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Alano Ancona
Département de Mathématiques, Bâtiment 425, Université Paris-Sud 11

Orsay 91405 France

March 29, 2010

Abstract. We first consider a question raised by Alexander Eremenko andshow that ifΩ is an arbitrary connected open

cone inRd, then any two positive harmonic functions inΩ that vanish on∂Ω must be proportional -an already known

fact whenΩ has a Lipschitz basis or more generally a John basis. It is also shown however that whend ≥ 4, there can

be more than one Martin point at infinity for the cone though non-tangential convergence to the canonical Martin point

at infinity always holds. In contrast, whend ≤ 3, the Martin point at infinity is unique for every cone. Theseproperties

connected with the dimension are related to well-known results of M. Cranston and T. R. McConnell about the lifetime

of conditioned Brownian motions in planar domains and also to subsequent results by R. Bañuelos and B. Davis. We

also investigate the nature of the Martin points arising at infinity as well as the effects on the Martin boundary resulting

from the existence of John cuts in the basis of the cone or fromother regularity assumptions. The main results together

with their proofs extend to cylindersCY(Σ) =R×Σ –whereΣ is a relatively compact region of a manifoldM–, equipped

with a suitable second order elliptic operator.

1 Introduction. Main results.

We consider the coneCo(Σ) of Rd, d ≥ 2, generated by a regionΣ of the unit sphereSd−1, i.e.,
Co(Σ) = {rω ; r > 0, ω ∈ Σ }, and study the positive harmonic functions inCo(Σ) (whereCo is for
cone). Recently Alexander Eremenko asked whether it is always true that any two such functions
that moreover vanish on∂Co(Σ) must be proportional. Our first main result, Theorem 1.1 below
(see also Theorem 2.13), answers this question by the positive. A generalization to a large class of
cylinders is described in section 7.

To deal with non necessarily Dirichlet-regularΣ, we say, following a usual convention, that a func-
tion w in Σ vanishes on the open subsetT of ∂Σ (or, more precisely, thatw vanishes in the weak
sense onT) if w is bounded in a neighborhood of eachξ ∈T and ifA := {ξ ∈T ; limsup

Σ∋x→ξ
|w(x)|> 0}

is polar inSd−1. By definition,A⊂ Sd−1 is polar inSd−1 if for eachξ ∈ A there is a chart ofSd−1,
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χ : V →W ⊂ R
d−1, V ∋ ξ , such thatχ(V ∩A) is polar inRd−1. Note thatA is polar inSd−1 if and

only if {tξ ; ξ ∈ A, t > 0} is polar inRd.

For a functionw defined in a regionΩ of Rd, the relationw= 0 on T ⊂ ∂Ω is defined similarly.
If w : Ω → R is harmonic with respect to a second order uniformly elliptic operator in divergence
form with bounded measurable coefficients inΩ and if w = 0 in an open subsetW of ∂V then
lim
x→ξ

w(x) = 0 for every Dirichlet-regular boundary pointξ ∈W.

Theorem 1.1 The nonnegative harmonic functions inCo(Σ) which vanish (in the weak sense) on
the boundary ofCo(Σ) are the functions h in the form h(rω) = crαΣ ϕ0(ω), ω ∈ Σ, r > 0, where c

is a nonnegative constant,αΣ =
−(d−2)+

√
(d−2)2+4λ1(Σ)
2 and ϕ0 is a positive solution of∆Sd−1ϕ0+

λ1(Σ)ϕ0 = 0 in Σ.

Here∆Sd−1 is the spherical Laplacian –denoted also∆S in the rest of the paper– andλ1(Σ) (later de-
notedλ1) is the first eigenvalue of the opposite of the Dirichlet Laplacian inΣ. As well-knownλ1(Σ)
coincides with the Raleigh constant ofΣ, i.e.λ1(Σ) = inf{∫ |∇u|2 dσSd−1; u∈C1

c(Σ),
∫ |u|2 dσSd−1 ≥

1} –whereσSd−1 is the standard Riemannian spherical measure inSd−1– andλ1(Σ) is> 0 if and only
if Sd−1 \Σ is not polar inSd−1 (see e.g. [19]). In this case,1λ1(Σ) is also the largest eigenvalue of the

(nonnegative self-adjoint compact) Green’s operator inL2(Σ;σSd−1), ϕ 7→ G(ϕ) = (−∆S)
−1(ϕ). It

is known (see e.g. [5]) thatλ1(Σ) is also the greatest realλ for which there is a positive(∆S+λ I)-
superharmonic function inΣ (distinct from the constant+∞). For λ = λ1(Σ) such a function is
unique –up to multiplication by a constant– and there is a unique positive solutionϕ0 ∈ H1

0(Σ) of
∆Sϕ0+ λ1(Σ)ϕ0 = 0 with ‖ϕ0‖L2(Σ) = 1. In particularϕ0 = 0 in ∂Σ. Since, as well-known, the
functionH0(x) = rαΣϕ0(ω) –r = |x|, ω = x/|x|– is harmonic, Theorem 1.1 means that any two pos-
itive harmonic functions inCo(Σ) vanishing on∂Co(Σ) are proportional. Note also that Theorem
1.1 implies thatH0 is a positiveminimal harmonic function inCo(Σ).

Section 2 is devoted to a proof of Theorem 1.1. See Theorem 2.11 and an improvement in Theorem
2.13. It relies in particular on the study of minimal Martin functions arising at infinity inC0(Σ)
and the study of the convergence in the Martin topology towards such Martin points (for Martin’s
theory, see [24], [29], [16], or [5]).

WhenΣ is sufficiently regular Theorem 1.1 is well-known. See [23] for the NTA case. The recent
paper of K. Hirata [22] establishes the result whenΣ is John. These papers rely on (and provide)
Harnack boundary inequalities which do not hold in the general case.

In section 6 we show that –in contrast with the case whereΣ is John – another question which
might seem at first to be another formulation of A. Eremenko’squestion has a negative answer for
a generalΣ, at least in higher dimensions.

Theorem 1.2 For d ≥ 4, there exists a domainΣ such that the Martin boundary ofCo(Σ) contains
a one parameter family of minimal points which are limits of sequences{Pn} in Co(Σ) going to
infinity in R

d (and whose all defining sequences go to infinity inR
d).

The class of examples provided to prove Theorem 1.2 is strongly related to the construction by
Cranston and McConnell of a bounded domainD in R

3 with a positive harmonic functionh in D

such that the lifetime of theh-Brownian motion is almost surely infinite [14]. As shown in [14] this
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cannot happen in a bounded planar domain. There is a corresponding result here given by the next
statement. The only interesting case isd = 3.

Theorem 1.3 If d ≤ 3 andΣ is a domain in Sd−1, every sequence{Pn} in Co(Σ) going to infinity in
R

d converges in the Martin topology towards the canonical Martin function H0.

The proof is given in section 5 and relies on a result of Bañuelos and Davis [10]. A similar proof
shows that for alld ≥ 2, every sequence{Pn} in Co(Σ) going non-tangentially to infinity inCo(Σ)
converges in the Martin topology toH0. See Theorem 3.1 and its proof in section 5. Extensions
based on [8] tod ≥ 4 of Theorem 1.3 are also mentioned there.

In section 6.4 we supplement Theorem 1.2 by showing that ford ≥ 4, C0(Σ) may admit plenty
of minimal as well as non-minimal Martin points associated to sequences{Pn} in Co(Σ) going to
infinity in R

d (and whose all defining sequences go to infinity inR
d). The corresponding Martin

functions are of the formH(x) = rα ψ( x
|x| ) with −d−2

2 < α < αΣ. This supplementary construction
is based on the following fact (see Theorem 4.6) proved also in section 6.4 and valid for alld ≥ 2.

Proposition 1.4 If Σ contains a hemisphereΣ+ of Sd−1, then every sequence{Pn} such that Pn
|Pn| ∈

Σ+ and |Pn| →+∞ converges towards the canonical Martin point H0.

In section 4, some implications on the Martin boundary that follow from regularity conditions
are observed. For example, ifM is a closed John regular subset ofΣ (see section 4) then every
sequence{Pn} in Co(M) such that|Pn| → ∞ converges towards the canonical minimal pointH0.
This generalizes Hirata’s main result in [22].

To prove the above mentioned results, it seems more convenient (and natural) to work with a cylin-
der model ofCo(Σ) given byR×Σ equipped with a suitable elliptic operatorL. See section 2.1.
We note here that there is a large literature dealing with Martin’s boundaries of product structures
(e.g., [25], [18], [27],[28] or [20]).

Almost all the results (and their proofs) extend to the framework of a cylinderCY(Σ) := R× Σ
whereΣ is a relatively compact region in a manifoldM, the cylinder being equipped with an elliptic
operatorL in the formL = (∂t ◦∂t +β ∂t)⊕L whereβ ∈R, ∂t is differentiation with respect to the
first variable andL is a second order uniformly elliptic operator inM. See section 7.

2 Proof of Theorem 1.1.

We will assume once for all that Sd−1 \Σ is non polar in Sd−1. Otherwise, by a standard extension
Theorem and the Liouville property, positive harmonic functions inC0(Σ) are constant,λ1(Σ) = 0
and Theorem 1.1 is obvious in this case. Thus, in what follows, 0 is a Dirichlet-regular boundary
point forCo(Σ) -using e.g. Wiener’s test-, and lim

x→0
h(x) = 0 for the functionsh under consideration

in Theorem 1.1.
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2.1 Reduction and some preliminary remarks

As a first step, using a simple change of coordinates we reducethe study of positive harmonic
functions in the coneCo(Σ) to the study of positive solutions in the cylinderCY(Σ) = R× Σ of
some natural elliptic operator – the notationCY(Σ) will be used all along the paper–. Recall first the
following classical expression of the Laplacian in polar coordinates: if f is C2-smooth in the open
setU of Rd, d ≥ 2,

∆ f (x) =
∂ 2g
∂ r2 (r,ω)+

d−1
r

∂g
∂ r

(r,ω)+
1
r2 (∆S)ω g(r,ω) (2.1)

for x= rω , (r,ω)∈ Ũ := {(r,ω) ∈R
∗
+×Sd−1; rω ∈U } andg(r,ω) = f (rω) for (r,ω)∈ Ũ . (Recall

that∆S is the Laplace-Beltrami operator on the Riemannian sphereSd−1)

Consider then the change of coordinates:Φ(r,ω) = (log(r),ω), or Φ−1(u,ω) = (eu,ω). Obviously
Φ defines aC∞ diffeomorphism ofR∗

+×Σ onto the cylinderCY(Σ) = R× Σ. By an elementary
calculation, ifg∈C2(R∗

+×Σ) andh= g◦Φ−1, we have

(∆S)ωg(r,ω)+ (d−1) r
∂g
∂ r

(r,ω)+ r2 ∂ 2g
∂ r2 = (∆S)ωh(u,ω)+

∂ 2h
∂u2 (u,ω)+ (d−2)

∂h
∂u

(u,ω) (2.2)

Using these two formulas we are reduced to the study of the Martin boundary of the cylindrical
region CY(Σ) = R× Σ of the manifoldX := R×Sd−1 with respect to the second order elliptic
operatorL := ∆S+(d−2) ∂

∂u +
∂ 2

∂u2 (whereu denotes theR-component).

