
DVAPRAVCA 

There exists an optimal choice of lines such that each of the two lines passes just between some red 

and some blue point. An O(N3 log N) solution is to try each red-blue pair of points for one line, sort all 

points by their (signed) distance from that first line and then try to extend the region covered by the 

lines in both directions, as far as possible (until the first blue point). 

The point-to-line distance can be calculated in a number of ways: drawing a perpendicular line from the 

point and finding where the lines intersect, using dot products or using cross products. Whichever way 

we use, the distance of point (x0, y0) from line Ax+By+C=0 is: 

22

00

BA

CyBxA

+

+⋅+⋅
 

Because we did not take the absolute value of the numerator, this value of this expression can be 

negative, and it will be for all points in one half of the plane. 

This algorithm can be improved to O(N3) if we notice that it is not necessary to sort the points by their 

distance. Instead it suffices to just calculate the distance, find the closest blue point on each side of the 

line and count how many red points are between the line and the blue point. Each of these steps is 

done in linear time. 

For an even better solution, observe that for two lines of almost equal slope, the ordering of points 

sorted by distance from the lines is almost the same. If we gradually change the slope, occasionally 

some pairs of points adjacent in the ordering will swap places. Furthermore, if we start for example, 

from a horizontal line and increase the slope (rotate the line around the origin), for each pair of points 

we can exactly calculate when they will swap places in the ordering. Because there are O(N2) pairs of 

points (and swaps) and they need to be sorted, the complexity of the solution is at least O(N2 log N). 

We also need to, after each swap, calculate the largest consecutive group of red points in the ordering. 

Although it is possible to design a data structure to do this in O(1) time, a simple way is to use a 

complete binary tree. The complexity per swap is O(log N), which does not increase the overall 

complexity of the solution. 

IGRACI 

Let A be the source sequence (which needs to be found) and B be the sequence after the 

transformation described in the task (B is given as input). A key constraint is that Bk < k. Suppose that, 

instead of the sum of quotients as described, Bk is the number of elements between A1 and Ak−1 that 

are less than Ak. Note that with this new transformation the constraint Bk < k will always hold. 

Assuming the use of this modified transformation, from the sequence B it is possible to find a sequence 

A that generates B, consisting of any N distinct integers, for example 1 to N. The last element, AN, will 

surely be BN+1. The second to last, AN−1, will be the (Bk−1+1)-th smallest of the remaining numbers 

etc. Using a data structure that supports the operation "find the m-th smallest number and remove it", 

this reconstruction can be done efficiently. Various binary trees support this kind of operation for a 

total time complexity of O(N log N). 

Finally, note that, if instead of 1 through N we use, for example, the numbers N+1 to 2N, the 

transformation from the task description and the modified transformation give the same results so the 

reconstructed sequence is a valid solution for the original transformation. 


