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On Positive Harmonic Functions in Cones and Cylinders

Alano Ancona
Département de Mathématiques, Batiment 425, UniveRstris-Sud 11
Orsay 91405 France

March 29, 2010

Abstract. We first consider a question raised by Alexander Eremenkshod that ifQ is an arbitrary connected open
cone inRY, then any two positive harmonic functions @nthat vanish ordQ must be proportional -an already known
fact whenQ has a Lipschitz basis or more generally a John basis. Itassdewn however that wheh> 4, there can

be more than one Martin point at infinity for the cone though-tengential convergence to the canonical Martin point
at infinity always holds. In contrast, wheh< 3, the Martin point at infinity is unique for every cone. Theseperties
connected with the dimension are related to well-knownltesi M. Cranston and T. R. McConnell about the lifetime
of conditioned Brownian motions in planar domains and atssubsequent results by R. Bafuelos and B. Davis. We
also investigate the nature of the Martin points arisinghihity as well as the effects on the Martin boundary resgltin
from the existence of John cuts in the basis of the cone or &tbrar regularity assumptions. The main results together
with their proofs extend to cylindeféy (¥) = R x = —whereX is a relatively compact region of a manifdié, equipped
with a suitable second order elliptic operator.

1 Introduction. Main results.

We consider the con&,(Z) of RY d> 2, generated by a regian of the unit spheregy_4, i.e.,
%o(2) ={rw;r >0, we X}, and study the positive harmonic functionsdp(Z) (where%, is for
cone). Recently Alexander Eremenko asked whether it isyawae that any two such functions
that moreover vanish 08,(Z) must be proportional. Our first main result, Theorenp 1.1 Wwelo
(see also Theorefn 2]13), answers this question by theygosRigeneralization to a large class of
cylinders is described in secti¢h 7.

To deal with non necessarily Dirichlet-regularwe say, following a usual convention, that a func-
tion w in Z vanishes on the open subdebf % (or, more precisely, thaw vanishes in the weak

sense o) if wis bounded in a neighborhood of eafk T and ifA:= {& €T ; limsup|w(x)| >0}
Iox—E&
is polar ing_1. By definition,A C §_; is polar ing;_; if for eaché € Athere is a chart o%_1,
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X:V =W cRY1 V5 E suchthaty(VNA) is polar inRY-1. Note thatA is polar inS_1 if and
only if {t&; & € At > 0} is polar inRY.

For a functionw defined in a regio of RY, the relationw =0 onT C 4Q is defined similarly.
If w:Q — R is harmonic with respect to a second order uniformly ellimperator in divergence
form with bounded measurable coefficientsGnand if w = 0 in an open subs&/ of gV then

Iirr:f w(x) = O for every Dirichlet-regular boundary poifte W.
X—

Theorem 1.1 The nonnegative harmonic functions4i(Z) which vanish (in the weak sense) on
the boundary of6,(Z) are the functions h in the form(tw) = cr®¢o(w), w € Z, r > 0, where ¢

iS a nonnegative constantty = mCRCRAY (272)44)‘1(2) and ¢ is a positive solution of\g, , ¢o +
A1(Z)po=0in Z.

HereAs, , is the spherical Laplacian —denoted afsgin the rest of the paper— and (%) (later de-
notedA,) is the first eigenvalue of the opposite of the Dirichlet laagghn inX. As well-knownA4 (%)
coincides with the Raleigh constantXfi.e. A1 (2) = inf{ [ |Ou|?dos, ,; u€CL(Z), [|u/®dos, , >

1} —whereos, , is the standard Riemannian spherical measufg.if— andA1(X) is > 0 if and only

if Si-1\ Z is not polar inS;_1 (see e.g.[[39]). In this casgi(l—a is also the largest eigenvalue of the
(nonnegative self-adjoint compact) Green’s operatdr?(E; os, ,), ¢ — G(¢) = (—As) " 1(¢). It

is known (see e.g[]5]) thaly(X) is also the greatest realfor which there is a positivéAs+ Al)-
superharmonic function iz (distinct from the constant-). ForA = A1(X) such a function is
unique —up to multiplication by a constant— and there is gumipositive solutionpg € H}(Z) of
Aspo + A1(Z)¢o = O with [|¢o|[ 2s) = 1. In particulargo = 0 in 9Z. Since, as well-known, the
functionHo(x) = r=¢o(w) — = |x|, @ = x/|X|— is harmonic, Theorein 3.1 means that any two pos-
itive harmonic functions ir6,(Z) vanishing ond%,(Z) are proportional. Note also that Theorem
fL.1 implies thaty is a positiveminimalharmonic function iné,(Z).

Section[P is devoted to a proof of Theorfm 1.1. See Theprelhahd an improvement in Theorem
P-13. It relies in particular on the study of minimal Martanttions arising at infinity iréo(Z)
and the study of the convergence in the Martin topology tdeauch Martin points (for Martin’s

theory, see[[24][[291/116], of]5]).

WhenZ is sufficiently regular Theorefn 1.1 is well-known. SEd [28] the NTA case. The recent
paper of K. Hirata[[32] establishes the result wieis John. These papers rely on (and provide)
Harnack boundary inequalities which do not hold in the gaheaise.

In section[p we show that —in contrast with the case wikere John — another question which
might seem at first to be another formulation of A. Eremenkpisstion has a negative answer for
a generak, at least in higher dimensions.

Theorem 1.2 For d > 4, there exists a domaib such that the Martin boundary &,(%) contains
a one parameter family of minimal points which are limits e§isencegR,} in %,(Z) going to
infinity in RY (and whose all defining sequences go to infinitk).

The class of examples provided to prove Theoferh 1.2 is diraetpted to the construction by
Cranston and McConnell of a bounded dom&imn R3 with a positive harmonic functioh in I
such that the lifetime of th-Brownian motion is almost surely infinitg J14]. As shown ] this
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cannot happen in a bounded planar domain. There is a cormdisgoresult here given by the next
statement. The only interesting caselis 3.

