
ttaasskkss

CCrrooaatt ii aa 22000066 // RReeggiioonnaa ll CCoommppeett ii tt iioonn // SSeenniioorrss

task osmo waclaw lampice sibice

source file
osmo.pas
osmo.c
osmo.cpp

waclaw.pas
waclaw.c
waclaw.cpp

lampice.pas
lampice.c
lampice.cpp

sibice.pas
sibice.c
sibice.cpp

input data stdin

output data stdout

time limit
(Athlon MP 2x2.1 GHz)

1 sec

memory limit
(heap)

32 MB

memory limit
(stack)

8 MB

30 45 55 70
points

200

oossmmoo

CCrrooaatt ii aa 22000066 // RReeggiioonnaa ll CCoommppeett ii tt iioonn // SSeenniioorrss

Word search is a very popular enigmatic game that consists of a table with letters arranged in N rows
and N columns and a list of words we have to search for.
To solve an instance of word search we, for each word from the list, find all appearances of that word
in the table and cross out all the letters forming that particular appearance. The word can start
anywhere and lay in any of the eight directions (up, down, left, right and the four diagonal directions).
Reading all non-crossed letters in row-major order (up to down and in each row from left to right)
gives the solution of the word search puzzle.
Write a program that will find the solution of the given puzzle.

iinnppuutt ddaattaa

The first line of input contains an integer N, 1 ≤ N ≤ 10, the size of the table.
Each of the next N lines contains a sequence of N characters representing one row of the table.
The next line contains an integer R, 1 ≤ R ≤ 100, the number of words in the list.
Each of the next R lines contains one word from the list, at most 10 characters long.
All of the letters in the word search and all the words in the list will consist of lowercase letters of the
English alphabet ('a'-'z').

oouuttppuutt ddaattaa

The first and only line of output should contain the solution of the puzzle.
Note: the test data will be such that a solution of at least one letter will always exists.

eexxaammpplleess

input

2
ab
cd
1
ad

output

bc

input

5
patka
guska
macka
klopa
krava
4
patka
guska
macka
krava

output

klopa

input

4
rast
plso
tajv
pnez
6
rast
alan
nt
past
taj
bonus

output

povez

wwaacc llaaww

CCrrooaatt ii aa 22000066 // RReeggiioonnaa ll CCoommppeett ii tt iioonn // SSeenniioorrss

Waclaw Sierpinski was a Polish mathematician who liked playing with triangles. One day he started
drawing triangles using the following procedure:
· Draw an equilateral triangle T.
· Connect the midpoints of its sides with line segments. Denote the new equilateral triangles with T1,

T2, T3 and T4, as illustrated in the first figure below.
· Repeat the previous step on triangles T1, T2 and T3. New triangles are: T11, T12, T13, T14, T21,

T22, T23, T24, T31, T32, T33, T34.
· Continue the procedure on all triangles ending in 1, 2 or 3. The resulting fractal is called the Sierpinski

triangle.

We say that a triangle A is leaning on the triangle B if B does not contain A and if one entire side of
A is a part of some side of B. For example, the triangle T23 is leaning on T24 and T4, but not on T2
or T32. Note that A leaning on B does not imply that B is leaning on A.
Write a program that, given a triangle A, which is a part of the Sierpinski triangle, finds all triangles B
such that A is leaning on B.

iinnppuutt ddaattaa

The first and only line of input contains a sequence of characters representing the given triangle, as
described above. The sequence will contain between 2 and 50 characters, inclusive.

oouuttppuutt ddaattaa

Output all triangles that the given triangle is leaning on, each on a separate line, in any order.

eexxaammpplleess

input

T4

output

T1
T2
T3

input

T11

output

T14

input

T312

output

T4
T314
T34

ll aammppiiccee

CCrrooaatt ii aa 22000066 // RReeggiioonnaa ll CCoommppeett ii tt iioonn // SSeenniioorrss

2*N light bulbs are arranged in two rows and N columns. Each light bulb can be either off or on, and
all lights are initially off.
We want to turn some of them on so that they form a beautiful pattern. In one step we can change
the state of a sequence of (one or more) consecutive light bulbs in the same row or column.
Given the desired pattern, write a program that finds the minimum number of steps required to form
the pattern.

The following figure illustrates the seven steps needed to obtain the pattern given in the third example:

0
00000000000000000000
00000000000000000000

1
11100000000000000000
00000000000000000000

2
11100010000000000000
00000010000000000000

3
1 0000000000011000100
01111101100000000000

4
11101101111000000000
01111101100000000000

5
11101101111000111110
01111101100000000000

6
11101101111000101110
01111101100000010000

7
11101101111000101010
01111101100000010100

iinnppuutt ddaattaa

The first line of input contains an integer N, 1 ≤ N ≤ 10,000, the number of columns.
Each of the following two lines contains a sequence of N characters representing the desired final
pattern.
Character '1' indicates a light bulb that should be on in the final state, while the character '0' indicates a
light bulb that should be off.

oouuttppuutt ddaattaa

The first and only line of output should contain a single integer – the minimum number of steps
required.

eexxaammpplleess

input

3
100
000

output

1

input

5
11011
11011

output

3

input

20
11101101111000101010
01111101100000010100

output

7

ss iibbiiccee

CCrrooaatt ii aa 22000066 // RReeggiioonnaa ll CCoommppeett ii tt iioonn // SSeenniioorrss

24 matches are arranged to form a 3x3 grid as illustrated in the figure below.

+ - - + - - + - - +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + - - +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + - - +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + - - +

Two consecutive '-' (minus) characters represent a horizontal match, whereas two consecutive '|'
(vertical bar) characters represent a vertical match. '+' (plus) characters represent positions where two
or more matches' ends touch. The interior of the board is filled with '.' (dot) characters.
Write a program that, given integers N and K, removes exactly N matches in such a way that the
remaining matches form exactly K squares and that each remaining match is part of some square.

iinnppuutt ddaattaa

The first and only line of input contains two integers N and K, 1 ≤ N < 24, 1 ≤ K < 14, the number of
matches to be removed and the number of squares wanted.

oouuttppuutt ddaattaa

Output the resulting board in a format identical to the figure from the task description, with dot
characters in place of the removed matches.
Note: the test data will be such that a solution, although not necessarily unique, always exists.

eexxaammpplleess

input

20 1

output

+ - - + . . + . . +
| . . |
| . . |
+ - - + . . + . . +
.
.
+ . . + . . + . . +
.
.
+ . . + . . + . . +

input

5 4

output

+ - - + - - + - - +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + . . +
| | . . |
| | . . |
+ - - + - - + . . +
| |
| |
+ - - + - - + - - +

input

4 6

output

+ - - + - - + - - +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + . . +
| . . | . . | . . |
| . . | . . | . . |
+ - - + - - + . . +
| |
| |
+ - - + - - + - - +

