactly k (a k-regular graph). We will first 



 

 

     

 

present a solution for even k and then we will present a 

general solution. In order to generate a k-regular graph we 

will start from a complete graph having k+1 nodes (which is, 

obviously, k-regular) and we will add one node at a time, 

forming a new k-regular graph. We will be interested only in 

the nodes 1,2,...,k which are divided into 2 groups {1,2,...,k/2} 

and {k/2+1,…,k}. We will ignore the edges between two 

nodes of the same group. Under these circumstances, we will 

only look at the complete bipartite sub-graph which has 

nodes 1,2,…,k/2 on the left side and k/2+1, k/2+2,..., k on the 

right side. We will insert node k+2 at the middle of the edges 

(1,(k/2+1)), (2,(k/2+2)), ..., ((k/2),k). Inserting a node a at the 

middle of an edge (b,c) introduces the new edges (b,a) and 

(a,c), but removes the edge (b,c). We notice that all the nodes 

from 1 to k+1 maintain their degree k and the newly inserted 

node also has degree k. Inserting another node (k+3) is 

performed similarly, but the replaced edges will be 

(1,(k/2+2)), (2,(k/2+3)), ..., ((k/2-1),k), ((k/2),(k/2+1)). What 

is important is that a complete matching of the previously 

mentioned bipartite graph can be selected. We can easily find 

a way to choose edges so that k/2 nodes are inserted (i.e. k/2 

distinct matchings are selected). For instance, when inserting 

the node (k+1+x) (1≤x≤k/2), the k/2 replaced edges will be (i, 

k/2+((i+x-2) mod (k/2))+1) (1≤i≤k/2). After inserting k/2 

nodes, we notice that we would obtain a new bipartite 

complete sub-graph if we would consider the nodes 

{1,2,..,k/2} and the k/2 newly inserted nodes. Using this 

bipartite sub-graph, we can insert another set of (up to) k/2 

nodes, and so on (until we insert (n div (k/2)) complete sets of 

k/2 nodes, plus (n mod (k/2)) final nodes). The time 

complexity is O(n·k). The general solution uses a well-known 

algorithm of decomposing the edge set of a complete graph 

into ((n-1) div 2) disjoint Hamiltonian cycles (and a 1-factor, 

if n is even). We choose any (k div 2) Hamiltonian cycles of 

the decomposition. If k is odd, we also choose the 1-factor. 

5. NETWORK CLUSTERING IN PATH NETWORKS 

In this section we present efficient algorithms for several 

constrained and unconstrained clustering problems in path 

networks. These problems are better expressed in geometric 

terms. We consider n points located on the real line, given in 

increasing order of their x-coordinates: x(1)≤x(2)≤...≤x(n). 

Each point i is located at coordinate x(i) and has T (or k·T) 

non-negative weights: w(i,[j,]1), ..., w(i,[j,]T) (1≤j≤k). We 

want to split the points into several disjoint intervals 

(clusters), such that the value of an objective function (objf) 

is minimized. A cluster [a,b] contains all the points i with 

a≤i≤b. The objective function will be an aggregate (sum, 

max) over the costs of the clusters. For each cluster type tc 

(1≤tc≤T) we have an aggregate function ctype(tc) which 

aggregates the weights w(i,[j,]tc) of the points i in the cluster. 

For a given cluster c, let tcagg(c,tc) be the result of the 

function ctype(tc), applied to all the points in c. Then, the 

cost function of each cluster c will be an aggregate (ccost) 

over the tcagg(c,tc) values (any function with T parameters is 

correct), plus a fixed value F. The clustering constraints will 

be given as the number of clusters (1≤k≤n) and/or as some 

values 1≤l(i,[j,]tc)≤u(i,[j,]tc)≤i, denoting the smallest index 

of a point which can be included in the same cluster as point i 

(l(i,[j,]tc)) and the smallest index of a point which must 

necessarily be included in the same cluster as point i 

(u(i,[j,]tc)), if the cluster’s type is tc and point i is the 

rightmost point in the cluster (its representative). These 

values may be given implicitly, by stating, for instance, that 

each point i may be the representative (rightmost point) of a 

cluster of type tc of length at most lmax(i,[j,]tc) and at least 

lmin(i,[j,]tc), or that the total weight of the points inside a 

cluster of type tc whose representative is point i is at most 

wmax(i,[j,]tc) and at least wmin(i,[j,]tc). If given implicitly, 

we can compute all the l(i,[j,]tc) and u(i,[j,]tc) values in 

O(n·T) time by sweeping the points (when lmin(i,[j,]tc)≤ 

lmin(i-1,[j,]tc)+|x(i)-x(i-1)| and lmax(i,[j,]tc)≤lmax(i-1,[j,] 

tc)+|x(i)-x(i-1)|, or wmax(i,[j,]tc)≤wmax(i-1,[j,]tc)+w(i,[j,] 