There is a well known explicit (and elementary) expression of the heat semi-group{Qt}t≥0 associ-
ated to the component ofL acting inR, i.e., LR = ∂ 2

u +(d−2)∂u. By heat semi-group associated
to LR we will mean that for eachϕ ∈ C+

0 (R) the function f : (t,x) 7→ Qt(ϕ)(x) is the minimal
positive solution of the Cauchy problem :∂t f (t,x) = ∂ 2

x f (t,x) + (d− 2)∂x f (t,x) for t > 0 and
f (0,x) = ϕ(x), x∈ R.

Lemma 2.1 For t > 0 the kernel Qt onR is given by the convolution with the density

qt(u) =
1√
4πt

exp(−(u+(d−2)t)2

4t
), u∈ R (2.3)

This means thatQt(ϕ)(u) =
∫
R

qt(u−v)ϕ(v)dv for ϕ ∈C0(R). The product structure ofR×Σ is
exploited through the next standard fact.

Lemma 2.2 In R×Σ, the heat semi-group{Ht}t>0 associated to L= ∂ 2

∂u2 +(d−2) ∂
∂u +∆S is given

by the densities

h(t;u,x;v,y) = qt(u−v)πt(x,y), x, y∈ Σ, u, v∈ R, t > 0.

Hereπt , t > 0, is the standard heat kernel density inΣ (with respect to∆S, the usual Riemannian
measureσS in Sd−1 and the Dirichlet boundary condition).

In other wordsHt(ϕ)(u,x) =
∫ ∞
−∞

∫
Σ h(t;u,x;v,y)ϕ(v,y)dvdσS(y) if ϕ ∈C0(R×Σ;R) and(u,x) ∈

CY(Σ).
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2.2 Some inequalities satisfied by Green’s function and their consequences

The Green’s function with pole(v,y) and with respect toL in R×Σ (and the measureµ(d(u,x)) =
dudσ(x)) is the function:

(u,x) 7→ G(u,x;v,y) =
∫ ∞

0
h(t;u,x;v,y)dt, (u,x) ∈ R×Σ. (2.4)

But h(t;u,x;v,y) = 1√
4πt

e−
(u−v+(d−2)t)2

4t πt(x,y) and forρ > 0 we have

e−
(u+ρ−v+(d−2)t)2

4t = e−
(u−v+(d−2)t)2

4t e−
ρ
2t (

ρ
2+(d−2)t+u−v)

≥ e−(d−2)ρ/2e−
(u−v+(d−2)t)2

4t (2.5)

if v≥ u+ ρ
2 .

On the other hand, ifρ > 0, andv≤ u+ ρ
2

e−
(u+ρ−v+(d−2)t)2

4t = e−
(u−v+(d−2)t)2

4t e
ρ
2t (−

ρ
2−(d−2)t+v−u) ≤ e−(d−2)ρ/2 e−

(u−v+(d−2)t)2

4t

(2.6)

Upon integrating with respect tot these inequalities, we obtain the next proposition.

Proposition 2.3 The Green’s function G for L inR×Σ satisfies the following relations:

G(u,x;v,y) ≤ e(d−2)ρ/2 G(u+ρ ,x;v,y), for u, v∈ R, andx, y∈ Σ,

if ρ > 0 and v≥ ρ
2 +u. And G(u,x;v,y) ≥ e(d−2)ρ/2 G(u+ρ ,x;v,y) if ρ > 0 and v≤ ρ

2 +u.

Moreover, we have the following symmetry identities : for x,y∈ Σ,u,v,v0,v1 ∈ R

G(v0−u,x;v0−v,y) = e(d−2)(u−v) G(v1+u,x;v1+v,y), (2.7)

Note that (2.7) follows immediately from (2.3), lemma 2.2 and (2.4). Of course these identities can
be understood in terms of Kelvin’s transformation if one returns to the coneCo(Σ) equipped with
the usual Laplacian.

The above leads to the following properties of theL-Martin functions associated toL in the cylinder
CY(Σ). We choose and fix once for all a reference pointx0 ∈ Σ and take(0,x0) as the normalization
point for Martin’s functions inCY(Σ). Occasionally, we use the standard notations∆ (resp.∆1)
to denote the Martin boundary (resp. the minimal Martin boundary) of (CY(Σ),L), andĈY(Σ) its
Martin compactification (ref. [24], [29], [5]).

Proposition 2.4 If K is an L-Martin function inCY(Σ) = R×Σ defined by a sequence(v j ,y j) with
v j →+∞, yj ∈ Σ, (i.e., K(u,x) = lim j→∞ K(vj ,yj )(u,x) where K(vj ,yj ) is the Martin kernel K(vj ,yj ) :=
G(., .;v j ,y j)/G(0,x0;v j ,y j)) then

K(u+ρ ,x)≥ e−(d−2)ρ/2K(u,x), (u,x) ∈R×Σ (2.8)
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for everyρ > 0. In particular if K is minimal there existsα ≥−d−2
2 such that K(u,x) = eαuK(0,x),

(u,x) ∈R×Σ, and the function s(x) = K(0,x) is a proper function inΣ, namely∆S(s)+λs= 0 for

λ = α2+(d−2)α . Soλ ≥ − (d−2)2

4 , α =
2−d+

√
(d−2)2+4λ
2 and s is a minimal positive(∆S+λ I)–

harmonic function inΣ.

The first statement follows from Proposition 2.3 and the definition of Martin functions. IfK is min-
imal, then(u,x) 7→K(u+ρ ,x) is alsoL-minimal; by (2.8), it follows thatK(u+ρ ,x) = c(ρ)K(u,x)
for some functionc ∈ C(R;R∗

+) and all (ρ ,u,x) ∈ R×R× Σ (assuming firstρ > 0). We have
c(ρ +ρ ′) = c(ρ)c(ρ ′) for ρ , ρ ′ ∈ R and soc(ρ) = eαρ for someα ≥ −d−2

2 . The other claims are
then immediate.�

Note thatα ∈ [α0,αmax] whereαmax := αΣ =
2−d+

√
(d−2)2+4λ1

2 andα0 = −d−2
2 . We setαmin =

2−d−
√

(d−2)2+4λ1

2 .

Remark 2.5 Similarly if K is an L-Martin function related to a sequence(v j ,y j), with vj →−∞,
y j ∈ Σ, then K(u+ ρ ,x) ≤ e−(d−2)ρ/2K(u,x) when(u,x) ∈ R× Σ and ρ ≥ 0. If K is minimal
w.r. to L, then K(u,x) = eαus(x), for someα ∈ [αmin,α0] and someλ -proper function s inΣ, i.e.,

∆S(s)+λs= 0 in Σ. Hereλ = α2+(d−2)α ≥− (d−2)2

4 , α =
2−d−

√
(d−2)2+4λ
2 and s is(∆S+λ I)-

minimal inΣ.

Observe that if∆+ (resp.∆−) is the set of the Martin functions arising from a sequence(v j ,y j)
with lim y j = +∞ (resp. limy j = −∞) the identities (2.7) lead to a natural bijectionK 7→ K̃ from
∆

+ onto∆−, whereK̃(u,x) := e−(d−2)uK(−u,x).

We note two other observations which complement Proposition 2.4 and Remark 2.5.

Proposition 2.6 If ζ ∈∆ is a Martin boundary point for(CY(Σ),L) which as a point of the Martin
compactification is in the closure of both{(u,x) ∈CY(Σ) ; u≥ ρ } and{(u,x) ∈ CY(Σ) ; u≤ ρ ′ } for
someρ , ρ ′ ∈R, ρ ′ < ρ , then Kζ is in the form Kζ (u,x) = e−

d−2
2 u f (x) where f is a positive solution

of ∆S f − (d−2)2

4 f = 0 in Σ.

The same conclusion holds forζ ∈ ∆1, if ζ is in the closure (for the Martin topology) of a set
C R

Y = {(v,y) ; |v| ≤ R, y∈ Σ}, R> 0, and if Kζ is of the form Kζ (u,x) = eαu f (x). Moreover f is a

positive minimal solution of∆S f − (d−2)2

4 f = 0 in Σ.

In the first case, by the above estimates of Green’s function we must haveKζ (u,x) = e−
d−2

2 u f (x) for

ρ ′ < u< ρ , x∈ Σ, where f (x) = e
d−2

2 ρ ′
Kζ (ρ ′,x) = e

d−2
2 ρ Kζ (ρ ,x). Then f is necessarily as in the

statement and by the Green’s function estimates, we see thatKζ (u,x) ≥ e−
d−2

2 u f (x) for all u> ρ ′.

But a nonnegative solutionw of L(w) = 0 in a domainΩ ⊂ CY(Σ) that vanishes at some point
vanishes everywhere (by Harnack inequalities). ThusKζ (u,x) = e−

d−2
2 u f (x) whenu> ρ ′. A similar

argument extends this equality tou< ρ .

In the second case, ifζ =: lim(v j ,y j), we must also haveζ = lim(v j + s,y j) for everys∈ R. So
the result follows from the first part of the proposition (theminimality of f being necessary for the
minimality of Kζ ). �
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2.3 PositiveL-harmonic functions vanishing onR×∂Σ (a)

Let f denote a nonnegativeL-harmonic function inCY(Σ) := R×Σ such thatf = 0 onR× ∂Σ in
the weak sense.

