
 

CROATIAN NATIONALS 2009

Dubrovnik, March 22 - 26

PASCAL/C/C++

Junior category, competition day 2

Solution descriptions
 

MIKRO 

One way to determine if and when two bacteria will meet is to geometrically represent their paths as 

lines and intersect those lines. Luckily, the discrete nature of the bacteria's movement allows for a 

simpler approach. For a pair of bacteria, we check if they will be closer after one second. If so, it is 

possible that they will meet and it is possible to calculate the time from their initial distance and the 

speed at which they are getting closer (which is constant). An additional check is needed to see if the 

bacteria really meet at the calculated time, because it is possible that they are initially moving closer, but 

miss each other and never meet. 

We can find the meeting of the highest rank by examining pairwise meetings of all bacteria and find the 

one that occurs most frequently. Each meeting is uniquely described by the triplet (x, y, t). If R bacteria 

participate in a meeting, then it will appear R·(R−1)/2 times in the list of pairwise meetings (each pair 

of bacteria participating will contribute one occurrence). 

The complexity of this approach is O(N2 log N) if we find all meetings and sort them. This can be 

reduced to O(N2) with a hash table. 

An even simpler and more efficient approach is this: for each bacterium A we find all of its meetings 

with other bacteria. When we determine that bacterium A meets another bacterium at time T, we check 

if bacterium A has already met a third bacterium at that time, and increase the rank of that meeting if 

so. 

A problem arises – how do we maintain the meetings and their ranks? Using a binary search tree would 

reintroduce a logarithmic factor. An array of length depending on the time of meeting (can be as much 

as 2000001 in this task) would need reinitializing for every bacterium A, which would be too slow. This 

last deficiency can be fixed using so-called cookies, where every new bacterium A treats an element of 

the array as uninitialised until it has set its cookie in it. 

YOUTUBE 

Let next(F, n) be the n-th movie after some film F. We are given next(F, 1) for each F. Is is possible to 

easily calculate next(F, 2p) for each F and p as next(F, 2p) = next(next(F, 2p−1), 2p−1). 

From the binary representation of M we can easily calculate next(F, M) using pre-calculated shifts for 

powers of 2. The overall time complexity is O(N log M + K log M). 

By carefully ordering the operations, the model solution does not need to keep the entire precomputed 

table in memory, but only for adjacent powers of 2. The memory complexity is O(N + M). 



 

CROATIAN NATIONALS 2009

Dubrovnik, March 22 - 26

PASCAL/C/C++

Junior category, competition day 2

Solution descriptions
 

STAKOR 

The basic idea behind the solution is dynamic programming. Let f(n, pos) be the smallest number of 

times the rat needs to move, if after the box moves n times, it is at position pos. The rat's possible next 

moves are limited by the position of the box (which is known). The next position of the box is also 

know so the rat needs to move to the appropriate edge of the box (for example, if we know the box 

must move up, the rat must move to one of the cells in the top row of the box and then up again to 

push the box). The dynamic programming relation is: 

f(n, pos) = min{ distance(pos, pos') + f(n+1, pos') } for each possible new position pos' 

There are several issues with a direct implementation of this idea. 

The first is the memory usage because of the large number of states. The parameter n can be up to a 

million and the position can be anywhere in the cage. The memory usage can be reduced to just a 

couple hundred bytes if we calculate the values of f in decreasing order of n, keep only two rows of the 

DP table, and recognize that the possible positions of the rat are limited to K cells (one edge of the 

box, depending on where it last moved). 

Another problem is the time complexity of calculating distances; doing so as we calculate the values of 

function f in O(K2) will be too slow. However, preprocessing the distances between all K2 cells of a box 

and all four edges of the box, for each of the (N−K)2 possible positions of the box, will be efficient 

enough. This last part must also be carefully implemented so that it doesn't use too much memory. 

 