tc) and wmin(i,[j,]tc)≤wmin(i-1,[j,]tc)+w(i,tc) for all 2≤i≤n), 

or by binary searching and prefix weight-sum computations 

(for arbitrary values of lmin(i, [j,] tc), lmax(i, [j,] tc), wmin(i, 

[j,] tc) or wmax(i, [j,] tc)). In the first case, once we 

computed l(i-1, [j,] tc) (u(i-1, [j,] tc)), we can compute l(i, 

[j,] tc) (u(i, [j,] tc)) by initializing it to l(i-1, [j,] tc) (u(i-1, 

[j,] tc)) and increasing it by 1 until we reach i or the first 

point l(i, [j,] tc) (last point u(i, [j,] tc)) for which the distance 

between point i and this point is at most lmax(i, [j,] tc) (at 

least lmin(i, [j,] tc))  (or for which the sum of the weights 

w(*,[j,]tc) of the points in the interval [l(i,[j,]tc),i] ([u(i,[j,] 

tc),i]) is at most wmax(i,[j,]tc) (at least wmin(i,[j,]tc))). In the 

second case, we binary search l(i,[j,]tc) (u(i,[j,]tc)) in the 

interval [1,i], because we have the property that for all the 

points p from 1 to l(i,[j,]tc)-1 (u(i,[j,]tc)), the distance up to 

point i [sum of the weights w(*,[j,]tc) of the points in the 

interval [p,i]] is larger than lmax(i,[j,]tc) [wmax(i,[j,]tc)] 

(larger than or equal to lmin(i,[j,]tc) [wmin(i,[j,]tc)]), and for 

p≥l(i,[j,]tc) (u(i,[j,]tc)+1), the distance up to i [sum of 

weights of the points in the interval [p,i]] is smaller than or 

equal to lmax(i, [j,]tc) [wmax(i,[j,]tc)] (smaller than lmin(i, 

[j,]tc) [wmin(i, [j,]tc)]). The middle argument j of any value 

val(i,j,tc) will always refer to the case when point i belongs to 

the j
th

 cluster, counting from left to right, and the number of 

clusters k is given (if k is not given, we will have val(i,tc), 

instead of val(i,j,tc)). When the number of clusters is fixed (k) 

we will compute Cmin(i,j)=the minimum value of the 

objective function, if the points 1,2,…,i are split into j 

clusters. We have Cmin(0,0)=0 and Cmin(i>0,0)= 

Cmin(0,j>0)=+∞. For i≥j>0, we will initialize Cmin(i,j)=+∞ 

and then we will consider every point p as the first point of 

the j
th

 cluster (the last point is point i), in decreasing order 

(starting from p=i and ending at p=j). We will maintain the 

values tcagg(tc) of the weights of the points in the interval 

[p,i] (initially, these values will be undefined). When we 

reach a new value of p, we update the values tcagg(tc) 

(1≤tc≤T): tcagg(tc)= ctype(tc)(w(p,[j,]tc), tcagg(tc)) (if the 

previous value tcagg(tc)=undefined, then tcagg(tc) will be 

equal to w(p, [j,]tc)). If p<l(i,[j,]tc) or p>u(i,[j,]tc), we will 

set tcagg2(tc) at a value which shows that a constraint is 

violated (e.g. we set tcagg2(tc)=+∞), i.e. a value which will 

increase the value of the functions ccost and objf very much; 

otherwise, we set tcagg2(tc)=tcagg(tc). Then, we recompute 

the aggregate cost of the cluster: cc=ccost(tcagg2(1), …, 

tcagg2(T)). We set Cmin(i,j)=min{Cmin(i,j), objf(Cmin(p-1, j-1), 

F+cc)}. This algorithm has an O(n
2
·k·T) time complexity. 

When the number of clusters k is not given, we can drop the 



 

 

     

 

second index (j) from the state of the dynamic programming 

(DP) algorithm and compute Cmin(i)=the minimum value of 

objf, if the points 1,2,…,i are split into any number of clusters 

(Cmin(0)=0 and Cmin(i>0)=+∞, initially; Cmin(i)=min{Cmin(i), 

objf(Cmin(p-1), F+cc)}). In this case, the time complexity is 

O(n
2
·T). In the rest of the section we will only be interested in 

the case ccost=min and ctype(tc)=ctype()=sum or max, i.e. 

the cost of a cluster is the minimum of the costs of each 

cluster type and we use the same aggregation function to 

compute the cost for each cluster type tc (and this function is 

either sum or max). This is the same as choosing the most 

convenient type of cluster. In the unconstrained case, for 

objf=max, ctype=sum or max, the optimal solution consists of 

n clusters: [1,1], …, [n,n]; the type tc of each cluster i is the 

one for which w(i,tc)=min{w(i,t’)|1≤t’≤T}. We will present 

next significant improvements for the constrained cases for 

each of the 4 pairs (objf, ctype). Every time we will ask for 

the min (max) element (field of a tuple) of an empty set or 

data structure, the result will be +∞ (-∞). All the used data 

structures are emptied after computing all the values Cmin(*,j) 

(for every 1≤j≤k, when k is given); when k is not given, the 

data structures are only emptied once, in the beginning. 