By the Martin boundary theory there is a unique integral representation off in the form

f (u,x) =
∫

Kζ (u,x)dµ(ζ ), (u,x) ∈ R×Σ (2.9)

whereµ is a finite positive Borel measure on the minimal Martin boundary ∆1 of (CY(Σ),L) and
whereK is theL-Martin kernel associated toL and the reference point(0,x0) ∈ Σ.

Denote∆∞
1 the trace on∆1 of the intersection of the closures –w. r. to Martin’s topology– of the

setsXN := {(−∞,−N]∪ [N,+∞)}×Σ, N ≥ 1. In other words, a pointζ ∈∆1 is in∆
∞
1 if and only

if there is a sequence of pointsξ j = (u j ,x j) ∈ R×Σ with |u j | →+∞ converging toζ . In particular
Kζ is in the form given by either Proposition 2.3 or remark 2.5.

Lemma 2.7 The measureµ f is supported by∆∞
1 .

Proof. LetN ≥ 1. In CY(Σ), the function f is equal toRXN
f , its réduite (cf. [11], [13], [16]) onXN

(w.r. to L). This follows from the assumptionf = 0 in ∂Σ×R and from (a standard extended form
of) the maximum principle. So by the Martin boundary theory,the measureµ f is supported by the
set of the pointsζ ∈∆1 such thatXN is not minimally thin atζ . Such a pointζ is necessarily in
the closure ofXN in ĈY(Σ), theL-Martin compactification ofCY(Σ). Whence the result.�

Next we will observe a simple condition forµ f to be concentrated on

∆
+∞
1 :=∆1∩{ζ ∈ ĈY(Σ) ; ζ = lim

j
(u j ,x j) with x j ∈ Σ andu j →+∞ }. (2.10)

Define similarly∆−∞
1 using sequences{(u j ,x j)} j≥1 with lim u j =−∞.

Lemma 2.8 If f (−t,x1) = o(e
d−2

2 t) as t→ +∞ for some (or all) x1 ∈ Σ, then the measureµ f is
supported by∆+∞

1 .

This is because foru≤ 0 andζ ∈∆
−∞
1 we haveKζ (u,x0)≥ e−

d−2
2 u Kζ (0,x0) = e−

d−2
2 u (see Remark

2.5) and

f (u,x0) =

∫
Kζ (u,x0)dµ(ζ ) ≥ e−

d−2
2 uµ(∆∞

1 \∆+∞
1 ) = e−

d−2
2 uµ(∆−∞

1 ).

Thusµ(∆−∞
1 ) = 0. Note the special case wheref (t,x0) = O(1) ast →−∞. �

2.4 End of proof of Theorem 1.1

In this subsection it is assumed thatmoreover f(un,x0) =O(1) for a real sequence un →−∞, that is
liminf
u→−∞

f (u,x)< ∞ for eachx∈ Σ. We will show thatf is unique up to a multiplication by a constant
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and will thus prove Theorem 1.1. Examining the proof, it willbe seen later that this assumption on
liminf
u→−∞

f (u,x0) can be notably relaxed.

For any given reala0 let us denote∆+∞
1 (a0) the set of all pointsζ ∈ ∆

+∞
1 such thatKζ is in the

form : Kζ (u,x) = ϕ(x)eαu, (u,x) ∈CY(Σ) for some realα ≥ a0 and some minimal positive solution
of ∆Sϕ +λϕ = 0 in Σ whereλ = α2+(d−2)α . We setα = α(ζ ) andλ = λ (ζ ).

Repeating the argument in lemma 2.8 we first note the following.

Lemma 2.9 The measureµ f is concentrated in∆+∞
1 (0).

This is again immediate since givenε > 0 we have foru≤ 0,

f (u,x0)≥
∫

∆
+∞
1 \∆+∞

1 (−ε)
Kζ (u,x0)dµ f (ζ )≥ e−εuµ f (∆

∞
1 \∆∞

1 (−ε))

and henceµ f (∆
+∞
1 \∆+∞

1 (−ε)) = 0 since liminf
u→−∞

f (u,x0)< ∞. �

Recall thatλ1 = λmax is the greatestλ for which the equation∆Sϕ + λϕ = 0 admits a positive
solution (or even a positive supersolution) inΣ.

Lemma 2.10 Set A= {ζ ∈∆
+∞
1 (0) ; λ (ζ )< λmax(Σ)}. Thenµ f (A) = 0.

Assume thatµ f (A) > 0. Then for someλ ′
1, 0< λ ′

1 < λ1, the setA′ of all ζ ∈∆
+∞
1 (0) for which

0 ≤ λ (ζ ) ≤ λ ′
1 has strictly positive measure:µ f (A′) > 0. Note thatA′ is the set of the minimal

pointsζ ∈∆1 such that for someλ , 0≤ λ ≤ λ ′
1,

Kζ (u,x) = eαukλ
ζ (x) (2.11)

whereα =
−(d−2)+

√
(d−2)2+4λ

2 andkλ
ζ is a∆S+λ I–minimal function inΣ.

The function
ϕ(x) =

∫

A′
kλ

ζ (x)dµ f (ζ ), x∈ Σ, (2.12)

is a (strictly) positive∆S-superharmonic function inΣ which satisfies the following:

(i) ϕ vanishes weakly on the boundary ofΣ (note thatϕ(x)≤ f (u,x) for x∈ Σ, u≥ 0 and that by
assumptionf = 0 onR×∂Σ in the weak sense),

(ii) the positive measure−∆S(ϕ) admits the densityψ(x) =
∫

A′ λkλ
ζ (x)dµ f (x) with respect toσS.

By (i) and a well-known form of the maximum principleϕ is a potential inΣ with respect to the
spherical Laplacian∆S in Σ, i.e. its greatest subharmonic minoranth in Σ is zero . Indeed there
exists a positive∆S-superharmonic functions going to infinity at eachζ ∈ ∂Σ whereϕ has a non-
zero upper limit since the set of these pointsζ is polar. So by a standard form of the maximum
principleh− εs≤ 0 for eachε > 0.

It follows thatϕ is a Green’s potential inΣ and so using first (ii) and then (2.12) and (ii) again, we
get

GΣ(ψ) = ϕ ≥ 1
λ ′

1
ψ (2.13)



Positive harmonic functions in cones and cylinders 9

in Σ, whereGΣ denotes the Green’s function inΣ w.r. to ∆S.

The functionψ is in L2(Σ) (it is bounded inΣ -in fact ψ is also an element ofH1
0(Σ)-). Thus from

ψ 6= 0 and‖GΣ(ψ)‖2 ≥ 1
λ ′

1
‖ψ‖2 we infer that 1

λ1
= ‖GΣ‖L(L2,L2) ≥ 1

λ ′
1

which is absurd.�

On the other hand, we know that every positive eigenfunctionϕ with respect to(∆S,Σ) and the
eigenvalueλ1 = λ1(Σ) is proportional toϕ0 (see e.g. [5]). Moreoverϕ0 vanishes at every Dirichlet-
regular boundary pointξ ∈ ∂SΣ and so vanishes quasi-everywhere on∂SΣ.

Thus we have proved the following which contains Theorem 1.1. See also Theorem 2.13.

Theorem 2.11 There is a unique positive L-harmonic function F+ onCY(Σ) =R×Σ vanishing (in
the weak sense) on the boundaryR× ∂Σ and such thatlim inf

u→−∞
F+(u,x0) < +∞ and F+(0,x0) = 1.

This function is a minimal Martin function and F+(u,x) = eαmaxu ϕ0(x)
ϕ0(x0)

if αmax =
2−d+

√
(d−2)2+4λ1

2
(i.e.αmax= αΣ).

In what follows we will keep the notationF+ for this “canonical” minimal function and letF−(u,x)=

eαminu ϕ0(x)
ϕ0(x0)

, whereαmin =
2−d−

√
(d−2)2+4λ1

2 for the similar minimal function related to the end

“u→−∞” of the cylinder. We setα0 =−d−2
2 .

In the course of the proof of Theorem 2.11 we have also essentially shown the following facts. Dis-
tinguish three classes of minimal Martin functionsK w.r. to (CY(Σ),L):

(i) the functions in the formKζ (u,x) = k(x)eαu with 0 < |α − α0| ≤
√

(d−2)2+4λ1

2 , (ii) those in
the formKζ (u,x) = k(x)eα0u, (iii) the class of all other minimal functions.

Proposition 2.12 If Kζ is in the third class there is a unique vζ ∈ R such thatlim v j = vζ for any
sequence{(v j ,y j)} in CY(Σ) converging toζ and for such a sequencelim j(w j ,y j) = ζ whenever
w j → vζ in R. If Kζ is in the first class, every corresponding sequence{(v j ,y j)} j≥1 is such that
lim v j =+∞ or lim v j =−∞ depending whetherα > α0 or α < α0. Finally if Kζ is in the class (ii)
there are sequences(v,y j) (with a fixed first coordinate) converging toζ and for any such sequence
lim j(v j ,y j) = ζ for every real bounded sequence{v j}; moreover there are sequences{v j} such
that lim v j =+∞ and lim j(v j ,y j) = ζ .

A minimal function in the class (iii) will be said to be of the finite type.

Of course ifΣ is smooth, the first class reduces to{F+,F−} and the second class is empty. We
shall see later that there may exist minimal as well as non minimal Martin pointsζ in the form

Kζ (u,x) = eαuk(x), for all α such that|α −α0|<
√

(d−2)2+4λ1

2 . See 6.4.

Proof. To establish the last claim letζ be in the second class. Ifv ∈ R and if (v j ,y j) → ζ then
(2v− v j ,y j) → ζ (by the identities (2.7) withv0 = v1 = 0). But a minimal Martin point has a
neighborhood basis{U j} in ĈY(Σ) with U j ∩CY(Σ) connected (by the general theory, see e.g. [29]
p. 223) and so we can find pointszj ∈ Σ with (v,zj )→ ζ . If {v j} is bounded it follows at once from
the (local) Harnack inequalities and the translation invariance with respect to the first coordinate
that(v j ,zj)→ ζ . It is then obvious that ifv j →+∞ sufficiently slowly(v j ,y j)→ ζ .

It also follows immediately from translation invariance that if a sequence{(v j ,y j)} j≥1 converges to
a pointζ ∈ ∆ then limj(w j ,y j) = ζ for {w j} such that|v j −w j | → 0. �
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2.5 PositiveL-harmonic functions vanishing onR×∂Σ (b)

The proof of Lemma 2.10 can be extended so as to use a much weaker assumption on the behavior
of f (u,x0) for u→−∞. This leads to a description of the positiveL-solution inR×Σ vanishing on
R×∂Σ which also improves Theorem 2.11.