Theorem 1.3 Ifd < 3andX is a domain in g1, every sequencgP,} in %,(Z) going to infinity in
RY converges in the Martin topology towards the canonical Neftinction H.

The proof is given in sectiof] 5 and relies on a result of B&sgiand Davis[[70]. A similar proof
shows that for altl > 2, every sequencgP,} in %5(Z) going non-tangentially to infinity if6,(Z)
converges in the Martin topology tdg. See Theorerh 3.1 and its proof in sect[pn 5. Extensions
based on[]8] tal > 4 of Theorend 1]3 are also mentioned there.

In section[6.¢ we supplement Theor¢m| 1.2 by showing thatifer4, %,(=) may admit plenty
of minimal as well as non-minimal Martin points associatedéquence$P,} in %,(X) going to
infinity in RY (and whose aII defining sequences go to infinity&i#). The corresponding Martin
functions are of the fornil (x) = r% ¢ (2 X ) with —952 < a < a5. This supplementary construction
is based on the following fact (see Theor@ 4. 6) proved alsedtior{ 6.4 and valid for afl > 2.

Proposition 1.4 If Z contains a hemisphel®E, of S;_1, then every sequend®,} such that‘F,—| €
>, and|P,| — 4 converges towards the canonical Martin poirg.H

In section[#, some implications on the Martin boundary tidtow from regularity conditions
are observed. For example,Nf is a closed John regular subset®d{see sectiofi]4) then every
sequenceg P} in 65(M) such that|P,| — o« converges towards the canonical minimal pdifat
This generalizes Hirata's main result [n][22].

To prove the above mentioned results, it seems more comtgfaied natural) to work with a cylin-
der model of,(Z) given byR x X equipped with a suitable elliptic operator See sectiofi 2.1.
We note here that there is a large literature dealing withtifarboundaries of product structures

(e-g-, (2], [IB]. [2r1.[2B] or [20D.

Almost all the results (and their proofs) extend to the framork of a cylinder#y(Z) =R x X
whereX is a relatively compact region in a manifdidl, the cylinder being equipped with an elliptic
operatorL in the formL = (d o + B &) ® £ wheref € R, ¢ is differentiation with respect to the
first variable and? is a second order uniformly elliptic operatorlif. See sectiofy 7.

2 Proof of Theorem[I1.

We will assume once for all that S \ Z is non polar in §_1. Otherwise, by a standard extension
Theorem and the Liouville property, positive harmonic filmes in6p(Z) are constantd;(X) =0
and Theorel is obvious in this case. Thus, in what folldhis a Dirichlet-regular boundary
point for 6,(Z) -using e.g. Wiener's test-, ar)lgcl)ih(lx) = 0 for the functionsh under consideration

in Theoren{T]1.
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2.1 Reduction and some preliminary remarks

As a first step, using a simple change of coordinates we rethecstudy of positive harmonic
functions in the coné&,(Z) to the study of positive solutions in the cylindek (X) = R x X of
some natural elliptic operator — the notatieia(%) will be used all along the paper—. Recall first the
following classical expression of the Laplacian in polaombnates: iff is C2-smooth in the open
setU of R4, d > 2,

2 d
790w+ T B0) 1 (8ug(r @) @1)

or
forx=rw, (rw) €U :={(r,w) €R* xS 1;rwecU } andg(r,w) = f(rw) for (r,w) € U. (Recall
thatAgis the Laplace-Beltrami operator on the Riemannian sp&ere

Af(x) =

Consider then the change of coordinat®s$r, w) = (log(r), w), or ®~1(u, ) = (€, w). Obviously
® defines &C* diffeomorphism ofR* x X onto the cylinderéy(Z) = R x Z. By an elementary
calculation, ifg € C?(R*%. x £) andh=go ®~1, we have

0% _ o

%10+ 1723 = (a9l w) + 21

Jh
ar (u,w)+(d—2)=—(u

(As)wg(r, w)+(d_1)r %( )

rw)+r w) (2.2)
Using these two formulas we are reduced to the study of theitioundary of the cylindrical
region ¢y (%) = R x Z of the manifoldX := R x S_1 with respect to the second order elliptic

operatorL := As+ (d — 2)% + ;—52 (whereu denotes thé&-component).

There is a well known explicit (and elementary) expressibthe heat semi-groupQ; }1>o associ-
ated to the component &facting inR, i.e.,Lg = 82 + (d — 2)d,. By heat semi-group associated
to Ly we will mean that for eaclp € Cj (R) the functionf : (t,x) — Qi(¢)(x) is the minimal
positive solution of the Cauchy problemé; f (t,x) = 82 (t,x) + (d — 2) & f(t,x) for t > 0 and
f(0,x) = ¢(x), xeR.

Lemma 2.1 Fort > 0 the kernel QonR is given by the convolution with the density

Y
a(v) = = exp- G2

This means tha®;(¢)(u) = [ (u—V) ¢ (v)dvfor ¢ € Co(R). The product structure a x Z is
exploited through the next standard fact.

), UER (2.3)

Lemma 2.2 In R x Z, the heat semi-groupH; };~.o associated to k= 2 S+ (d—2)2 55 +Asis given
by the densities

h(t;ux;vy) =q(u—Vv)TE(X,Y), X, YE€Z, U ve R, t>0.

Here g, t > 0, is the standard heat kernel densitydnwith respect tdAs, the usual Riemannian
measureds in &1 and the Dirichlet boundary condition).

