
pprroobblleemmss

problem tomo zmija autoput

source file
tomo.pas
tomo.c
tomo.cpp

zmija.pas
zmija.c
zmija.cpp

autoput.pas
autoput.c
autoput.cpp

input data stdin

output data stdout

time limit
(Athlon 64 3000+)

1 sec 1 sec 2 sec

memory limit
(heap)

32 MB

memory limit
(stack)

8 MB

30 40 80
points

150

CCrrooaatt ii aa 22000055 // NNaatt iioonnaa ll CCoommppeett ii tt iioonn ##11 // JJuunniioorrss

ttoommoo

The most advanced feature of Tom’s old calculator is that when he multiplies two numbers and
continues to press the button '=', calculator continues to multiply the displayed number with the
second of the two entered numbers. For example, if he multiplies 2 and 3, the number 6 will appear on
the display. Further pressing the button '=' will result in numbers 18, 54, 162, etc. being displayed.
Tom is playing one interesting game – he wants to know how many times does he need to press the '='
button in order for some given number to appear as suffix of the number displayed on the calculator.
More precisely, Tom enters a number A, presses the button '*', enters the number B and presses the
button '='. After that, product of the numbers A and B appears on the display. If the number C is not a
suffix of the number displayed, Tom continues to press the button '=', until a number whose suffix is C
is displayed.
We say that number X is suffix of number Y if the decimal representation of number Y ends with the
decimal representation of number X (for example, 46 is suffix of 1246, but 70 is not suffix of 4701).
We assume that the calculator can handle numbers with arbitrary many digits and that it can display
all those digits.
Write a program that will, given numbers A, B and C, calculate the total number of times the button '='
will be pressed.

iinnppuutt ddaattaa

First and only line of input contains integers A, B and C, 0 ≤ A, C ≤ 100,000, 0 ≤ B ≤ 1000. There will
be no leading zeros in the representation of number C.

oouuttppuutt ddaattaa

First and only line of output should contain the number of times the button '=' will be pressed, or the
word 'NIKAD' if there is no solution.

eexxaammpplleess

input

1 2 3

output

NIKAD

input

2 3 4

output

3

input

5 3 215

output

5

CCrrooaatt ii aa 22000055 // NNaatt iioonnaa ll CCoommppeett ii tt iioonn ##11 // JJuunniioorrss

zzmmii jj aa

One of the most popular DOS games is 'Dummy'. The snake is crawling through the board and eating
apples that increase its length. The game ends when the snake bumps into itself or into the wall.
Game board consists of NxN squares arranged in N rows and N columns, and some squares contain
apples. Around the board there is a wall. At the beginning of the game, the snake is located in the top-
left corner, its length is equal to 1 and its head is directed towards right.
Snake is crawling by changing its position during each second according to the following rules:
· first, snake extends its length by spreading to the next square in front of the head (i.e. in the direction
of the head),

· if there is an apple on that square, tail of the snake does not move (hence, its length is increased by 1
in this step),

· if there is no apple, last square of the tail is erased (hence, its length stays unchanged)
Positions of the apples and movements of the snake are given. Write a program that will calculate the
number of seconds until the game ends.

iinnppuutt ddaattaa

First line of input contains an integer N, 2 ≤ N ≤ 100.
Following line contains an integer K, 0 ≤ K ≤ 100, the number of apples on the board.
Following K lines contain coordinates of apples on the board. First number denotes the row and
second number denotes the column of the board where the apple is situated. There will be no apple at
the top-left corner of the board.
Following line contains an integer number L, 1 ≤ L ≤ 100, the number of times the snake makes a turn.
Each of the following L lines contains the description of one turn. A single turn is described by a
number X (positive integer less than or equal to 10,000) and a character C. This means that the snake
rotates its head 90 degrees left (if C is 'L') or right (if C is 'D') at the end of the Xth second

oouuttppuutt ddaattaa

First and only line of output should contain number of seconds from the problem statement.

eexxaammpplleess

input

6
3
3 4
2 5
5 3
3
3 D
15 L
17 D

output

9

input

10
4
1 2
1 3
1 4
1 5
4
8 D
10 D
11 D
13 L

output

21

input

10
5
1 5
1 3
1 2
1 6
1 7
4
8 D
10 D
11 D
13 L

output

13

CCrrooaatt ii aa 22000055 // NNaatt iioonnaa ll CCoommppeett ii tt iioonn ##11 // JJuunniioorrss

aauuttooppuutt

Imagine one simple road in a coordinate system. Road is going from left to right, following the
configuration of the land and within one square it can:
a) stay on the same height
b) go down or up by one square
Car is driving on the road from left to right. The time needed to travel through a single square is either
A seconds for the case a), or B seconds for the case b).
However, we can build a tunnel under some mountain or a viaduct above some valley. These objects
have to be horizontal, and the time needed for a car to travel through a single square on a tunnel or
viaduct is C seconds.
Write a program that will, for a given configuration of land, calculate the minimal time for a car to
travel the whole road with optimal construction of tunnels and viaducts. Total number of objects built
must not be greater than the given number K.

Figure above corresponds to the third example. Original road is denoted by the thin line, and the
optimal path is denoted by the thick line. Because the number of objects is restricted to 2, we could not
build a tunnel under the first mountain.

CCrrooaatt ii aa 22000055 // NNaatt iioonnaa ll CCoommppeett ii tt iioonn ##11 // JJuunniioorrss

aauuttooppuutt

iinnppuutt ddaattaa

First line of input contains three integers A, B and C, 1 ≤ A,B,C ≤ 100.
Second line of input contains two integers N and K, 1 ≤ N ≤ 100,000, 1 ≤ K ≤ 300.
Third line of input contains a sequence of N characters that describes the configuration of the land,
from left to right. Each character in the sequence is one of the following:
'D' in next square land is going DOWN
'R' in next square land is staying on the SAME HEIGHT
'G' in next square land is going UP

oouuttppuutt ddaattaa

First and only line of output should contain the minimal time from the problem statement.

eexxaammpplleess

input

3 2 1
9 1
GGDGGDDRR

output

16

input

3 5 4
10 10
RGDRDRRRRG

output

36

input

10 20 15
16 2
RGRDGGDDRRDDRDGG

output

235

CCrrooaatt ii aa 22000055 // NNaatt iioonnaa ll CCoommppeett ii tt iioonn ##11 // JJuunniioorrss