Theorem 2.13 If f is L-harmonic inCY(Σ) and vanishes onR×∂Σ, then f is a linear combination
of F+ and F−. Thus iflim inf

u→−∞
eαminu f (u,x0) = 0 then f is proportional to F+.

Using the Martin disintegration ofF, we may writeF = aF++bF−+F1+F2 with

F1(u,x) =
∫

A
eαukζ (x)dµ(ζ ) , F2(u,x) =

∫

B
eαukζ (x)dν(ζ )

whereA= {ζ ∈∆1 ; ∃αζ , α0 ≤ αζ < αmax andkζ ∈C+(Σ) s.t.Kζ (u,x) ≡ eαζ u kζ (x) }, B= {ζ ∈
∆1 ; ∃αζ , αmin < αζ < α0 andkζ ∈ C+(Σ) with Kζ (u,x) ≡ eαζ ukζ (x) } and whereµ andν are
finite Borel measures supported byA andB respectively.

We claim thatµ(A) = 0. If not there existsα ′
1 ∈ (α0,αmax) such thatµ(A′) > 0 if A′ = {ζ ∈

A; α0 ≤ αζ ≤ α ′
1} and repeating the argument in Lemma 2.10 we may conclude using nowϕ(x) :=

∫
A′ kζ (x)dµ(ζ ) and the potential theory w. r. to the operator∆S− (d−2)2

4 I = ∆S− λ0I in Sd−1 (in

particular the related Green kernelGλ0
Σ ). Note that (2.13) becomes :Gλ0

Σ (ψ) = ϕ ≥ 1
(λ ′

1−λ0)
ψ where

λ ′
1 is the eigenvalue corresponding toα ′.

In the same way (or using the observation after remark 2.5) itis shown thatF2 = 0. �

3 Nontangential convergence toF+ or H0

The next statement is about how Martin’s topology relates tothe canonical minimalF+ in the
cylinderCY(Σ) (or to the minimalH0 in the coneC0(Σ)). It says that nontangential convergence of
the current point(u,x) ∈ CY(Σ) (resp.x= rω ∈ Co(Σ)) to the end “u=+∞” (or “ r =+∞”) implies
its convergence to the canonical Martin point at infinity.

Theorem 3.1 For every sequenceζ j := (u j ,x j) in R×Σ such that uj →+∞ and{x j} is relatively
compact inΣ, it holds that Kζ j

(u,x) → eαmaxu ϕ0(x)/ϕ0(x0) (i.e. {ζ j} converges to the Martin
function F+). In fact, the following Harnack boundary inequalities hold

C−1G(u,x0;v,x0)G(v,x0;w,x0)≤ G(u,x0;w,x0)≤CG(u,x0;v,x0)G(v,x0;w,x0) (3.1)

for u,v,w∈R, u+1≤ v, v+1≤w and some constant C=C(d,Σ,x0)≥ 1. The inequalities obtained
by replacing G by its transposed kernel in (3.1) also hold.

A proof will be given at the end of section 5. We note here that inequalities (3.1) imply by them-
selves that fort → +∞ the point(t,x0) converges to a minimal point in the Martin boundary (see
[2] Théorème 2 or [3] p. 516).
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4 Martin boundary and subsets ofΣ

In this section we collect some properties of the Martin boundary ofCY(Σ) resulting from regularity
conditions on a subsetM of Σ. The results will not be used before section 6.3.

4.1 John regular subsets

Let M be a closed subset ofΣ. For η > 0, let Mη := {x ∈ Σ ; da(x,M) ≤ η } whereda(x,y) :=
inf{diam(C) ; C ⊂ Σ connected,x, y ∈ Σ} - Sd−1 is equipped with the usual metric inRd-. For
0< c0 ≤ 1 we say thatM is c0-John inΣ if there are pointsA1, . . . , AN in Σ such that (i)d(A j ,∂Σ)≤
c−1

0 d(Ak,∂Σ) for 1 ≤ j, k ≤ N, (ii) for η := c0 max{d(A j ,∂Σ) ; 1 ≤ j ≤ N}, eacha∈ Mη can be
connected to oneA j by ac0-John arc inΣ (see [6] Définition 1.1 and Théorème 5.3).{A j}1≤ j≤N

is then called ac0-admissible set of poles forM (note thatN can always be chosen smaller than a
constantN0(d,c0)).

The next statement generalizes Hirata’s main result in [22]. We rely on Theorem 3.1 and a boundary
Harnack principle given in [6] ([1] forN ≤ 2). Note that this statement may be easily reduced to
theN = 1 case.

Theorem 4.1 Let M be a closed and c0-John subset ofΣ with poles Aj , 1≤ j ≤N. Then limu→+∞(v,y)=
F+ in the Martin topology, uniformly with respect to y∈ M.

Proof of Theorem 4.1 DenoteK the Martin kernel inĈY(Σ) with respect to the normalization point
(0,x0). Applying Théorème 5.3 and Remarque 5.4 in [6] toM× [v−1,v+1] as a subset ofCY(Σ)
(or rather -so as to deal with the classical Laplacian- to thecorresponding situation inC0(Σ)) we
obtain a constantC=C(d,c0)≥ 1 such that

K(v,y)(u,x) ≤C
N

∑
j=1

K(v,y)(v,A j)

K(v,A j )(v,A
′
j)

K(v,A j )(u,x) (4.1)

whenever(v,y) ∈ R×M, |v| ≥ 1, and(u,x) ∈ CY(Σ) satisfies|u− v| ≥ 1 (or da(x,M) ≥ c0). Here
A′

j is arbitrarily chosen in∂B(A j ,
c0

100dist(A j ;Sd−1 \ Σ)) and we restrict toy such that|y−A j | ≥
2|A j −A′

j | for all j.

By Harnack inequalities

K(v,y)(u,x) ≥ c
K(v,y)(v,A j)

K(v,A j )(v,A
′
j)

K(v,A j )(u,x)

when(u,x)∈ ∂B((v,A j), |A j −A′
j |) and hence –by the maximum principle–, also for(u,x)∈CY(Σ)\

B((v,A j), |A j −A′
j |). Taking(u,x) = (0,x0) we see thatc

K(v,y)(v,A j )

K(v,Aj )
(v,A′

j )
≤ 1. So it follows from (4.1)

that

K(v,y)(u,x) ≤C′
N

∑
j=1

K(v,A j )(u,x) (4.2)
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when(v,y)∈R×M, |v| ≥ 1, and(u,x)∈CY(Σ) satisfies|u−v| ≥ 1. Since by Theorem 3.1K(v,A j ) →
F+ for j → ∞ and sinceF+ is minimal, the result follows.�

The proof also yields the following more general statement.Here the results of [6] for John subsets
with more than one pole are effectively used.

Theorem 4.1′ Let {Mn} be a sequence of closed John regular subsets ofΣ with a common John

constant c0. Assume that vn →+∞ in R and that(vn,A
(n)
j )→ ζ j ∈∆1, 1≤ j ≤ N, where for each

n, {A(n)
j }1≤ j≤N is a c0-admissible set of poles for Mn. Then if yn ∈Mn, every Martin cluster function

of {(vn,yn)} is a linear combination of the Kζ j
.

In particular if the pointsζ j all coincide with a minimal boundary pointζ then(vn,yn)→ ζ .

4.2 John cuts

Assume now thatM is a John regular closed subset ofΣ and thatΣ \M is the disjoint union of
two open subsetsU0 andU1. Fix δ > 0 and setUδ

j = {x ∈U j ; da(x,M) ≥ δ } andVδ
j = R×Uδ

j ,
j = 1, 2. LetVj = R×U j .

Proposition 4.2 If h = Kµ is the positive superharmonic function inCY(Σ) generated by a prob-

ability measureµ supported on the closure of V0 in the Martin compactificationĈY(Σ) and not
charging(0,x0), we have

h(u,x) ≤C[F+(u,x)+F−(u,x)], (u,x) ∈Vδ
1 (4.3)

for some constant C=C(Σ,M,U0,x0,δ ).

Proof. We may assume thatx0 ∈ Uδ
1 (using Harnack and changing the reference point) and it

suffices to prove (4.3) for eachh=K(v,y), y∈V0 with a constantC> 0 as in the statement. Reducing
h onV1, it suffices to prove the result forK(v,y), y∈ M, v∈ R.

For such a pole(v,y), with sayv> 0, it follows from (4.2) and Theorem 3.1 that forx∈Uδ
1 such

thatd(x,A j)≥ 1
2d(A j ,∂Σ) for j = 1, . . . ,N, (we use the same notations as above)

K(v,y)(u,x) ≤C′
N

∑
j=1

K(v,A j )(u,x)

≤C′′ ∑
j

K(v,A j )(v,A
′
j)eαmax(u−v) ϕ0(x)

≤C′′′ eαmaxuϕ0(x). (4.4)

In the second line we have used the maximum principle (as above in the proof of Theorem 4.1)
to compare the positiveL-harmonic functioneαmaxuϕ0(x) with the Green function with pole at
(v,A j). In the last line we have used the inequalities given by Theorem 3.1 which imply that
K(v,A j )(v,A

′
j) ≃ K(v,A j )(v− 1,A j) ≃ F+(v− 1,A j). Using the similar inequality forv ≤ 0 we get

the desired conclusion.�

Remark 4.3 For h= K(v,y), y∈ M, the proof shows thath(u,x) ≤C[F+(u,x)+F−(u,x)] if x∈U1,
|u−v| ≥ 1. If moreover v≥ 0, then h(u,x) ≤CF+(u,x), for these points(u,x).
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Corollary 4.4 Under the assumptions of Proposition 4.2 two sequences{(v j ,y j)} and {(w j ,zj)}
such that vj , w j → +∞, yj ∈U0 and zj ∈U1, have at most one common cluster point in∆ which
can only be F+.

Corollary 4.5 If h0 and h1 are positive harmonic inCY(Σ), if h j =Kµ j with µ j supported byU j ×R

(closure inĈY(Σ)), j = 0, 1, if lim
u→+∞

e−αmaxu(h0∧h1)(u,x0) = lim
u→+∞

eαminu(h0∧h1)(−u,x0) = 0 then

h0∧h1 is a potential (that is, has no positive L-harmonic minorant).