In other wordsH; (¢ ) (u,x) = [, [s h(t;u,x;v,Y) ¢ (v,y)dvdos(y) if ¢ € Co(R x Z;R) and(u,x) €
By (Z).
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2.2 Some inequalities satisfied by Green'’s function and their azsequences

The Green’s function with polév,y) and with respect ta in R x Z (and the measurg(d(u,x)) =
dudo(x)) is the function:

(u,x) = G(u,x;v,y) = / h(t;u,x;v,y)dt, (u,x) € R xZ. (2.4)
0
1 (w22
Buth(t;u,x;vy) = Tam © & 1E(x,y) and forp > 0 we have
o (u+p—v4£t(d—2)t)2 e (u—v+(4(;l—2)t)2 e—§(§+(d—2)t+u—v)
> g (@-2)p/2 - 2" (2.5)

ifv>u+5.
On the other hand, ip > 0, andv <u+ %

(utp—v+(d—2)t)2  (u=v(d—2)t)2
Xt =@ X

— _2)t)2
eh (-5 (d-2trv-u) < o-(d-2)p/2 g

(2.6)
Upon integrating with respect tahese inequalities, we obtain the next propaosition.
Proposition 2.3 The Green'’s function G for L iR x X satisfies the following relations:
G(u,x;v,y) < e972P2G(u+p,xv,y), foru veR, andx,yeZ,

if p>0and v> 5 +u. And Qu,x;v,y) > €9-2P/2G(u+p,xvy) if p>0and v< & +u.

Moreover, we have the following symmetry identities : faly &, u,V,Vp,v1 € R

G(VO —Uu,X;Vo—V, y) = (d-3)(u=v) G(Vl + U, X; Vi +V7 y)? (27)

Note that [2.]7) follows immediately fron (2.3), lemrpal2.214@.4). Of course these identities can
be understood in terms of Kelvin's transformation if oneures to the coné&,(%) equipped with
the usual Laplacian.

The above leads to the following properties of thartin functions associated toin the cylinder
%y (Z). We choose and fix once for all a reference pai Z and takeg0,Xg) as the normalization
point for Martin’s functions ing(%). Occasionally, we use the standard notatidagresp. A1)
to denote the Martin boundary (resp. the minimal Martin latang) of (4% (Z),L), andCKAY(Z) its
Martin compactification (ref.[J24][[29][]5]).

Proposition 2.4 If K is an L-Martin function in%y (X) = R x X defined by a sequence;,y;) with
Vi =+, yj € Z, (.., K(U,X) = im0 Ky, ;) (U, X) Where K, ) is the Martin kernel K, ) :=
G(.,-3V},Yj)/G(0,X0;Vj,yj)) then

K(u+p,x) > e @2°P/2k(u,x), (ux) eRxE (2.8)
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for everyp > 0. In particular if K is minimal there exista > —d;zz such that Ku, x) = €K (0, x),
(u,x) € R x Z, and the function () = K(0, x) is a proper function irZ, namelyAs(s) + As= 0 for

A =a?+(d—2)a. SoA > —%, q = 24V a2 V(S_M and s is a minimal positiveAs+ Al )—
harmonic function irk.

The first statement follows from Propositipn]2.3 and the dkegim of Martin functions. IfK is min-
imal, then(u, x) — K(u+ p,x) is alsoL-minimal; by (2.8), it follows thak (u+ p,x) = c(p)K(u,x)
for some functionc € C(R;R* ) and all (p,u,x) € R x R x ¥ (assuming firsp > 0). We have
c(p+p')=c(p)c(p’) for p, p’ € R and soc(p) = €”P for somea > —d—gz. The other claims are
then immediatel]

2-d++/(d—2)214); _
Note thata € [0o, Omax] Where amax := 0z = + (2 4% and ag = —%. We settmin =
2—d—+/(d—2)2+4A;
> .

Remark 2.5 Similarly if K is an L-Martin function related to a sequen@g,y;), with v; — —oo,
yj € Z, then Ku+ p,x) < e (9-2P/2K (u,x) when (u,x) € R x 2 and p > 0. If K is minimal
w.r. to L, then Ku,x) = e?!s(x), for somea € [amin, tp] and somei -proper function s ir%, i.e.,

As(S)+As=0in 3. HereA = a?+ (d—2)a > —(d_42>2, a=2% (S_Z)ZH’\

minimal inX.

and sis(As+Al)-

Observe that ifA™ (resp. A™) is the set of the Martin functions arising from a sequefigey;)
with limyj = 4o (res~p. limy; = —o0) the identities[(2]7) lead to a natural bijectih— K from
A" onto A~, whereK (u,X) := e (4-2UK (—u, x).

We note two other observations which complement Proposgi¢ and Remark 2.5.

Proposition 2.6 If { € A is a Martin boundary point fof 4y (Z),L) which as a point of the Martin
compactification is in the closure of boflu,x) € € (Z); u> p } and{(u,x) € 6/ (Z); u< p’} for
somep, p' € R, p’ < p, then K is in the form K (u,x) = g 77U f(x) where f is a positive solution
of Asf — 92 —0in 5.

The same conclusion holds fgre A, if { is in the closure (for the Martin topology) of a set
e ={(wy); |V <Ry€e=}, R>0, and if K; is of the form K (u,x) = e?“f(x). Moreover f is a
positive minimal solution oisf — %f =0inZ.

In the first case, by the above estimates of Green’s functemust havél, (u,x) = e Zu f(x) for
p' <u<p,xeZ, wheref(x) = S Kz (p',x) = ez P Kz(p,X). Thenf is necessarily as in the
statement and by the Green’s function estimates, we se& tfatx) > e U f(x) forallu> p'.

But a nonnegative solutiow of L(w) = 0 in a domainQ C %y (X) that vanishes at some point
vanishes everywhere (by Harnack inequalities). TKg(@1,x) = g2 f(x) whenu> p’. A similar
argument extends this equality wic< p.

In the second case, & =: lim(vj,yj), we must also havé = lim(v; +s,y;) for everyse R. So
the result follows from the first part of the proposition (théimality of f being necessary for the
minimality of K;). (]
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2.3 Positive L-harmonic functions vanishing onR x 9% (a)

Let f denote a nonnegative-harmonic function ingy (%) := R x X such thatf =0 onR x dZ in
the weak sense.

