
LIJEN 

The number of possible words of length k is 2k. Because words in the dictionary are at most 12 symbols 

long, the total number of all words that can be used as codewords is 8191. This number is small enough 

for the following approach: 

• Generate all 8191 potential codewords, 
• For each codeword P determine the set S of words from the dictionary which differ from P in 
the least number of symbols, 

• If S contains only one word, then P can be uniquely decoded to that word (Q). If the sending 
time for codeword P is less than the best sending time known for word Q, then set P as the 
codeword for word Q. 

The above gives us the best codeword for each dictionary word. 

The time complexity is O(2K · N + L), where K is the length of the longest word (12). 

The official source code represents symbols with bits (instead of strings), which eases the 

implementation of some parts of the algorithm (for example, the number of symbols in which two 

words p and q differ is the number of 1 digits in p xor q). 

BINGO 

For 2×2 and 3×3 cards the problem can be solved in multiple ways because the number of possible 

cards is small enough. However, there are 16! = 20922789888000 different 4×4 cards and it is not 

possible (or necessary) to search and score them all in so little time. For simplicity, the remainder of 

this text assumes the cards are 4×4. 

We use a number of optimizations to reduce the number of cards considered: 

Idea Implementation 

The entire input sequence doesn't matter, 

just how many times each sequence of 4 

numbers appears. 

Before starting the search we calculate each possible 

row's worth (how many times it appears in the input 

sequence). When searching, we can now score a row in 

only one operation, instead of going through the entire 

input sequence. 

Swapping two rows does not change the 

value of the card. 

 

When searching, the order in which we placed the 

previous rows does not matter, just which of the 16 

numbers we've used. There are 216 subsets of 16 

numbers. The value of the search function is uniquely 

determined with the numbers already placed (if placing 

row by row) so we can cache (memoize) the value for 

each subset and calculate it at most once. 



 

For any 4 numbers, one of its 24 possible 

orderings is worth most. If we decide to put 

the 4 numbers in a single row, then it only 

makes sense to do it in that, most valuable, 

ordering. 

In an additional step before searching, we calculate for 

each subset of 4 numbers how much their most 

valuable ordering is worth. When searching, we place 

the numbers row by row instead of number by number. 

 

When considering which numbers to put in 

the next row, one number can be fixed and 

reduce the number of options. We can do 

this becuase the ordering of the rows does 

not matter, and that number will have to be 

put on the card eventually, so we might as 

well put it now.. 

The smallest of the remaining numbers is always placed 

in the current row, and the remaining 3 are selected in 

all possible ways. 

MRAVOGRAD 

Let d(r, c) be the distance from intersection (r, c) to the nearest umbrella. 

Let f(r, c) be the set of umbrellas at distance d(r, c) of intersection (r, c). If f(r, c) contains more than 

one umbrella, then intersection (r, c) is "wet". 

To efficiently solve the problem note that, for every rectangle (r1, c1, r2, c2), if f(r1, c1) = f(r1, c2) = 

f(r2, c1) = f(r2, c2) = X, then f(r, c) = X for every intersection inside the rectangle. 

The following divide-and-conquer algorithm will work: 

for rectangle (r1,c1,r2,c2) 

   if f(r1,c1) = f(r1,c2) = f(r2,c1) = f(r2,c2) then 

      if f(r1,c1) contains exactly one square 

         return 0 

 else 

    return (r2-r1-1)*(c2-c1-1) 

   else 

 r = (r1+r2) div 2 

 c = (c1+c2) div 2 

 recursively solve rectangles 

      (r1,c1,r,c), (r1,c+1,r,c2), (r+1,c1,r2,c) i (r+1,c+1,r2,c2) 