4.3 Inner ball property

If we have a boundary pointz∈ ∂Σ and an open ball (or cap)B(a, r) ⊂ Σ with z∈ ∂B(a, r), r <
2, the results in [4] (see also [2]) tell us (using Proposition 2.12) thatas v → v0 in R and y →
z non-tangentially inB(a, r), the point(v,y) tends to a finite type minimal boundary pointξ =
ξ (v0;(z,a)) in ĈY(Σ). Moreover the minimalKξ is bounded away from(v0,z) and vanishes on
∂CY(Σ)\{(v0,z)}.

There is a parallel statement for the behavior of(v,y) for v→ +∞. But here the inner ball should
be large. This will be used later for an example’s construction in section 6.4.

Theorem 4.6 Assume thatΣ contains an open hemisphereΣ+ in Sd−1. Then if{y j} is a sequence
in Σ+ and if vj →+∞ in R, the sequence(v j ,y j) converges in the Martin compactification ofCY(Σ)
to the canonical Martin point F+, i.e., lim j K(vj ,yj ) = F+.

The proof is deferred to section 6.4.

5 Uniqueness of the Martin point at infinity for d = 3.

We now prove Theorem 1.3 (rather its cylinder version), using in an essential way a result of R.
Bañuelos and B. Davis on the heat kernels in planar domains ([10], [9]). This result says that given
the pointx1 ∈ Σ there is at0 > 0 and for eacht ≥ t0 a constantC(t)> 1 such that limt↑∞Ct = 1 and

C(t)−1e−λ1t ϕ0(x1)ϕ0(y)≤ πt(x1,y) ≤C(t)e−λ1t ϕ0(x1)ϕ0(y) (5.1)

whent ≥ t0 andy ∈ Σ (see in [10] Theorem 1 and section 4). Recall{πt} is the heat semi-group
generated by the Laplacian inΣ andϕ0 is normalized by the condition‖ϕ0‖L2(Σ) = 1.

Theorem 5.1 If d = 3, every sequence{ξ j} j≥1 = {(v j ,y j)} j≥1, in CY(Σ) such that vj →+∞ con-
verges to F+, i.e., Kξ j

(u,x)→ Kζ∞(u,x) := eαmaxu ϕ0(x)/ϕ0(x0) for j → ∞.

The following simple lemma (valid for alld ≥ 2) deals with times in(0, t0].

Lemma 5.2 Givenδ0 > 0 and x1 ∈ Σ, there is a constant C=C(δ0;Σ,x1)≥ 1 such that

πt(x1,y)≤Ce−λ1tϕ0(x1)ϕ0(y) (5.2)

for all y ∈ Σ such that|y−x1| ≥ δ0 and all t≥ 0



Positive harmonic functions in cones and cylinders 14

Assuming as we may thatδ0 < d(x0,Sd−1 \Σ), this is a simple consequence of the parabolic max-
imum principle applied in the region{(x, t) ; t > 0, x ∈ Σ} \ {(x, t) ; |x− x0| ≤ δ0, 0 ≤ t ≤ 1} (the
two members of (5.2) are(∂t −L)−harmonic in(y, t) and the first has by definition minimal growth
at infinity in Σ×R+ ).

Lemma 5.3 Assume d= 3 and let T ,µ > 0, x1 ∈ Σ be given. Then, as a→+∞,

∫ T

0
e−

a2
4t −µt πt(x1,y)

dt√
t
= o(

∫ ∞

T
e−

a2
4t −µt πt(x1,y)

dt√
t
) (5.3)

uniformly in y∈ Σ, ‖y−x1‖ ≥ δ0.

Proof. We may assumeT ≥ t0. By (5.1) and lemma 5.2, it suffices to prove the relation obtained
from (5.3) when the termsπt(x1,y) are removed from the integrals.

Now
∫ T

0 e−
a2
4t −µt dt√

t
≤ 1

2

√
T e−

a2
4T and, if θ ≥ 1,

∫ ∞
θ e−

a2
4t −µt dt√

t
≥ e−

a2
4θ

∫ ∞
θ e−(µ+ 1

2)t dt, where for

the last inequality we use the observation thatt 7→ e
t
2√
t

is increasing in(1,∞).

So
∫ ∞

θ e−
a2
4t −µt dt√

t
≥ 1

ν e−
a2
4θ e−νθ , whereν = µ + 1

2, and we may conclude since asa → +∞,

ν
2

√
T e−

a2
4 ( 1

T − 1
θ )+νθ → 0 for any fixedθ > T. �

Proof of Theorem 5.1.Assume as we may thaty j → y∞ ∈ Σ. Using the Bañuelos-Davis Theorem
and the above lemma and its proof, we have ify∞ 6= x1 and j → ∞,

√
4π G(u,x1;v j ,y j) =

∫ ∞

0
e−

(u+(d−2)t−vj )
2

4t πt(x1,y j)
dt√

t

= e
(d−2)(vj−u)

2

∫ ∞

0
e−

(u−vj )
2

4t e−
(d−2)2

4 t πt(x1,y j)
dt√

t

∼ e
(d−2)(vj −u)

2 ϕ0(x1)ϕ0(y j)

∫ ∞

0
e−

(u−vj )
2

4t −[ (d−2)2

4 +λ1]t dt√
t
. (5.4)

Thus, forx1, x2 ∈ Σ, we see thatG(u,x2;v j ,y j)/G(u,x1;v j ,y j)→ ϕ0(x2)/ϕ0(x1) for j → ∞ (assum-
ing first y∞ 6= x1, y∞ 6= x2). This shows that a cluster functionK of the Martin kernelsKvj ,yj , as
j → ∞, is in the formK(u,x) = g(u)ϕ0(x) and hence must beK = F+.

In fact, ∫ ∞

0
e−

(u−vj )
2

4t −[ (d−2)2

4 +λ1]t dt√
4πt

=
1

2
√µ

e−
√

A j µ (5.5)

whereA j = |u− v j |2, µ = (d−2)2

4 + λ1 (note that the left member of (5.5) is the Green’s function

in R with pole at the origin and with respect toL = d2

dx2 − µ evaluated at
√

A j). It follows that
G(u,x;v j ,y j)/G(0,x0;v j ,y j)→ F+(u,x) when j → ∞.

This shows thatG((u,x1);(v,y)) ∼ 1√
(d−2)2+4λ1

ϕ0(x1)ϕ0(y)e−αmax(v−u) uniformly with respect toy,

asv−u → +∞. Similarly, G((u,x1);(v,y)) ∼ 1√
(d−2)2+4λ1

ϕ0(x1)ϕ0(y)e−αmin(u−v) asv−u →−∞,

uniformly w. r. toy. �
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Proof of Theorem 3.1. The proof of Theorem 3.1 (whered ≥ 2) is completely similar. In fact as
well known (see e.g. [12], [31]) for every compactK ⊂ Σ, eλ1tπt(x,y) → ϕ0(x)ϕ0(y) ast → +∞,
uniformly w. r. to y ∈ K. So an obvious adaptation of the above gives the convergenceto F+.
Inequalities 3.1 follow from the fact that nowG(u,x0;0,x0)∼C′ eαminu for u→+∞.

Remark 5.4 The proof also shows that Theorem 5.1 extends tod ≥ 3 if the baseΣ is intrisically
ultracontractive with respect to∆S, (see [15], [9], [8]). For example, by Bañuelos results in [8] this
is the case if for somep > n

2 the baseΣ is Lp-averaging (that isρΣ ∈ Lp(Σ) whereρΣ(x) is the
pseudo-hyperbolic distance tox0). See [8] for other examples.

6 Examples ford ≥ 4

In this section we show that ford ≥ 4 there are cones inRd with a host of Martin points at infinity.
See sections 6.2 and 6.3 (another example described in section 6.4 shows that these points can be
minimal as well as non minimal). This is closely connected with the existence –established by
Cranston and McConnell in [14]– of a bounded domainD in R

3 with anh-Brownian motion inD
with an infinite lifetime. In fact we use a variant of the construction in [14] section 3.

As before we work with the model of the coneC0(Σ) given by the cylinder(CY(Σ),L).

6.1 Preliminary lemmas

Fix λ0 > 0, d ≥ 2, and consider a capB = B(a, r) := {x ∈ S; |x− a| < r} in S := Sd−1, r ≤ 1,
with two given pointsξ , ξ ′ ∈ ∂B, symmetric inS with respect toa. Let T = B(ξ ; r/100)∩ ∂B,
T ′ = B(ξ ′, r/100)∩∂B, and letMB := {x∈ B; ‖x−ξ‖= ‖x−ξ ′‖}.

Let Ω be a region inSd−1 such thatB⊂ Ω ⊂ Sd−1 \ (∂B\T), T ′∩Ω\B= /0. SetΩ̃ = Ω×R.

Lemma 6.1 Let v= H f solves∆Sv−λv−∂tv= 0 in Ω̃ and v(y, t) = f (y, t) in ∂ Ω̃ where f(y, t) is
bounded measurable in∂ Ω̃, nondecreasing in t and f(y, t) = 0 for y /∈ T ′. Then, givenη ∈ (0,1),
there existsε1 = ε1(d,λ0,η)> 0 such that for0< ε ≤ ε1 and0≤ λ ≤ λ0,

H f (x, t) ≤
∫

∂Ω
[η f (y, t)+ (1−η) f (y, t − εr2)] dµΩ

x (y), (x, t) ∈ MB×R (6.1)

Moreover Hf (x, t) is nondecreasing in t. HereµΩ
x is the harmonic measure of x inΩ w. r. to∆S−λ I.

Proof. The last claim follows from the parabolic maximum principleand the translation invariance
in t of ∆S−λ I −∂t.

To prove the first, observe that by the monotonicity assumption we may assume thatf (y,s) = ϕ(y)
for s> t − εr2 and f (y,s) = ψ(y) whens≤ t − εr2. Since the inequality is an identity whenf (y,s)
is independent ofswe may assumeψ = 0 and also thatt = εr2 by time translation invariance.



Positive harmonic functions in cones and cylinders 16

Then
∫

∂Ω [η f (y,εr2)+ (1−η) f (y,0)] dµΩ
x (y) = ηΦ(x) whereΦ solves∆Φ− λΦ = 0 in Ω and

Φ = f on ∂Ω. We want to show thatH f (x,εr2) ≤ ηΦ(x) providedε < 1
8 is sufficiently small. Let

N be the integer part of4ε and setw(x,s) = H f (x,s+ εr2)−H f (x,s).