5.1. objf=sum, ctype=sum 

For each cluster type tc (and every cluster index j+1) we will 

compute in O(n) time the prefix sums wp(i,[j+1,]tc)= 

w(1,[j+1,]tc)+...+w(i,[j+1,]tc) = wp(i-1,[j+1,]tc)+w(i,[j+1,] 

tc) (wp(0,[j+1,]tc)=0). When we have l(*,[*,] *)=1 and the 

number of clusters k is given, we will use the following 

strategy. Let’s assume that all the values Cmin(*,j) were 

computed and we are ready to begin computing the values 

Cmin(i,j+1) (in increasing order of i=1,…,n). While doing this, 

we will compute a table Dj(i,tc). We have Dj(0,tc)=Cmin(0,j) 

and Dj(i>0,tc)=min{Dj(i-1,tc), Cmin(i,j)-wp(i,[j+1,]tc)}. We 

compute Dj(i-1,tc) just before computing Cmin(i,j+1). Then, 

with this table, we can compute Cmin(i,j+1) in O(T) time, as 

min{Dj(u(i,[j+1,]tc)-1,tc)+wp(i,[j+1,]tc)+F|1≤tc≤T}. Thus, 

the complexity becomes O(n·k·T). When the constraints 

l(i,[j,]tc) are arbitrary, we can use a similar approach. After 

computing all the values Cmin(*,j) for a given j, we will 

compute a table Ej(*,tc), with Ej(i≥0,tc)=Cmin(i,j)-wp(i, 

[j+1,]tc). Cmin(i,j+1)=F+min{wp(i,[j+1,]tc)+min{Ej(p,tc)|l(i, 

[j+1,]tc)-1≤p≤u(i,[j+1,]tc)-1}|1≤tc≤T}. By building a 

segment tree over each column Ej(*,tc) of each table Ej, we 

can find the minimum value in any interval of rows of any 

column in O(log(n)) time, improving the overall complexity 

to O(n·log(n)·k·T). The segment tree also supports updates, 

s.t. we can initialize the Ej(*,tc) to +∞ and set Ej(i-1,tc) to the 

correct value right before computing Cmin(i,j+1). An 

alternative is to construct the whole table Ej(*,*) and then 

preprocess it, in order to answer range minimum queries on 

each column - the complexity may drop by an O(log(n)) 

factor. Further improvements are possible if l(a,[j,]tc)≤ 

l(b,[j,]tc) and u(a,[j,]tc)≤u(b,[j,]tc) for every cluster type tc, 

any 1≤j≤k, and any two points a<b (the non-decreasing 

property). When computing the values Cmin(i,j+1), we will 

maintain an array DQ of T double-ended queues (deques); 

each deque contains (index, value) pairs. We initialize 

DQ[tc] (1≤tc≤T) by inserting the pair (-1,+∞). Then, we 

begin computing the values Cmin(i,j+1) in increasing order of 

i. For a given i, and every cluster type tc, we insert in 

increasing order of p at the end of each deque DQ[tc], the 

pairs pr(i,[j+1],tc,p)=(index=p, value=Cmin(p,j)-wp(p, [j+1,] 

tc)), with u(i-1,[j+1,]tc)≤p≤u(i,[j+1,]tc)-1 (we consider u(0, 

[*,]*)=0). Before inserting a pair (idx,val) into a deque, we 

repeatedly remove from the end of the deque the last pair, as 

long as its value field is larger than val (and the deque is not 

empty). Afterwards, we repeatedly remove from the 

beginning of each deque DQ[tc] the first pair, as long as its 

index field is smaller than l(i,[j+1,]tc)-1. After all these 

operations, we compute (in O(T) time) the value V=min{ 

DQ[tc].getFirst().value+wp(i,[j+1,]tc)|1≤tc≤T} and set 

Cmin(i,j+1) to V+F. The total number of insertions (deletions) 

into (from) each deque is O(n) and each such operation is 

performed in O(1) (amortized) time. The time complexity of 

the algorithm is O(n·k·T). Instead of deques, we could have 

used two arrays of min-heaps, Hidx[*] and Hval[*]: before 

computing Cmin(i,j+1), for every cluster type tc, we: (1) insert 

all the pairs pr(i,[j+1],tc,p) into both Hval[tc] and Hidx[tc]; (2) 

while Hidx[tc].getMinIndex() is smaller than l(i,[j+1,]tc)-1, 

we remove the tuple with the smallest index field both from 

Hidx[tc] and Hval[tc]. Cmin(i,j+1)=min{Hval[tc].getMinValue() 

|1≤tc≤T}+wp(i,[j+1,]tc)+F. In this case, the time complexity 

is O(n·log(n)·k·T). When the number of clusters k is not 

given, we can modify the solutions presented above by 

dropping the index j (the number of clusters) from the state of 

the DP (except for the RMQ approach for the tables Ej). We 

compute Cmin(i) instead of Cmin(i,*), we replace Cmin(i-1,*) by 

Cmin(i-1) and we drop the index j from the definitions of the 

tables D and E. The tables D and E, the deques (or heaps) are 

updated during the single traversal of the points i=1,…,n. The 

complexities mentioned before are decreased by a factor of k. 