By the Martin boundary theory there is a unique integral@epntation of in the form

F(U,X) :/Kz(u,x)du(Z), (UX) ERXZ 2.9)

wherep is a finite positive Borel measure on the minimal Martin boanydA of (4 (X),L) and
whereK is theL-Martin kernel associated toand the reference poif0,xp) € .

Denote A7 the trace onA; of the intersection of the closures —w.r. to Martin’s tofgpte of the
setsXy 1= {(—, —N]JU[N,+)} x Z, N > 1. In other words, a poinf € A1 isin A7 if and only
if there is a sequence of poinfs = (uj,X;) € R x Z with |u;| — +o0 converging to¢. In particular
K¢ is in the form given by either Propositi¢n 2.3 or remfrk 2.5.

Lemma 2.7 The measurgls is supported byAT.

Proof. LetN > 1. In &/(Z), the functionf is equal toR}", its réduite (cf. [ZiL], [[8], [@6]) oy
(w.r. toL). This follows from the assumptioh= 0 in d% x R and from (a standard extended form
of) the maximum principle. So by the Martin boundary thedng measurels is supported by the
set of the pointg’ € A such thaiXy is not minimally thin at{. Such a poin¢ is necessarily in
the closure oKXy in (%), theL-Martin compactification 0%y (Z). Whence the result]

Next we will observe a simple condition fpi; to be concentrated on

A= A1N{l € %(2); T =lim(u;,x;) with x; € £ anduj — 4o }. (2.10)
J

Define similarlyA;* using sequence§u;,x;)}j>1 with limu; = —oo.

Lemma 2.8 If f(—t,x;) = o(ed—izt) as t— +o for some (or all) x € Z, then the measurg; is
supported byA ;.

d-2 d—
2

This is because far < 0 and{ € A;® we haveK; (u,Xg) > €™ 2 "K;(0,%0) = g U (see Remark

R.5) and

d-2

e 7 (A7)

f(uxo) = [ Ko(Uxo)du() = e FUu(AT\ A7)
Thusp(A;®) = 0. Note the special case wheiré,xg) = O(1) ast — —co. [J

2.4 End of proof of Theorem[L.3

In this subsection it is assumed tmavreover fun,Xp) = O(1) for a real sequence— —oo, that is
liminf f(u,x) < o for eachx € Z. We will show thatf is unique up to a multiplication by a constant

U—»—00
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and will thus prove Theorefn 1.1. Examining the proof, it Wil seen later that this assumption on
liminf f(u,Xp) can be notably relaxed.

U——00

For any given reakg let us denoteA;(ag) the set of all point € AT® such that, is in the
form : Kz (u,x) = ¢ (x) €Y, (u,x) € € (Z) for some realr > ap and some minimal positive solution
of Asp +A ¢ = 0in 3 whereA = a?+ (d—2)a. We seta = a() andA = A ().

Repeating the argument in leminad 2.8 we first note the follgwin

Lemma 2.9 The measurgis is concentrated inA;“(0).

This is again immediate since given> 0 we have fou < 0,

x> [ Keluxo) (€)= & (AT AT ()

and henceus (A]”\ AT®(—¢)) =0 since liminff (u,xp) < co. O

Recall thatA; = Anax is the greatesh for which the equatiodsg + A ¢ = 0 admits a positive
solution (or even a positive supersolution)in

Lemma 2.10 Set A= {{ € A{*(0); A({) < Amax(Z) }. Thenus (A) = 0.

Assume thaf; (A) > 0. Then for some\], 0 < A{ < Ay, the setA’ of all { € A{*(0) for which
0 < A({) < Aj has strictly positive measurgus(A’) > 0. Note thatA’ is the set of the minimal
points{ € A; such that for som&, 0< A <A/,

Ke (u,x) = ek} (x) (2.11)
whereq = —9=2+ Z(H)z*“ andk} is als+ Al-minimal function inz.
The function
¢ (x) = A,ké (X)dpt({), x€ 2, (2.12)

is a (strictly) positiveAs-superharmonic function i& which satisfies the following:

(i) ¢ vanishes weakly on the boundary®{note thatp (x) < f(u,x) for x € Z, u> 0 and that by
assumptionf =0 onR x dZ in the weak sense),

(ii) the positive measure-As(¢) admits the density(x) = [, A k? (x) dus (x) with respect taos.

By (i) and a well-known form of the maximum principlle is a potential in> with respect to the
spherical Laplaciad\s in Z, i.e. its greatest subharmonic minordmin  is zero . Indeed there
exists a positivé\s-superharmonic functios going to infinity at eaci{ € d% where¢ has a non-
zero upper limit since the set of these poiftss polar. So by a standard form of the maximum
principleh— es< 0 for eache > 0.

It follows that ¢ is a Green’s potential i and so using first (i) and thefi (2]12) and (i) again, we
get

1

Cz()=¢ =¥ (2.13)

=~



Positive harmonic functions in cones and cylinders 9

in 2, whereGs denotes the Green'’s function Inw.r. to As.

The functiony is in L?(Z) (it is bounded inS -in fact ¢ is also an element df}(Z)-). Thus from
W # 0 and||Gs(¢)|2 > )TliHWHZ we infer thats: = ||Gs | 2, 12) > A—li which is absurd

On the other hand, we know that every positive eigenfuncfionith respect to(As,%) and the
eigenvalue\; = A1(X) is proportional tapg (see e.g.[J5]). Moreovep, vanishes at every Dirichlet-
regular boundary poinf € ds2 and so vanishes quasi-everywheredgh.

Thus we have proved the following which contains Theo[elln $ek also Theorem 2]13.

Theorem 2.11 There is a unique positive L-harmonic functiop &1 %y (Z) = R x Z vanishing (in
the weak sense) on the bound@®y 9% and such thatLrglnf Fi(u,X) < 4o and F.(0,x) = 1.

This function is a minimal Martin function and Fu,x) = e"maxugj‘?ﬂ if Cpax = =" (2_2>2+4A1

i X0)
(i.e.0max = as).