By the parabolic Harnack inequalities [26],Cw(a, r2(1−kε))≥ w(a, r2

2 ) for 1≤ k≤ N and a con-
stantC =C(d). Thus, on summing up,Nw(a, r2/2) ≤CHf (a, r2)≤CΦ(a).

Applying next the parabolic boundary Harnack principle inΩ×R ([17], [21]) to w(x,s) and Φ
(viewed as functions of(x,s)) we obtainw(x,εr2) ≤ c1

w(a,r2/2)
Φ(a) Φ(x) ≤ c1C

N Φ(x) for x ∈ MB with
c1 = c1(C,d,λ0). The result follows.�

We will use lemma 6.1 in conjunction with the following lemma.

Lemma 6.2 Let {mk}1≤k≤N be a finite sequence of probability measures inR of the form mk =
1
2δ0+

1
2δ−ak for 1≤ k≤ N, where0≤ ak ≤ 1. Let L andε be given positive numbers. There is an

A=A(L,ε)> 0 such that if∑N
k=1 ak ≥ A, the measureνN = m1∗· · · ∗mN satisfies :νN([−L,0])≤ ε .

The probabilityνN is the law of the random variableZ :=−∑N
j=1a jXj if X1, . . . ,XN are independent

random variables such thatP(Xj = 0) = P(Xj = 1) = 1
2. Forβ > 0, we have

P(−Z ≤ L) = P(eβZ ≥ e−βL)≤ eβLE(eβZ) = eβL
N

∏
j=1

E(e−βaj Xj ) = eβL
N

∏
j=1

(1− 1−e−βaj

2
).

Thus, usingak ≤ 1, P(Z ≥ −L) ≤ eβL
N

∏
j=1

(1− β
2

e−β a j) ≤ eβL exp(−β
2

e−β
N

∑
j=1

a j ). The lemma

follows.�

6.2 A class of cylinders.

We now consider domainsΣ⊂Sd−1, d≥ 4, similar to examples introduced in [14]: there are disjoint
open ballsB j = B(x j , r j), j ≥ 0, in Sd−1 such that (i)∑ j≥0 r2

j = +∞, (ii) B j ⊂ Σ, (iii) for N ≥ 1,
Σ \BN has two componentsΣ+

N, Σ−
N with disjoint closures andΣ−

N ⊃ ⋃
j<N B j , Σ+

N ⊃ ⋃
j>N B j , (iv)

there are capsTj , T ′
j in ∂B j , j ≥ 0, symmetric with respect tox j , of radiusρ j ≤ r j/10 and such that

Σ−
j ∩Bj ⊂ Tj , Σ+

j ∩Bj ⊂ T ′
j .

Remark 6.3 There is anεd > 0 such that wheneverr j > 0, j ≥ 1, satisfy∑ r2
j = ∞ and∑ rd−1

j ≤ εd ,
there exists a correspondingΣ such that moreover: (a)|x j − xk| ≥ 4 max{rk, r j} for j 6= k, (b) the
centersx j have a limitP0 in Sd−1 (c) Σ is locally Lipschitz inSd−1\{P0} and is Dirichlet-regular in
Sd−1. The proof is left to the reader.

SetΣN = Σ−
N ∪BN for N ≥ 1 and fixλ0 > 0. Letk be a bounded positive solution of∆k−λk= 0 ,

k = 0 in ∂ΣN \T ′
N, 0≤ λ ≤ λ0. For ℓ > 0, let h= hℓ solves:∂th(x, t)−∆xh(x, t)+λh(x, t) = 0 in

ΣN ×R, h(t,x) = 1t≥−ℓ k(y) in ∂ΣN ×R.

Proposition 6.4 Let ℓ and ε be positive reals and let x∈ Σ−
q , 1 ≤ q < N. There is an integer

NΣ(q,ε , ℓ,λ0) such that whenever N≥ NΣ(q,ε , ℓ,λ0),

hℓ(x,0) ≤ ε k(x). (6.2)
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Proof. Fix η = 1
2 and a correspondingε0 > 0 as given by lemma 6.1. Letp ∈ {q, q+ 1, . . .}, let

f (y, t) be a bounded Borel function inT ′
p×R which is non decreasing int and letv= H f denote the

solution of∆Sv−λv−∂t v= 0 in Σp×R with v= 1T ′
p×R f on the boundary. We show by induction

on n= p−q, that

H f (x, t) ≤
∫

T ′
p

(

∫ ∞

−∞
f (y, t +s)dνq,p (s))dµΣp

x (y), x∈ Σq\Bq (6.3)

whereνq,p =
p
⋆

j=q
(1

2 δ0+
1
2 δ−ε0r2

j
) and whereµΣp

x is the harmonic measure ofx in Σp w.r. to∆S−λ I .

Denoteν j := 1
2 δ0+

1
2 δ−ε0r2

j
.

For n = 0 this is lemma 6.1. Assuming that the property holds forn− 1 ≥ 0 and viewingH f as
a solution inΣq×R of a Dirichlet problem for∆S− λ I − ∂t we get by lemma 6.1 and maximum
principle

H f (x, t) ≤
∫

T ′
q

(

∫ +∞

−∞
H f (y,s+ t)dνq(s)) dµΣq

x (y)

≤
∫

T ′
q

(

∫ +∞

−∞
[

∫

T ′
p

∫ +∞

−∞
f (z,s+ t + τ)dνq+1,p(τ)dµΣp

y (z) ]dνq(s)) dµΣq
x (y)

=

∫

T ′
q

(

∫

T ′
p

[

∫ +∞

−∞

∫ +∞

−∞
f (z,s+ t + τ)dνq+1,p(τ)dνq(s) ]dµΣp

y (z)) dµΣq
x (y)

=

∫

T ′
q

(

∫

T ′
p

[

∫ +∞

−∞
f (z, t +θ)dνq,p(θ) ]dµΣp

y (z)) dµΣq
x (y)

=

∫

T ′
p

(

∫ +∞

−∞
f (z, t +θ)dνq,p(θ) ]dµΣp

x (z), x∈ Σ−
q ,

where we have used in the second line the induction assumption, in the third the fact that integration
with respect tos and integration with respect toz commute and –in the last line– the formula
µΣp

x =
∫

µΣp
y dµΣq

x (y) (for x∈ Σ−
q ). This proves (6.3).

From (6.3) it follows that forx∈ Σ−
q = Σq\Bq,

hℓ(x,0) ≤
∫

T ′
N

(

∫ 0

−ℓ
k(y)dνq,N (s))dµΣN

x (y) = k(x)νq,N([−ℓ,0)), (6.4)

and the proposition follows from lemma 6.2 and the condition∑ j≥1 r2
j =+∞. �

We now take fork the Green’s functionk = Gλ
y in Σ with pole at some pointy∈ Σ \ΣN and with

respect to∆S−λ I . It is easily checked that for−ℓ≤ s≤ 0, x∈ ΣN, hℓ(s,x) ≥
∫ ℓ−|s|

0 e−λ t πt(x,y)dt.
Recall thatk(x) =

∫ ∞
0 e−λ tπt(x,y)dt and that the parabolic Green’s function with pole at(y0, t0)

in Σ –and w.r. to∆S− λ − ∂t– is Γ(x, t;y0, t0) : (x, t) 7→ 1t>t0 e−λ(t−t0)πt−t0(x,y0); thus u(x,s) :=
∫+∞
−∞ 1{t>−ℓ}Γ(x,s;y, t)dt =

∫ ℓ−|s|
0 e−λ t πt(x,y)dt is bounded byhℓ(x,s) in ΣN∩{−ℓ < s< 0} by the

parabolic maximum principle.

Thus, the previous result can be read as follows.
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Lemma 6.5 For any sequence{y j} converging inΣ to the endE of Σ defined by the cuts BN (a
basis forE is provided by the setsΣ+

N) and everyλ ≥ 0, we have

lim
j→∞

∫ t0
0 e−λ t πs(x,y j )ds
∫ ∞

0 e−λ t πs(x,y j )ds
= 0

for every fixed t0 ≥ 0 and every x∈ Σ.

So, limj→∞

∫ ∞
t0

e−λ tπs(x,yj )ds
∫ ∞

0 e−λ tπs(x,yj )ds
= 1 for t0 ≥ 0, x∈ Σ andλ ≥ 0.

Lemma 6.6 Let{y j} be as in lemma 6.5. For j→ ∞ and for given realsρ , ρ ′ the ratio

[
∫ ∞

0 t−
1
2 e−

(ρ+(d−2)t)2

4t πt(x,y j )dt]

[
∫ ∞

0 t−
1
2 e−

(ρ′+(d−2)t)2

4t πt(x,y j )dt]
(6.5)

converges towards e−
d−2

2 (ρ−ρ ′) for each x∈ Σ.

We have
∫ ∞

0 t−
1
2 e−

(ρ+(d−2)t)2

4t πt(x,y j )dt = e−
(d−2)ρ

2
∫ ∞

0 t−
1
2 e−

ρ2

4t e−t (d−2)2

4 πt(x,y j)dt. If we setϕ(t) =

t−
1
2 e−

ρ2

4t e−t (d−2)2

4 , then for everyt0 > 0 and for j → ∞
∫ t0

0
ϕ(t)πt(x,y j)dt = o(

∫ ∞

t0
ϕ(t)πt(x,y j)dt) (6.6)

In fact, withA> (d−2)2

4 , we have fort1 > 0 large enough

∫ ∞

t1
ϕ(t)πt(x,y j)dt ≥C(t1,A,d)

∫ ∞

t1
e−Atπt(x,y j )dt (6.7)

(note that ϕ(t)
ϕ(t1)

≥ e−At

e−At1
for t ≥ t1, becauseϕ(t)etA is increasing fort large enough). On the other

hand for such a fixedt1, we have
∫ t1

0 ϕ(t)πt(x,y j )dt ≤ C′(t1,A,ρ ,d)
∫ t1

0 e−At πt(x,y j )dt and (6.6)
follows by lemma 6.5.