These techniques work even with negative weights. 

5.2. objf=sum, ctype=max and u(i,[*,]*)=i 

When all the l(i,[j,]tc) values are 1 and the number of clusters 

k is given, we will maintain an array S of T stacks, each stack 

containing (index, vmax, pcmin, smin) tuples. Before 

computing a value Cmin(i,j+1) (in increasing order of 

i=1,…,n), we perform the following computations for each 

cluster type tc: (1) we build a tuple tu(i,[j+1,]tc)=(index=i, 

vmax=w(i,[j+1,]tc), pcmin=Cmin(i-1,j), smin=w(i,[j+1,]tc)+ 

Cmin(i-1,j)); (2) while the topmost tuple tp in S[tc] has 

tp.vmax≤tu(i,[j+1,]tc).vmax, we pop tp from the stack, set 

tu(i,[j+1,]tc).pcmin to min{tu(i,[j+1,]tc).pcmin, tp.pcmin} 

and, after this, we set tu(i,[j+1,]tc).smin to w(i,[j+1,]tc)+tu(i, 

[j+1,]tc).pcmin; (3) if S[tc] is not empty, let tp be the 

topmost tuple in S[tc]: we set tu(i,[j+1,]tc).smin to min{tu(i, 

[j+1,]tc).smin, tp.smin}; (4) we push tu(i,[j+1,]tc) on S[tc]. 

We will set Cmin(i,j+1) to F+min{S[tc].getTopmostTuple(). 

smin|1≤tc≤T}. The time complexity is O(n·k·T). When 

l(i,[j,]tc)≤l(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T), we can use 

an array of deques DQ (instead of an array of stacks). Each 

deque DQ[tc] stores (index, vmax, pcmin) tuples (we dropped 

the smin field). Then, before computing the value Cmin(i,j+1), 

we perform the same operations as in the previous solution, 

with the following differences: the tuple tu(i,[j+1,]tc) does 

not have the smin field; the top of the stack S[tc] now 



 

 

     

 

becomes the end of the deque DQ[tc]; popping a tuple from 

the stack=removing the last tuple in the deque; pushing a 

tuple on the stack S[tc]=inserting a tuple at the end of the 

deque DQ[tc]; any operation referencing the field smin is 

dropped. We perform the following extra action: as long as 

the index field of the tuple located at the beginning of the 

deque DQ[tc] (1≤tc≤T) is smaller than l(i,[j+1,]tc), we 

remove the tuple from DQ[tc]. If DQ[tc] is not empty, we set 

the pcmin field of the first tuple (at the front) of DQ[tc] to 

min{Cmin(p,j)|l(i,[j+1,]tc)-1≤p≤DQ[tc].getFirst().index-1}; in 

order to compute this minimum value in O(log(n)) time, we 

can construct a segment tree STj over the values Cmin(*,j) and 

set the value of the leaf i-1 of STj to Cmin(i-1,j) right before 

computing Cmin(i,j+1); we can also preprocess all the values 

Cmin(*,j), in order to answer RMQ queries in O(1) time; or we 

can use deques to maintain the minimum in a window whose 

endpoints, l(i,[j+1,]tc)-1 and DQ[tc].getFirst().index-1, only 

increase, in O(1) amortized time. After this, we need to 

compute the value V=min{tp.vmax+tp.pcmin|tp∈DQ[tc], 

1≤tc≤T} and set Cmin(i,j+1) to F+V. We will maintain all the 

tuples tp inside all the deques in a min-heap H, where their 

key is (tp.vmax+ tp.pcmin). Whenever we remove a tuple 

from a deque, insert a new tuple inside a deque or change the 

vmax or pcmin fields of a tuple in a deque, we also update the 

heap H (by inserting/removing/changing the key of the tuple 

in/from/in H). The overall time complexity is O(n·log(n·T)· 

k·T) (if we maintain a different min-heap HP[tc] for every 

cluster type tc and compute each value Cmin(i,*) in O(T) time, 

the time complexity would be O(n·log(n)·k·T)). When k is not 

given, we can drop the index j (j+1) from the DP state and 

replace every reference Cmin(i,*) by Cmin(i); the RMQ 

approach cannot be extended to this case this time, either. 

