
LIJEN

The number of possible words of length k is 2k. Because words in the dictionary are at most 12 symbols

long, the total number of all words that can be used as codewords is 8191. This number is small enough

for the following approach:

• Generate all 8191 potential codewords,
• For each codeword P determine the set S of words from the dictionary which differ from P in
the least number of symbols,

• If S contains only one word, then P can be uniquely decoded to that word (Q). If the sending
time for codeword P is less than the best sending time known for word Q, then set P as the
codeword for word Q.

The above gives us the best codeword for each dictionary word.

The time complexity is O(2K · N + L), where K is the length of the longest word (12).

The official source code represents symbols with bits (instead of strings), which eases the

implementation of some parts of the algorithm (for example, the number of symbols in which two

words p and q differ is the number of 1 digits in p xor q).

BINGO

For 2×2 and 3×3 cards the problem can be solved in multiple ways because the number of possible

cards is small enough. However, there are 16! = 20922789888000 different 4×4 cards and it is not

possible (or necessary) to search and score them all in so little time. For simplicity, the remainder of

this text assumes the cards are 4×4.

We use a number of optimizations to reduce the number of cards considered:

Idea Implementation

The entire input sequence doesn't matter,

just how many times each sequence of 4

numbers appears.

Before starting the search we calculate each possible

row's worth (how many times it appears in the input

sequence). When searching, we can now score a row in

only one operation, instead of going through the entire

input sequence.

Swapping two rows does not change the

value of the card.

When searching, the order in which we placed the

previous rows does not matter, just which of the 16

numbers we've used. There are 216 subsets of 16

numbers. The value of the search function is uniquely

determined with the numbers already placed (if placing

row by row) so we can cache (memoize) the value for

each subset and calculate it at most once.

For any 4 numbers, one of its 24 possible

orderings is worth most. If we decide to put

the 4 numbers in a single row, then it only

makes sense to do it in that, most valuable,

ordering.

In an additional step before searching, we calculate for

each subset of 4 numbers how much their most

valuable ordering is worth. When searching, we place

the numbers row by row instead of number by number.

When considering which numbers to put in

the next row, one number can be fixed and

reduce the number of options. We can do

this becuase the ordering of the rows does

not matter, and that number will have to be

put on the card eventually, so we might as

well put it now..

The smallest of the remaining numbers is always placed

in the current row, and the remaining 3 are selected in

all possible ways.

MRAVOGRAD

Let d(r, c) be the distance from intersection (r, c) to the nearest umbrella.

Let f(r, c) be the set of umbrellas at distance d(r, c) of intersection (r, c). If f(r, c) contains more than

one umbrella, then intersection (r, c) is "wet".

To efficiently solve the problem note that, for every rectangle (r1, c1, r2, c2), if f(r1, c1) = f(r1, c2) =

f(r2, c1) = f(r2, c2) = X, then f(r, c) = X for every intersection inside the rectangle.

The following divide-and-conquer algorithm will work:

for rectangle (r1,c1,r2,c2)

 if f(r1,c1) = f(r1,c2) = f(r2,c1) = f(r2,c2) then

 if f(r1,c1) contains exactly one square

 return 0

 else

 return (r2-r1-1)*(c2-c1-1)

 else

 r = (r1+r2) div 2

 c = (c1+c2) div 2

 recursively solve rectangles

 (r1,c1,r,c), (r1,c+1,r,c2), (r+1,c1,r2,c) i (r+1,c+1,r2,c2)