In what follows we will keep the notatiof, for this “canonical” minimal function and Iét_(u,Xx) =

—d—+/(d—2)2 .. .. .
e"”“”“f&—()ﬁ), where amin = 22 ((; 2"+ for the similar minimal function related to the end
d—2

“U— —oo” of the cylinder. We setip = —=5=.

In the course of the proof of Theorgm 3.11 we have also esdigrehown the following facts. Dis-
tinguish three classes of minimal Martin functionsK w.r. to (% (2),L):

(i) the functions in the formK, (u,x) = k(x)e? with 0 < |a — ao| < Y &2 i) those in
the formK, (u,x) = k(x) %Y, (iii) the class of all other minimal functions.

Proposition 2.12 If K, is in the third class there is a unique ¥ R such thatimv; = v, for any
sequence(vj,y;j)} in €y (Z) converging to{ and for such a sequendien(w;,y;) = { whenever
wj — vz in R. If K is in the first class, every corresponding sequefieg, y;j)}j>1 is such that
limvj = 400 or limv; = —oo depending whethew > ag or a < ap. Finally if K, is in the class (ii)
there are sequencgs,y;) (with a fixed first coordinate) converging foand for any such sequence
limj(vj,y;) = { for every real bounded sequen¢e,; }; moreover there are sequencés;} such
thatlimv; = +o0 andlim;(vj,y;) = ¢.

A minimal function in the class (iii) will be said to be of thanfie type.

Of course ifZ is smooth, the first class reduces{te, ,F_} and the second class is empty. We
shall see later that there may exist minimal as well as noninmahMartin points{ in the form

Kz (u,x) = e"k(x), for all a such thata — ao| < 7”(1_22%. Sed 6.1

Proof. To establish the last claim I€t be in the second class. Ve R and if (vj,y;) — { then
(2v—vj,yj) — { (by the identities [(2]7) withjy = v4 = 0). But a minimal Martin point has a
neighborhood basifJ;} in CKAY(Z) with U; N6y (Z) connected (by the general theory, see ¢.d. [29]
p. 223) and so we can find poirtse % with (v,z;) — . If {v;} is bounded it follows at once from
the (local) Harnack inequalities and the translation iraraze with respect to the first coordinate
that(vj,zj) — ¢. Itis then obvious that i7; — +oo sufficiently slowly(v;,y;) — ¢.

It also follows immediately from translation invariancetlif a sequencg(v;,y;)}j>1 converges to
apoint € Athen lim;(wj,yj) = ¢ for {w;} such thatv; —w;| — 0. O



Positive harmonic functions in cones and cylinders 10

2.5 Positive L-harmonic functions vanishing onR x 9% (b)

The proof of Lemmd 2.10 can be extended so as to use a much masakenption on the behavior
of f(u,xp) for u— —oo. This leads to a description of the positivesolution inR x Z vanishing on
R x d% which also improves Theorem 2]11.

Theorem 2.13If f is L-harmonic inéy (Z) and vanishes oR x 0%, then f is a linear combination
of F, and F_. Thus ifliminf e®mn'f (u,xo) = O then f is proportional to F.

U——00

Using the Martin disintegration d¥, we may writeF = aF, + bF_ + F; + F, with

F(ux) = [k (0du(@) , Flux) = [ el av(d)
A B
whereA = {{ € A1;3az, do < 07 < Omax aanZ €Cy(2) s.t.Kz(ux) =e%k, (x) },B={( €
Ajx;3az, amin < 07 < do andk; € C(X) with K, (u,x) = e%"k,/(x) } and whereu andv are
finite Borel measures supported AyandB respectively.

We claim thatu(A) = 0. If not there existar] € (do, 0max) such thatpu(A') >0 if A ={ €
A; ap < a; < a1} and repeating the argument in LemmaP.10 we may concludg nsing (x) :=
Jn Kz (x)du(Z) and the potential theory w. r. to the operafiy— %I =As— Aol in &1 (in
particular the related Green ken@@o). Note that[(2.73) becomeﬂé"(w) = ¢ > ~—~— where

teutars . (o)
A1 is the eigenvalue correspondingda

In the same way (or using the observation after rerhatk 2i§)siiown thaf, = 0. OJ

3 Nontangential convergence té-. or Hg

The next statement is about how Martin's topology relateshto canonical minimaF, in the
cylinder %y (X) (or to the minimaHg in the conesp(%)). It says that nontangential convergence of
the current poinfu,X) € €/ () (resp.x=rw € %,(Z)) to the end U = 4" (or “r = ") implies

its convergence to the canonical Martin point at infinity.

Theorem 3.1 For every sequencg; ‘= (uj,X;) in R x X such that y — + and{x; } is relatively
compact inZ, it holds that K (u,x) — e ¢o(x)/do(X0) (i.e. {¢j} converges to the Martin
function F)). In fact, the following Harnack boundary inequalities tol

C 1 G(u,x0; v, X0) G(V, Xo; W, X0) < G(U,Xo; W, Xp) < CG(U,X0;V,%0) G(V, X0; W, Xo)  (3.1)

foru,v,we R, u+1<v, v+1<wand some constant€C(d, %, Xp) > 1. The inequalities obtained
by replacing G by its transposed kernel [n {3.1) also hold.

A proof will be given at the end of sectidh 5. We note here thagjualities [(3]1) imply by them-
selves that fot — +oo0 the point(t,Xp) converges to a minimal point in the Martin boundary (see
[@] Théoreme 2 or[]3] p. 516).
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4 Martin boundary and subsets ofZ

In this section we collect some properties of the Martin lotaug of &, (Z) resulting from regularity
conditions on a subs&l of =. The results will not be used before sectfor} 6.3.