5.3. objf=max, ctype=sum 

An easy solution when all the values l(*,[*,]*) are 1, u(i, 

[*,]*)=i and w(i,[*,]tc) are equal (i.e. w(i,[1,]tc)= 

…=w(i,[k,]tc); we will denote these values by w(i,tc), as the 

middle argument j makes no difference), would be to binary 

search the optimal value OPT of the objective function. Let’s 

assume that we want to test the value Ocand, selected by the 

binary search. We can do this by traversing the points from 1 

to n and maintaining several counters: nc, representing the 

number of clusters (initialized to 1), and tsum[tc] (initialized 

to 0). Then, for each point i and each cluster type tc, we add 

w(i,tc) to tsum[tc]; if all the counters tsum[tc] become larger 

than Ocand-F, we increment nc by 1 and set the values of each 

counter tsum[tc] to w(i,tc). If w(i,tc)>Ocand-F (1≤tc≤T), then 

we will always have tsum[tc]=+∞ from now on (for the next 

points i+1,…,n). If, at some point, all the values tsum[*] are 

+∞, then Ocand is not feasible (we set nc=k+1). This test 

minimizes the number of clusters, such that the sum of the 

weights of the points in each cluster is at most Ocand-F. If 

(nc>k), then Ocand is not feasible. If Ocand is feasible, we can 

test a smaller value than Ocand next; otherwise, we will test a 

larger one. It is obvious that if we can split the n points into 

nc<k clusters such that the value of the objective function is 

at most Ocand, we can always split further some of the clusters 

and form exactly k clusters, without increasing the value of 

the objective function. The time complexity of this approach 

is O(n·T·log(WMAX)), where WMAX is the sum of the largest 

weights of the points. If the weights are integers, we always 

find the optimal solution; if they are real numbers, we can 

only approximate the optimal answer with any accuracy ε>0. 

An exact solution for the more general case with l(*,[*,]*)= 

1, u(i,[j,]tc)≤u(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T) and not 

necessarily equal w(i,[*,]tc) values, is the following. We 

compute the prefix sums wp(i,[j+1,]tc) (defined previously). 

Then, after computing a value Cmin(i,j), we compute the 

indices r(i,tc,j) of the rightmost points, such that the 

condition wp(r(i,tc,j), [j+1,] tc)-wp(i, [j+1,] tc)≤Cmin(i,j) 

holds. We can compute every index in O(log(n)) time, by 

using binary search. However, in this case, we can do better. 

Because Cmin(i+1,j)≥Cmin(i,j) (for i=pf,…,n-1, where pf is the 

smallest index with Cmin(pf,j)<+∞) and wp(i+1,[j+1,]tc)≥ 

wp(i,[j+1,] tc), we have that r(i+1,tc,j)≥r(i,tc,j) (pf≤i≤n-1). 

Thus, we can search for r(i+1,tc,j) by initializing it to r(i,tc,j) 

(or to 1, if Cmin(i,j)=+∞, in which case r(i,tc,j)=n) and 

repeatedly increasing it by 1, as long as the condition holds. 

Thus, O(n) time is spent overall for computing all the values 

r(*,tc,j) (1≤tc≤T). While computing the values Cmin(*,j+1), 

we will maintain an array DQ of T deques; each deque 

DQ[tc] contains (index, limit, value) tuples. We will also 

maintain an array smax of T values; each value smax[tc] is 

initialized to -∞. Before computing a value Cmin(i,j+1) 

(i=1,…,n), for each cluster type tc we perform the following 

actions: (1) we insert the tuples tu(i,p)=(index=p, 

limit=r(p,tc,j), value=Cmin(p,j)), with u(i-1,[j+1,]tc)≤p 

≤u(i,[j+1,]tc)-1 (u(0,[*,]*)=0), in increasing order of p, at 

the end of the deque DQ[tc] (we only insert a tuple tu(i,p) 

after repeatedly removing the last tuple tlp from DQ[tc], 

while tlp.value≥tu(i,p).value); (2) while the first tuple tp of 

the deque DQ[tc] has the limit field smaller than i, we 

remove tp from DQ[tc] and set smax[tc]=max{smax[tc], 

wp(tp.index,[j+1,]tc)}. Then, we compute V=min{DQ[tc]. 