Sincee−
ρ2

4t → 1 for t → ∞ (ρ being fixed) we see now that asj →+∞,

∫ ∞

0
t−

1
2 e−

ρ2

4t e−t (d−2)2

4 πt(x,y j)dt ∼
∫ ∞

0
t−

1
2 e−t (d−2)2

4 πt(x,y j )dt (6.8)

Using also this result forρ ′ the lemma follows.�

6.3 The Martin boundary of the first example

Using Lemma 6.6 we get a (partial) description of the Martin boundary of the cylinderCY(Σ) =R×
Σ with respect toL := ∂ 2

uu+
d−2

2 ∂u+∆S. In particular it will be seen that there are Martin boundary
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points related to sequences(u j ,y j) ∈ CY(Σ) with lim u j =+∞ and distinct from the canonical point
F+ given by Theorem 2.11.

Denote∂̃Σ := ∂Σ∩{⋃n≥1 ∂Σ−
N} the set of points in∂Σ “away from the endE ” (see Lemma 6.5).

BecauseE is defined by a “smooth” system of cuts (the ballsBN or the mediatorsMN of TN andT ′
N

in BN) it follows from standard forms of the boundary Harnack principle (see e.g. [4], [6]) that for
λ < λ1(Σ), the endE is the trace onΣ of the neighborhoods system –in the Martin compactification
of (Σ,∆S+λ I)– of a minimal∆S+λ I–harmonic functionkλ

E
(normalized atx0) which vanishes on

∂̃Σ ([4] Théorème 2.5).

For α ∈ [α0,αmax) –recall α0 := −d−2
2 and αmax :=

−(d−2)+
√

(d−2)2+4λ1(Σ)
2 –, defineKα

E
(u,x) :=

eαukλ(α)
E

(x), (u,x)∈ Σ×R. Hereλ (α) = α2+(d−2)α (thusλ (α0) =− (d−2)2

4 ). Recall∆ denotes
the Martin boundary ofCY(Σ) w.r. toL, and∆1 its minimal part.

Theorem 6.7 The function Kα0
E

is L-minimal (so Kα0
E

= Kξ for someξ ∈ ∆1) and there exists
Φ : Σ → R+ going to+∞ along E and such that(u j ,y j) → ξ when |u j | ≤ Φ(y j) and {y j} →
E . Moreover for everyα ∈ (α0,αmax), Kα

E
is minimal L-harmonic inCy(Σ) and each associated

sequence{u j ,y j} in CY(Σ) satisfies : (i){y j} → E and (ii) uj →+∞.

Similarly, for α ∈ (αmin,α0), the functionKα
E

is L-minimal inCy(Σ) and every associated sequence
{u j ,y j} satisfies : (i){y j} converges toE and (ii) u j →−∞.

Proof. (a) By lemma 6.6, if{y j} is a sequence inΣ converging towardsE and such that{(0,y j )}
converges to someξ ∈ ∆, the Martin functionKξ satisfies:Kξ (ρ ,x)/Kξ (ρ ′,x) = e−

d−2
2 (ρ−ρ ′) for

ρ , ρ ′ ∈ R . ThusKξ (u,x) = e−
d−2

2 uk(x) wherek is independent ofu and necessarily a positive
solution of∆Sk+λ0k= 0 in Σ, λ0 = λ (α0).

Using the John cutsMn (the mediator inBn betweenTn andT ′
n), n≥ 1, and Proposition 4.2 we see

thathξ vanishes oñ∂Σ×R. Sokξ = 0 in ∂̃ Σ and as mentioned beforek must be the(∆Sd−1 +λ0I)-

minimal function corresponding toE , i.ek= kλ(α0)
E

.

(b) It follows that(u j ,y j) → ξ when{u j} is bounded and{y j} as before (see Proposition 2.12).
And for ρy growing sufficiently slowly to+∞ asy→ E , the point(u,y) tends toξ for y→ E and
|u| ≤ ρy (the convergence holds in the Martin space of(CY(Σ),L) ). In particular there is no minimal
boundary pointζ = lim(u j ,y j), with y j → E of the finite type (i.e. non exponential in the vertical
variable) described in Proposition 2.12 (iii).

(c) We now show thathξ is minimal L-harmonic inCY(Σ) and more generally that for eachα ∈
[α0,αmax) the functionh0(u,x) = eαu k0(x), wherek0 = kλ(α)

E
, is minimal harmonic for(CY(Σ),L).

Consider its Martin’s disintegration intoL-minimal functions. This disintegration does not charge
the set of minimal functions in the formeβuk(x) with β 6= α (this would contradict the behavior of
h0 asu ↑ +∞ or u ↓ −∞). Sinceh0 = 0 onR× ∂̃Σ, it is supported by the set of minimal pointsζ
such thatζ = lim(u j ,y j), |u j | → ∞ andy j → E (using Proposition 4.2 and (b) above) and hence

Kζ (u,x) = eβuk(x) with k vanishing on∂̃Σ. Thusk= kλ(β)
E

and the disintegration is supported by a
minimal pointζ such thatKζ = h0.

The remaining assertion clearly follows from Corollary 4.4and the proof is complete.�
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6.4 Proof of Theorem 4.6 and a second example

In this section we construct a second example –based on the first– for which there are for each
α ∈ (αmin,αmax) corresponding minimal and non minimal Martin pointsζ with Kζ (u,x) = eαu k(x).
We first establish –in the spirit of [2]– Theorem 4.6.

A. Preliminaries. DenoteΣ+ the hemisphere{t ∈Sd−1; t1 > 0} of Sd−1, x0 = (1,0, . . . ,0) its center,
andσ the reflexionx= (t1, . . . , td) 7→ (−t1, t2, . . . , td).

Proposition 6.8 Assume thatΣ ⊃ Σ+ and denote G the Green’s function ofR×Σ. Givenρ > 0,
there is a C=C(d,ρ) such that whenever y∈ Σ+, x∈ Σ, and u≤ v−2ρ

G(v,y)(u,x) := G(u,x;v,y) ≤CG(v,y)(u,x0) (6.9)

Proof.a) By a known general estimate (see [2], [4]) of the Green’s function of a domain containing
aC2-ball (here{(t,x) ∈ CY(Σ) ; |x− x0|2+ |t −w|2 ≤ 2}) -together with Harnack inequalities and
elementary observations- we have whenz∈ Σ+, z′ ∈ Σ, |w′−w| ≥ ρ :

G(w′,z′;w,z)≤Cd,ρ G(w±ρ ,x0;w,z) (6.10)

b) Denoteσ̃(t,x) = (t,σ(x)). Applying the maximum principle inR×Σ+ to the functionsG(v,y)

andG(v,y) ◦ σ̃ in CY(σ(Σ+)) -extend the second by zero outsideCY(σ(Σ))- we have

G(v,y)(w,z) ≤ G(v,y)(w,σ(z)) ≤ sup{G(v,y)(w,z
′) ; z′ ∈ Σ+} (6.11)

for z∈ Σ− = Σ\Σ+, w 6= v. In particular we need only considerx∈ Σ+ (takew= u).

Similarly, if µ t
(u,x), t ∈ R, is the L-harmonic measure of(u,x), u ≤ t, in the truncated cylinder

Ct
− := CY(Σ)∩{(w,z) ; w< t } we have forx∈ Σ+

µ t
(u,x) ≤ σ(µ t

(u,x)) in {t}×σ(Σ−)⊂ ∂Ct
− (6.12)

This is because the adjoint Green’s function
∗
Gt
(u,x) with respect toCt

− is larger than
∗
Gt
(u,x) ◦ σ̃ in

Ct
−∩{(w,z) ; z∈ Σ+}, andµ t

(u,x)(t,dz) is ∂w
∗
Gt
(u,x) dσS(z).

c) Now write the réduite (w. r. to the cylinderCY(Σ)) of G(v,y) over Σu+ρ
+ := {u+ ρ}×Σ+, i.e.,

p= R
Σu+ρ
+

G(v,y)
([11], [13]), as a potentialGµ of a positive measureµ on Σu+ρ

+ . Then

Gµ(u,x) =
∫

Σu+ρ
+

G(u,x;ζ )dµ(ζ )

≤C
∫

Σu+ρ
+

G(u,x0;ζ )dµ(ζ )

=CGµ(u,x0)≤CG(v,y)(u,x0), (6.13)

using (6.10).

d) Finally q= G(v,y)− p is majorized inCu+ρ
− by the solutionh to the Dirichlet problem inCu+ρ

− ,
with the boundary conditionh= G(v,y) in Σ−×{u+ρ } andh= 0 on the rest of∂U . By (6.11) and
(6.12),q(u,x) ≤ p(u,x) and by (6.13)q(u,x) ≤CG(v,y)(u,x0). �
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Corollary 6.9 SupposeΣ+ ⊂ Σ. Let {y j} be a sequence inΣ+ and let vj → +∞ in R. Then
{(v j ,y j)} converges to the canonical Martin point at+∞, i.e., lim j K(vj ,yj ) = F+.

This is Theorem 4.6. Similarly of course, ifv j →−∞, y j ∈ Σ+, we have limj K(vj ,yj ) = F−.

Proof. If ζ is a cluster Martin point for{(v j ,y j)} j≥1 it immediately follows from Proposition 6.8
that if h denotes theL-harmonic measure of{0}×Σ in CY(Σ),

Kζ (u,x) ≤CKζ (u0,x0)h(u−u0,x)

for u≤ u0, x∈ Σ. This shows thatKζ vanishes onR×∂Σ and thatKζ is bounded foru≤ u0. Thus
Kζ = F+ by Theorem 2.11.�

B. Assumingd ≥ 4 we constructΣ as follows. We start with the hemisphereΣ+, a pointP0 ∈ ∂Σ+

and a sequence of pointsPn ∈ ∂Σ+ such that|Pn −P0| = 4−n, n ≥ 1. For eachn ≥ 1, let Ωn be
a domain inSd−1, Ωn ⊂ BSd−1(Pn,

1
4n+1 ) \Σ+ of the type considered in remark 6.3, (starting with

disjoint ballsBn, j , j ≥ 1, in Sd−1 converging to some pointQn in B(Pn,
1

4n+1 )\Σ+ and such that the
sum of the squares of their radii diverges). LetUn be a region inB(Pn,

1
4n+1) \ (Σ+ ∪Ωn) such that

Un∩Σ+ is a closed ball∆n in ∂Σ+ of centerPn andUn∩Ωn a cap∆′
n ⊂ ∂Bn,1∩∂Ωn (where∆n and

∆′
n are the relative interiors).