4.1 John regular subsets

Let M be a closed subset @. Forn >0, letM, := {x € X; da(x,M) < n } whered,(x,y) :=
inf{diam(C); C C Z connectedx,y € =} - §_1 is equipped with the usual metric R9-. For

0 < ¢p < 1 we say thaM is cg-John inX if there are pointg\, ..., Ay in X such that (id(A;,0%) <

o td(Ax, 0%) for 1 < j, k < N, (ii) for n := co max{d(A;,d%); 1< j <N}, eacha € M, can be
connected to ond,; by ace-John arc inz (see [p] Définition 1.1 and Théoreme 5.3 }1<j<n

is then called a&p-admissible set of poles favl (note thatN can always be chosen smaller than a
constaniNp(d, ¢p)).

The next statement generalizes Hirata’s main resuftin [22j rely on Theorerh 3.1 and a boundary
Harnack principle given in]6] [[1] foN < 2). Note that this statement may be easily reduced to
theN = 1 case.

Theorem 4.1 Let M be a closed ancheJohn subset & with poles A, 1< j <N. Thenlim_, 1(V,y) =
F. in the Martin topology, uniformly with respect togyM.

Proof of Theorem[4.] DenoteK the Martin kernel im’@(Z) with respect to the normalization point
(0,%0). Applying Théoreme 5.3 and Remarque 5.4[in [6Mox [v—1,v+ 1] as a subset 6£(Z)
(or rather -so as to deal with the classical Laplacian- tocthreesponding situation i (X)) we
obtain a constar® = C(d,cg) > 1 such that

K(v,y) v, Aj )

Kan (U, X 4.1
K(V7A1>(V, A/J) (V,AJ)( ) ( )

N
K(V,y)(uax) <C Zl
J:

wheneverv,y) € R x M, |v| > 1, and(u,x) € € (X) satisfiegu—v| > 1 (or da(x,M) > ¢p). Here
A is arbitrarily chosen idB(A|, 1§, dist(Aj;Sy-1\ %)) and we restrict tgy such thatly — Aj| >
2|A; — Aj| for all j.

By Harnack inequalities

Ky (VA))
(wy) V5
K >c—"—Kuya
(\Ly)(U,X) =C K(\I,Aj)(V>A/j) (\LAJ)(uv X)
when(u,x) € B((v,Aj),|A;j —Aj|) and hence —by the maximum principle—, also(igix) € ¢ () \
B((v,A)),|Aj — Aj]). Taking (u,x) = (0,%p) we see that 7,:?(“1))(2(’,/24)) < 1. So it follows from [4.11)
\4 J Y
that

N

K(V,y)(u>x) < of Z K(\I,Aj)(uax) (42)
=1
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when(v,y) € R xM, |v| > 1, and(u, x) € v () satisfiegu—v| > 1. Since by Theoreh 3K, ) —
F. for j — c and sincd~, is minimal, the result follows]

The proof also yields the following more general statemiiete the results of[6] for John subsets
with more than one pole are effectively used.

Theorem[4.1 Let {M,} be a sequence of closed John regular subsef with a common John
constant g. Assume thatyy— -+ in R and that(vn,AE”)) — {j € A1,1< ) <N, where for each
n, {Agn)}lngN is a g-admissible set of poles forMThen if y, € My, every Martin cluster function
of {(Vn,Yn)} is a linear combination of the K

In particular if the point; all coincide with a minimal boundary poidtthen(vn,yn) — ¢.

4.2 John cuts

Assume now thaM is a John regular closed subset>find that> \ M is the disjoint union of
two open subsetsy andU;. Fix & >0 and set)? = {x € Uj; da(x, M) > 3} andV?° = R x U,
j=1,2. LetV; =R xU;.

Proposition 4.2 If h = K, is the positive superharmonic function # (%) generated by a prob-

ability measureu supported on the closure of\Vh the Martin compactification@(i) and not
charging(0,xo), we have

h(U7X) S C [F+(u7 X) + F_(U7 X)]7 (U, X) € V16 (43)
for some constant & C(Z,M,Up,Xp, d).
Proof. We may assume thag € Uf (using Harnack and changing the reference point) and it

suffices to prove[ (4] 3) for eath= K(uy), Y € Vo with a constan€ > 0 as in the statement. Reducing
h onV;,, it suffices to prove the result fm(w), yeM,veR.

For such a polév,y), with sayv > 0, it follows from (@.2) and Theorefn 3.1 that ferc U such
thatd(x,Aj) > %d(Aj,aZ) for j=1,...,N, (we use the same notations as above)

N
K(V,y)(uax) S C/ Z K(V,Aj)(uax)
=1
<C" Y K (A € o(x)
J

S C/// eamaxu(po(x). (44)

In the second line we have used the maximum principle (asealrothe proof of Theorerh 4.1)
to compare the positivé-harmonic functione®at¢q(x) with the Green function with pole at
(vAj). In the last line we have used the inequalities given by TéradB.1 which imply that
K(V‘,Aj)(v,A’j) ~ K(\‘Aj)(v— LAj) ~ F.(v—1Aj). Using the similar inequality fov < 0 we get
the desired conclusioml]

Remark 4.3 Forh =Ky, y € M, the proof shows thdt(u,x) < C[F; (u,x) +F_(u,x)] if x € Uy,
|lu—v| > 1. If moreover > 0O, then Hu,x) < CF, (u,x), for these pointgu, X).
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Corollary 4.4 Under the assumptions of Propositibn]4.2 two seque¢esy;)} and {(wj,zj)}
such that y, w; — 4+, y; € Ug and 7 € Uy, have at most one common cluster pointdnwhich
canonly be E.

Corollary 4.5 If hg and hy are positive harmonic if& (Z), if hj = K,; with pj supported byJ; x R
(closure in% (%)), j =0, 1, if ul@ e %mad(hg Ahy) (U, X0) = ulng e"mint(hg Ahy)(—u,Xg) = Othen
ho A hy is a potential (that is, has no positive L-harmonic minojant

4.3 Inner ball property

If we have a boundary poirte 0% and an open ball (or ca(a,r) C Z with ze dB(a,r), r <
2, the results in[J4] (see als@] [2]) tell us (using Proposifp1?) thatasv — vp in R andy —
z non-tangentially irB(a,r), the point(v,y) tends to a finite type minimal boundary poit=
&(Vo; (z,@)) in CKAY(Z). Moreover the minimaK; is bounded away frontvg,z) and vanishes on
06 (2)\ {(vo,2)}.