getFirst().value|1≤tc≤T, DQ[tc] is not empty} and U=min{ 

wp(i,[j+1,]tc)-smax[tc]|1≤tc≤T} and set Cmin(i,j+1) to min{U, 

V}+F. U is the minimum sum of the weights of the points in 

the cluster containing point i, with the property that this sum 

is larger than the sum of all the previous clusters. V is the 

minimum cost of a previous cluster, with the property that 

this cost is the largest among all the chosen clusters 

(including point i’s cluster). The complexity is O(n·k·T). The 

case with non-decreasing values l(i,[j,]tc) and u(i,[j,]tc) can 

be solved by adapting the solution mentioned above. We 

transform the smax array into an array of deques; each deque 

contains (index, value) pairs. Then, before computing Cmin(i, 

j+1), we remove the first tuples of DQ[tc] and smax[tc], as 

long as their index field is smaller than l(i,[j+1,]tc)-1 (for 

1≤tc≤T). Afterwards, while the limit field of the first tuple tp 

of DQ[tc] (1≤tc≤T) is smaller than i, we remove it from 

DQ[tc] and insert tnew=(index=tp.index, value=wp(tp.index, 

[j+1,]tc)) at the end of smax[tc]; before doing this, we 

repeatedly remove the tuple tlast from the end of smax[tc], as 

long as smax[tc] is not empty and tlast.value≤tnew.value. 

Then, the value U is defined as min{wp(i,[j+1,]tc)-

smax[tc].getFirst().value|1≤tc≤T, smax[tc] is not empty}. The 

complexity for this case is O(n·k·T), too. The case with 

arbitrary l(i,[j,]tc) and u(i,[j,]tc) values is handled differently. 

While computing the values Cmin(*,j+1), we will maintain 



 

 

     

 

two arrays of T 2D range trees, A and B. In each tree we 

insert n+1 dummy points (i,-∞) with weights +∞ for A[tc], 

and -∞ for B[tc] (i=0, …, n). A 2D range tree is a segment 

tree, where each leaf stores a point; the points are sorted 

according to the x-coordinate from the leftmost leaf to the 

rightmost one. Each internal node stores all the points 

contained in the leaves of its subtree; thus, every point is 

stored in O(log(n)) tree nodes. Each tree node q of the range 

tree stores all of its points in an augmented balanced tree Tq 

(e.g. AVL tree, red-black tree, scapegoat tree). The points are 

inserted in Tq with their y-coordinate as the key. Each node q’ 

in Tq also maintains the smallest weight minw(q’) of a node in 

its subtree (in Tq). We can insert or delete a pair (y, weight) in 

Tq and maintain the values minw in logarithmic time. We can 

also search for the smallest weight within an interval [y1,y2] 

with the same complexity, if we additionally maintain in 

every node of Tq the smallest and largest y-coordinates of a 

point in its subtree. The function findMinW(x1,y1,x2,y2) of a 

range tree returns the minimum weight of a point (x,y) in the 

tree, with x1≤x≤x2 and y1≤y≤y2 (or +∞ if no point lies in the 

range), in time O(log
2
(n)). Similarly, we can support a 

findMaxW(x1,y1,x2,y2) function for a range tree, which returns 

the maximum weight of a point in the given range (or -∞ if 

no point exists in the range). We will compute the r(*,*,*) 

values by binary searching each of them. Before computing 

Cmin(i,j+1) (i=1,…,n), for each cluster type tc, as before, we 

consider the values p, u(i-1,[j+1,]tc)≤p≤u(i,[j+1,]tc)-1; for 

each value, if the dummy points (p,-∞) exist in A[tc] and 

B[tc], we remove them from there and we insert the point (p, 

r(p,tc,j)) with the weight Cmin(p,j) into the range tree A[tc] 

and the point (p, r(p,tc,j)) with the weight wp(p,[j+1,]tc) into 

the range tree B[tc] (1≤tc≤T). We define V=min{ 

A[tc].findMinW(l(i,[j+1,] tc)-1,i,u(i,[j+1,]tc)-1,+∞)| 1≤tc≤T} 

and U=min{wp(i,[j+1,] tc)-B[tc].findMaxW(l(i,[j+1,]tc)-1,-

∞,u(i,[j+1,]tc)-1,i-1)|1≤tc≤T} and, like before, we set 

Cmin(i,j+1)=min{U,V}+F. When k is not given, we modify 

the above solutions by dropping the index j (the cluster’s 

index) from the DP state and from all equations and by 

traversing the points from 1 to n only once. 

5.4. objf=max, ctype=max 

When the number of clusters k is given, all the values l(*,[*,] 

*) are 1, u(i,[*,]*)=i and w(i[,*],tc) are equal, we can use the 

binary search approach in this case, too. The difference 

consists of replacing the tsum[tc] counters by the tmax[tc] 

values (1≤tc≤T). We initialize tmax[*] to -∞. Then, we 

traverse the points from i=1 to n and set tmax[tc]= 

max{tmax[tc], w(i,tc)}. When all the values tmax[*] exceed 

Ocand-F after considering point i, we increase the number of 

clusters nc and reset tmax[tc] to w(i,tc) (1≤tc≤T). If w(i,tc)> 

Ocand-F (1≤tc≤T), then we will always have tmax[tc]=+∞ 

from now on (for the next points i+1,…,n). If, at some point, 

all the values tmax[*] exceed Ocand-F, then Ocand is not 

feasible. If the candidate values Ocand are taken from the 

sorted list of n·T point weights (increased by F), the answer is 

exact and the time complexity is O(n·T·log(n·T)). When l(*, 

[*,]*)=1, u(i,[j,]tc)≤u(i+1,[j,]tc) (1≤i≤n-1; 1≤j≤k; 1≤tc≤T) 