The domainΣ is the union ofΣ+, the joining regionsUn and the disks∆n and∆′
n, n≥ 1.

Let α ∈ (αmin,αmax) andn≥ 1. As before, by [4] there is a unique positive(∆+λ (α)I)-harmonic
functionkn in Σ vanishing in∂Σ\{Qn} and such thatkn(x0) = 1 (x0 is the center of the hemisphere

Σ). Moreoverkn is minimal∆-harmonic inΣ and by Theorem 6.7 the functionK(α)
Qn

(u,x) = eαu kn(x)

is minimal L-harmonic inCY(Σ). Denoteh(α)(u,x) = eαuk(x) the similarL-harmonic function in
CY(Σ) with a pole atP0.

Proposition 6.10 The function h(α) is a non minimal Martin function for(CY(Σ),L).

Proof. It follows from standard arguments that thekn vanish uniformly on the boundary ofΣ away
from P0 (asn → ∞), so thatk = lim kn. Thush(α) = lim K(α)

Qn
andh(α) is anL-Martin function in

CY(Σ) associated to a pointζ ∈∆. If α ≥ α0 (resp. α ≤ α0), there is a sequence{(v j ,y j)} with
y j ∈ Ω j , lim v j =+∞ (resp. limv j =−∞) converging toζ .

By Corollary 6.9, the pointζ –as a Martin boundary point– is not in the closure ofR×Σ+. Thus
every sufficiently small neighborhoodV of ζ meetR×Ωn for all largen, but notR×Σ+. And
V ∩CY(Σ) is not connected. But (by a general property) each neighborhood of aminimal Martin
boundary point contains another whose trace inCY(Σ) is connected (see e.g. [29] p. 223). Henceζ
is not minimal.�

7 Extensions to more general cylinders

The argument in sections 2 and 3 can be extended to more general second order elliptic operators in
cylinders. We describe here a simple generalization and state the corresponding results. AssumeΣ
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is arelatively compactregion in aC1 Riemannian manifoldM of dimensiond−1 (d ≥ 2) equipped
with a second order elliptic operatorLM in the form

LM(ϕ) = div(A∇ϕ)+B.∇ϕ + γ ϕ (7.1)

whereA is a measurable, bounded and uniformly elliptic section of End(T(M), B a bounded mea-
surable vector field inM andγ a nonpositive bounded measurable function inM (ref. [33]). We also
assume thatM \Σ is non polar. ThusLM admits a Green function inΣ.

We consider now a differential operator in the cylinderCY(Σ) = R×Σ which is a direct sumL =

LR⊕LM whereLR = d2

du2 +b d
du is translation invariant inR (i.e.,b is a real constant). Again we fix

somex0 ∈ Σ and take(0,x0) as the normalization point inCY(Σ) for the Martin functions.

We defineλ1 := λ1(LM;Σ) as the supremum of all realt such thatLM + tI admits a Green’s function
in Σ (or such that the cone of nonnegativeLM + tI -superharmonic functions has a dimension> 1).
It is well known that 0< λ1 < ∞ and that fort := λ1 all nonnegative(LM + tI)–superharmonic
functions inΣ are proportional to the unique (up to scalar multiplication) positiveLM + tI positive
solutionϕ0 in Σ. This solutionϕ0 is bounded, vanishes in the weak sense on the boundary∂Σ and
ϕ0 ∈ H1

0(Σ). As also well-known we have similar properties for the formal adjoint operatorL∗
M, and

moreoverλ1(L∗
M;Σ) = λ1(LM;Σ). We denoteϕ∗

0 a positive(L∗+λ1I)-superharmonic function inΣ.
Again ϕ∗

0 is unique up to multiplication by a constant, vanishes on∂Σ and is(L∗
M +λ1I)-harmonic

in Σ.

Repeating the argument used in section 2 we obtain a similar description of theL-minimal Martin
function associated with the endu→+∞ in CY(Σ).

Proposition 7.1 If K is a minimal L-Martin function inCY(Σ) = R×Σ associated to a sequence
(u j ,x j) with uj →+∞, xj ∈ Σ, then K is in the form

K(u,x) = eαuK(0,x), (u,x) ∈ R×Σ (7.2)

for someα ≥ −b
2 and s(x) = K(0,x) is a proper function inΣ: LMs+ λs= 0, λ = α2+ bα . So

α = −b+
√

b2+4λ
2 and−b2

4 ≤ λ ≤ λ1; moreover s is(LM +λ I)–minimal inΣ.

As before there is a natural bijectionK 7→ K̃ between the set∆+∞ of the Martin function arising
from some sequence(v j ,y j) in CY(Σ) with lim v j = +∞ and the analogue set∆−∞ (related to the
condition limv j =−∞) by letting K̃(u,x) = e−buK(−u,x).

Theorem 2.13 can also be extended to the present framework, but a slight modification is required

in the proof. SetF+(u,x) = eαmaxu ϕ0(x)
ϕ0(x0)

andF−(u,x) = eαminu ϕ0(x)
ϕ0(x0)

whereαmax := −b+
√

b2+4λ1

2 and

αmin := −b−
√

b2+4λ1

2 .

Theorem 7.2 If f is L-harmonic inCY(Σ) and vanishes in weak sense onR×∂Σ, then f is a linear
combination of F+ and F−. In particular, if moreoverlim inf

u→−∞
eαminu f (u,x0)= 0 then f is proportional

to F+. Thus F+ and F− are L-minimal inCY(Σ).

As in the proof of Theorem 2.13, we may reduce ourselves to show the following. A functionF
in CY(Σ) which vanishes onR× ∂Σ and which is in the formF(u,x) =

∫
A′ Kζ (u,x)dµ(ζ ) where
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A′ = {ζ ∈∆
+∞∩∆1 ; −b

2 ≤α(ζ )≤α1}, α1 <αmax, and whereµ is a finite positive Borel measure
on A, must be the zero function. Denoteλ ′

1 = α2
1 +bα1.

As before the functionϕ(x) =
∫

A′ Kζ (0,x)dµ(ζ ) is positive superharmonic with respect toL0 =

LM +λ0I , λ0 = −b2

4 and vanishes in the weak sense on∂Σ. The measure−L0(ϕ) is given by the
densityψ(x) =

∫
A(λ −λ0)kλ

ζ (x)dµ f (x). It follows thatϕ is theL0-Green’s potential inΣ of ψ and

again,GL0
Σ (ψ) = ϕ ≥ 1

λ ′
1−λ0

ψ in Σ, whereGL0
Σ is Green’s function inΣ w.r. to L0. To conclude we

then slightly modify the argument in section 2 using now the minimal heat semi-groupPt generated
by L in Σ.

∫

Σ
GL0

Σ (ψ)ϕ∗
0 dσM =

∫ +∞

0

∫

Σ
eλ0tPt(ψ)ϕ∗

0 dσM dt =
∫ +∞

0

∫

Σ
e−(λ1−λ0)tψ ϕ∗

0 dσ dt

becauseP∗
t (ϕ0) = e−λ1tϕ∗

0 . Thus
∫

Σ GL0
Σ (ψ)ϕ∗

0 dσM = 1
λ1−λ0

∫
ψ ϕ∗

0 dσM.

But on the other hand fromGL0
Σ (ψ) ≥ 1

λ ′
1−λ0

ψ it follows that
∫

Σ GL0
Σ (ψ)ϕ∗

0 dσM is larger than
1

λ ′
1−λ0

∫
ψ ϕ∗

0 dσ . Thus
∫

ψ ϕ∗
0 dσ = 0 andψ = 0 in Σ. Soϕ = 0. �

Corollary 7.3 Every positive L-harmonic function f(u,x) on CY(Σ) vanishing (in the weak sense)
onR×∂Σ and such thatlimsup

u→−∞
f (u,x0)< ∞ –x0 ∈ Σ– is proportional to F+.

Theorems 3.1 and 5.1 extend as follows.

Theorem 7.4 Letξ j = (v j ,y j), j ≥ 1, be a sequence of points inCY(Σ) such that vj →+∞. If d ≤ 3
or if d ≥ 4 and {y j} is relatively compact inΣ, the functions Kξ j

(u,x) converge to Kζ∞(u,x) :=
eαΣ u ψ0(x). In particular when d≤ 3, ζ∞ is the only Martin point at infinity.

The proofs are the same as above in section 5 using the naturalextensions of (5.1) (withy in a
relatively compact subset ofΣ whend ≥ 4) to our present setting. Denote{πt} the heat semi-group
generated by theL in Σ and as aboveϕ∗

0 any positive eigenfunction of the adjoint elliptic operator
−L∗ in Σ for the eigenvalueλ1. Then we have :

(i) if d = 3, there is at0 > 0 and a functionC : [t0,∞)→ (1,+∞) such that limt→∞C(t) = 1 and –if

C0 = (

∫

Σ
ϕ0(y)ϕ∗

0(y)dσ(y))−1,

C0C(t)−1 e−λ1t ϕ0(x0)ϕ∗
0(y)≤ πt(x0,y)≤C0C(t)e−λ1t ϕ0(x0)ϕ∗

0(y), t ≥ t0 (7.3)

for all y∈ Σ. The proof in [10] Theorem 1 for the Laplacian can be adapted after one shows that the
Cranston-McConnell inequalities [14] [7] (see also [9]) hold for all subdomainsω of Σ: i.e., there
is a constantC=C(Σ) such that for everyω and every positiveL-harmonic functionh in ω one has
Gω(h)≤C|ω |h.

(ii) for all d ≥ 3, it is well-known that (7.3) holds providedy is restricted to a relatively compact
subsetA of Σ (see [30] Theorem 1.2 (iii) with a class of elliptic operators slightly different from
ours, see also [31], [32]).

Let us finally also mention that the results in sections 4.1 and 4.2 extend to the present setting if we
restrict to John conditions withN = 1, whereN is the number of poles –recall the needed results in
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[6] require forN ≥ 2 the symmetry of the underlying operator. WhenB= 0 andA is symmetric,
the restrictionN = 1 can be removed sinceL = LR+ ∂ 2

uu+ b∂u is then symmetric with respect to
the reference measureµ(du,dx) = ebududσM(x) (i.e. L is symmetric inM×R equipped with the
riemannian metricg(u,x)(du,dx) = ebu(du)2 gM(dx)).
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[7] R. BAÑUELOS, On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains,
Probab. Th. Rel. Fields 76, 311-323 (1987).
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