There is a parallel statement for the behaviof\§) for v — 4. But here the inner ball should
be large. This will be used later for an example’s constancih sectior] 6]4.

Theorem 4.6 Assume thak contains an open hemispheXe in §_1. Then if{y;} is a sequence
in * and if vy — + in IR, the sequencgvj,y;) converges in the Martin compactification 6§ (%)
to the canonical Martin point F, i.e.,limj Ky, y.) = F.

The proof is deferred to sectipn b.4.

5 Uniqueness of the Martin point at infinity for d = 3.

We now prove Theorerh 1.3 (rather its cylinder version), gisinan essential way a result of R.
Bafiuelos and B. Davis on the heat kernels in planar domgif% (B]). This result says that given
the pointx; € > there is & > 0 and for each > tp a constanC(t) > 1 such that linp, C; = 1 and

C(t) e M do(xq) Po(y) < TR (X1,Y) < C(t) e o(x2) Po(y) (5.1)

whent > tg andy € = (see in [1p] Theorem 1 and section 4). Redal{} is the heat semi-group
generated by the Laplacian nand¢o is normalized by the conditiofigo||_2(s) = 1.

Theorem 5.1 If d = 3, every sequencg}j>1 = {(vj,Yj)}j>1, in €v(X) such that y — 4 con-
verges to E, i.e., K, (U,X) — Kz, (u,X) := et ¢g(X) /do(Xo) for j — oo,

The following simple lemma (valid for all > 2) deals with times ir{O, t).

Lemma 5.2 Givendy > 0and x € Z, there is a constant & C(dp; Z,X1) > 1 such that

1E(x1,y) < Ce M Po(x1)do(y) (5.2)

for ally € Z such thatly —x;| > &g and allt> 0
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Assuming as we may thab < d(xo,S-1\ 2), this is a simple consequence of the parabolic max-
imum principle applied in the regiofi(x,t);t > 0,x € Z}\ {(X,t); [X—Xo| < &, 0 <t < 1} (the
two members of[(5]2) ar@;, — L)—harmonic in(y,t) and the first has by definition minimal growth
atinfinity in~ x R, ).

Lemma 5.3 Assume &= 3 and let T,u > 0, x; € X be given. Then, as& —+oo,

| eE iy Z—o [ e FHmoay ) (5.3
0 \/f T

<,

uniformly inye Z, ||y —Xa|| > .

Proof. We may assum@& > to. By (6.1) and lemm4 5.2, it suffices to prove the relation itz
from (5.3) when the termg (x,,y) are removed from the integrals.
T & d _ a2 . o _a2_ d a2 o 1
Now [, e« H \—% < iVTeand,ifo>1, f? e @ “t7‘t >e w [5 e (Haltdt, where for
the last inequality we use the observation that e—\; is increasing in(1, «).
8.2 8.2 .
So [ge a M > { e e? wherev=p+3 and we may conclude since as— +,

1_1

YT e %380 o forany fixedd > T. O

Proof of Theorem[5.1. Assume as we may thgif — Y € Z. Using the Bafiuelos-Davis Theorem
and the above lemma and its proof, we hawg,if£ x; andj — oo,

G ) 0 (u(d-2t-v))? ( ) dt
VAnTG(U,Xg;Vj,Yj = / e T (XY =
ALV Y] 0 LRIV
(d-2)(vj ) CWv? @22

- & /we e P .y &

0 , \/f

© _uv)T @22 dt

, - (2 A 9

X e = a .

box)daly;) | 7

Thus, forxy, o € Z, we see thaG(u, X2; Vj,Y;)/G(U,X1;Vj,Yj) = Po(X2)/¢o(x1) for j — oo (assum-

ing first Yo # X1, Yoo # X2). This shows that a cluster functidt of the Martin kernelX,, ,, as
j = oo, is in the formK (u,x) = g(u)¢o(x) and hence must be = F, .

@-2)vj-v)
2

~

(5.4)

In fact,
©  uvp)? (422 dt 1 ,
2T _ —V/Ail
e 2 = e 5.5
/o vamt  2\/H (55)
(d—2)2

whereA; = [u—v;j|?, p = 52 + A1 (note that the left member dof ($.5) is the Green’s function
in R with pole at the origin and with respect & = (%fz — p evaluated at /A;). It follows that

G(u,X;Vj,Yj)/G(0,%0;Vj,Y;) — F1(U,X) whenj — co.

1
V(2214 %o
asv—u— 4. Similarly, G((u,x,); (V) ~ 7m¢o(xl)¢o(y)e*“min(”*") asv—u— —o,
uniformly w. r. toy. O

This shows thaG((u,x1); (V,y)) ~ (1) o(y)e~@maV-Y) yniformly with respect tq,
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Proof of Theorem|[3.]. The proof of Theorenj 3.1 (whedk> 2) is completely similar. In fact as
well known (see e.g[T12][T31]) for every compattc 3, eMtrg(x,y) — do(X)do(y) ast — -+oo,
uniformly w. r. toy € K. So an obvious adaptation of the above gives the convergenEe.
Inequalitieq 3]1 follow from the fact that no@(u, xo; 0,Xg) ~ C’ €%mint! for u — oo,

Remark 5.4 The proof also shows that Theor¢m|5.1 extendd o3 if the baseX is intrisically
ultracontractive with respect s, (see [1F], [P], [B]). For example, by Bafuelos resultsghthis
is the case if for some >  the baseX is LP-averaging (that ips € LP(Z) whereps(x) is the
pseudo-hyperbolic distance xg). See [B] for other examples.