and we have no constraints on the non-negative values 

w(*,[*,]*), we will compute again the values r(i,tc,j)=the 

largest index of a point such that max{w(i+1,[j+1,]tc), ..., 

w(r(i,tc,j),[j+1,]tc)}≤Cmin(i,j). In this case, for fixed tc and j, 

these values are non-decreasing (as i increases, starting from 

the smallest value pf≥0 with Cmin(pf,j)<+∞; for 0≤i≤pf-1, 

r(i,tc,j)=n) and can be computed in O(n) time (otherwise, we 

can binary search them). We can compute RMQwmax(a,b, 

[j,]tc)=the maximum weight w(q,[j,]tc), with a≤q≤b, in O(1) 

time using RMQ (Bender et al., 2000) (with O(n[·k]) or 

O(n[·k]·log(n)) preprocessing) for each cluster type tc. We 

adapt the solutions from the previous case. For non-

decreasing l(i,[j,]tc) and u(i,[j,]tc) values, we will use the 

same smax[tc] values as in the case l(*,[*,]*)=1. Whenever 

we remove a tuple tp=(index=idx, limit=lim, value=val) 

from the front of DQ[tc] because lim<i, we set 

smax[tc]=max{smax[tc], tp.index}. Then U is defined as 

min{RMQwmax(smax[tc]+1,i,[j+1,]tc)|1≤tc≤T, smax[tc]≥l(i, 

[j+1,]tc)-1}. For arbitrary l(i,[j+1,]tc) and u(i,[j+1,]tc) 

values, we compute the r(*,*,*) values by binary searching 

each of them. The weights of the points (p, r(p,tc,j)) inserted 

in B[tc] will be p, and U is defined as min{ 

RMQwmax(B[tc].findMaxW(l(i,[j+1,]tc)-1,-∞,u(i,[j+1,]tc)-1, 

i-1)+1,i,[j+1,]tc) (or +∞, if B[tc].findMaxW(l(i,[j+1,]tc)-1, -

∞, u(i,[j+1,]tc)-1, i-1)<0) | 1≤tc≤T}. The case when k is not 

given is handled by transforming the solutions mentioned 

above, just like in all the other cases. 

5.5. Clustering of Mobile Network Devices 

The final clustering problem that we consider consists of a 

network of mobile devices. Each device i (1≤i≤n) is a point 

on the real line initially located at position x(i) and moves in 

direction d(i) (d(i)=-1 for left or +1 for right) at a speed of 

v(i) distance units per time unit. We want to find the earliest 

time moment when we can place K identical intervals of 

fixed given length L, such that every point is inside one of the 

intervals (if possible). The motivation is given by the fact that 

we want to send a piece of content to K devices. Each device 

can send data within an interval of length L containing its 

location. Then, when all the devices can be contained within 

K intervals of length L, the K chosen devices (which will be 

the leftmost devices in each of the K intervals) will send the 

data to all the other devices. Due to budget constraints, we 

cannot send the data to more than K devices initially. We will 

interpret the points as straight lines in the time x distance 

plane. Point i is transformed into the line y(i,t)=y(i,0)+w(i)·t, 

where y(i,0)=x(i) and w(i)=d(i)·v(i). Let’s consider a time 

moment tc. At such a moment, the positions of the points are 

y(1,tc), …, y(n,tc). We consider the points sorted according to 

their position, i.e. y(o(1),tc)≤y(o(2),tc)≤…≤y(o(n),tc). For the 

time moment tc it is easy to decide if we can place K intervals 

of fixed length L which contain all the n points inside them. 

We place the first interval with its left endpoint at y(o(1),tc). 

Then we place the next interval with its left endpoint at the 

position of the leftmost point not contained in any of the 

previous intervals. We repeat this procedure until every point 

is part of an interval. If the number PI of intervals we placed 

is at most K, then a solution exists for the time moment tc. 

The following algorithm computes for each position i (in an 

interval [p,q]) the minimum number of intervals m(i) which 

are required to cover the points o(i), o(i+1), …, o(q). It also 



 

 

     

 

computes next(i), the point at which the second interval starts, 

and last(i), the point where the last interval starts, in an 

optimal cover of the points o(i), o(i+1), …, o(q). 

ComputeMinimumNumberOfIntervals(tc, L, p, q): 

right=q 

for i=q down to p do 

  while (y(o(right),tc)-y(o(i),tc)>L) do right=right-1 

  next(i)=right+1;m(i)=1+(if right=q then 0 else m(right+1)) 

  if (right=q) then last(i)=i else last(i)=last(right+1) 

The time complexity of the algorithm is linear. Let’s consider 

two sets of time moments: Sclose = { tc | 
L|)-tcy(j,)-tcy(i,| and L|tc)y(j,tc)y(i,|s.t.j,ij),(i, ≠−=−≠∃ εε

 }, where ε>0 is an arbitrarily small constant, and Scross= 

{tc| )-tcy(j,)-tcy(i, and tc)y(j,tc)y(i, s.t.j,ij),(i, εε ≠=≠∃ }. 

The earliest time moment te when the points can be covered 

by K intervals belongs to the set }0{∪∪= crossclose SSS . 

This can be easily proven in the following way. Let’s assume 

that we run the algorithm described above for tc=0, p=1, 

q=n. The next time moment tc’ when the values m(i) change 

(and, thus, the value m(1) which is the minimum number of 

intervals required for covering all the points) is one of the 

time moments in S. The set S has cardinality O(n
2
). By 

sorting the time moments in S and running the described 

algorithm for each time moment tc, we obtain an O(n
3
) 

solution to our problem; we maintain an array o with the 

order of the points, i.e. y(o(1),tc)≤y(o(2),tc)≤…≤y(o(n),tc); 

when we reach a time moment tc from the set Scross, we need 

to swap the order of two lines o(i) and o(i+1) in the array o 

before running the linear algorithm. An interesting question is 

whether the value m(1) can be maintained more efficiently 

than recomputing it from scratch at every time moment tc. An 

affirmative answer was provided by Dr. M. Patrascu, in a 

personal communication (July 2008). I will briefly describe 

his approach here. We will split the lines into n/k groups of 

(approximately) k lines each. Each group is composed of 

lines which are consecutive in the y-ordering (the o array). 

For each group of lines we compute, in the beginning, the 

values mlocal(i), nextlocal(i) and lastlocal(i) for each line o(i) in 

the group, having the same meaning as m(*), next(*) and 

last(*), except that they are computed considering only the 

lines from the group (taking O(k) time for each group, using 

the algorithm presented previously). We also compute in the 

beginning the values m(*), next(*) and last(*), considering all 

the lines ([p,q]=[1,n]). During the algorithm we will not 

actively maintain the values m(*) and last(*), but the next(*) 

values need to be maintained updated. At every time moment 

tc from Scross, we just swap the order of the two crossing 

lines, while the values mlocal(*), nextlocal(*), lastlocal(*) and 

next(*) do not change. At every time moment tc from Sclose, 

when two lines i and j are at distance L, we distinguish two 

cases. Let’s assume that o(a)=i and o(b)=j (a<b). We can 

compute a and b by maintaining a reverse mapping o
-1

, where 

o
-1

(o(p))=p (1≤p≤n). In the first case, right before time 

moment tc, the lines o(a) and o(b) were located at a (vertical) 

distance smaller than L. Thus, in the future, the distance 

between them will increase. At time tc, we need to set 

next(a)=b. All the other next(p) values (p≠a) remain 

unchanged. If o(a) and o(b) are in the same group G, then we 

will recompute the values mlocal(i), nextlocal(i) and lastlocal(i) 

for all the lines o(i) in group G. In the second case, the lines 

o(a) and o(b) were located at a (vertical) distance larger than 

L right before time moment tc. Thus, right before time tc, we 

have that next(a)=b. Since o(a) and o(b) will be at a distance 

smaller than L in the near future, we need to change the value 

next(a) and set it to b+1. Like in the first case, if lines o(a) 

and o(b) are located in the same group, we will recompute the 

mlocal(*), nextlocal(*) and lastlocal(*) values for all the lines in 

the group. After updating the computed values, at every time 

moment tc, we need to compute m(1), which is the minimum 

number of intervals required to cover all the 1D points at the 

given time moment. We can compute m(1) in O(n/k) time, as 

follows. We initialize m(1) to mlocal(1) and a pointer po to 

lastlocal(1). Then, while po is not in the last group, we perform 

the following actions: (1) we set po to next(po); (2) we 

increment m(1) by mlocal(po); (3) we set po to lastlocal(po). The 

time complexity is O(k+n/k) for every time moment tc from 

S. By choosing k=O(n
1/2

), the overall complexity is O(n
2.5

). 

6. RELATED WORK AND CONCLUSIONS 

In this paper we presented efficient, exact and heuristic 

algorithms for several offline network optimization problems, 

like network design, network clustering and QoS 

improvement. These topics are of great interest in the 

research community and the discussed problems have several 

applications in practical settings. Network inverse 

optimization and network design problems have been studied 

extensively, due to their large theoretical and practical 

interest: see, e.g. (Farago et al., 2003) and (Duin et al., 1996). 

Network improvement problems based on budget constrained 

network upgrades were presented in (Krumke et al., 1998). 

Clustering problems similar to those discussed in this paper 

were addressed in (Chen et al., 2007). 
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