6 Examplesford >4

In this section we show that faf > 4 there are cones iRY with a host of Martin points at infinity.
See sectionf §.2 afjd 6.3 (another example described iorsfecl shows that these points can be
minimal as well as non minimal). This is closely connectedhwihe existence —established by
Cranston and McConnell ifi J14]- of a bounded dom@iim R3 with an h-Brownian motion inD
with an infinite lifetime. In fact we use a variant of the camstion in [I4] section 3.

As before we work with the model of the cof#®(X) given by the cylindeX% (%),L).

6.1 Preliminary lemmas

Fix Ao > 0,d > 2, and consider a caB = B(a,r) :={x€ S;|x—a] <r}in S:=_1, r <1,
with two given pointsé, &’ € dB, symmetric inS with respect taa. Let T = B(&;r/100) N dB,
T’ =B(&',r/100NdB, and letMg := {x € B; |[x—&| = ||[x—&'|| }.

Let Q be a region irfy_; such thaB c Q € Sy-1\ (@B\T), ' NQ\B=0. SetQ = Q x R.

Lemma 6.1 Let v=H; solvesAsv— Av—gv=0in Q and y,t) = f(y,t) in 9Q where f(yt) is
bounded measurable #Q, nondecreasing in t and(§,t) = 0fory ¢ T'. Then, givem € (0,1),
there existg; = £1(d,Ap,n) > 0 such that for0 < € < g and0 < A < Ay,

He(x,t) < /{m (N f(yt)+(L—n)f(yt—er®) dud(y), (xt) e Mex R (6.1)

Moreover H (x,t) is nondecreasing int. Hergg is the harmonic measure of X @w. r. toAg— Al.
Proof. The last claim follows from the parabolic maximum principled the translation invariance
intof As— Al — 4.

To prove the first, observe that by the monotonicity asswnptie may assume thaty,s) = ¢(y)
for s>t —er?andf(y,s) = ¢(y) whens <t — er2. Since the inequality is an identity wheiy, s)
is independent o we may assumey = 0 and also that = r? by time translation invariance.
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Then [, [n f(y,er?) + (1—n)f(y,0)] du(y ) = n®(x) where®d soIvesACD A®=0inQ and
® = f on dQ. We want to show thatls (x, er?) < nd)(x) providede < £ is sufficiently small. Let
N be the integer part og and setw(x,s) = H¢ (x, S+ £r2) — H¢(x,s).

By the parabolic Harnack inequalitigs [26)w(a,r>(1—ke)) > w(a, ;) for 1<k <N and a con-
stantC = C(d). Thus, on summing upNw(a,r?/2) < CH¢(a,r?) < Cd(a).

Applying next the parabolic boundary Harnack principleCin< R ([L7], [R]]) to w(x,s) and ®
(viewed as functions ofx,s)) we obtainw(x, er?) < ¢ %CD(X) < % ®(x) for x € Mg with
c1 = ¢1(C,d,Ag). The result follows[]

We will use lemm4 6]1 in conjunction with the following lemma

Lemma 6.2 Let {mc}1<k<n be a finite sequence of probability measureginf the form m =
3%+ 30_4 for 1< k<N, where0 < g, < 1. Let L ande be given positive numbers. There is an
A=A(L,&) >0suchthatifs} ;a> A, the measurey = m *- -+ my satisfies vy ([-L,0)) < &

The probabilityvy is the law of the random variable:= — z’j\‘:lajxj if Xg,...,Xy are independent
random variables such thBtX; = 0) = P(Xj = 1) = 3. For3 > 0, we have

P(-Z<L)=P(? > eP) <fLE() = ﬁ E(e PaX) — bt ﬁu_l—%““ﬂ).
=1 1=

N N
Thus, usinga, < 1, P(Z > —L) < &t I_L(l— ge*B aj) < €t exp(—%e*ﬁ S aj). The lemma
= =i

follows.d

6.2 A class of cylinders.

We now consider domairlsC S—1, d > 4, similar to examples introduced {n]14]: there are digjoin
open ballsBj = B(xj,r;), j > 0, in §_1 such that (|)ZJ>0r = +oo, (i) B; C Z, (iii) for N > 1,
>\ By has two componentE*, Zy with disjoint closures andy O Ujn Bj, P3N Uj=nBj, (V)
there are caps;, Tj’ indBj, j >0, symmetric with respect g, of radiusp; < rj/lo and such that
Zj_ ﬂEj CTj, ZT ﬂEj C Tj/.

Remark 6.3 There is argq > 0 such that whenevey > 0, j > 1, satisfyy rJ-2 =oandy r‘j’*l <&,
there exists a correspondizgsuch that moreover: (aX; — Xx| > 4 max{ry,r;} for j #k, (b) the
centersx; have a limitPy in §_1 (c) X is locally Lipschitz in§;_1 \ {Po} and is Dirichlet-regular in
Si_1. The proof is left to the reader.

Set>y = Zy UBn for N > 1 and fixAg > 0. Letk be a bounded positive solution 8k—Ak=0,
k=0indZn\ Ty, 0< A < Aq. Forl >0, leth = hy solves: dh(x,t) — Axh(x,t) + Ah(x,t) =0 in
2N X R, h(t,X) = 1t2,g k(y) in 02N x R.

Proposition 6.4 Let £ and € be positive reals and let & >;, 1 < q < N. There is an integer
Ns(q,€,4,Ap) such that whenever ¥ Nx(q, €, ¢, Ag),

hy(x,0) < ek(x). (6.2)
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Proof. Fix n = % and a correspondingy > 0 as given by lemmp §.1. Lete {q,q+1,...}, let
f(y,t) be a bounded Borel function TF}Q x R which is non decreasing inand letv = H; denote the
solution ofAsv—Av—dv=0inZ, x Rwithv = 1T’3X]R f on the boundary. We show by induction
onn=p-—q, that

H(xt) < /(/: F(yt+8) dvgp (9)) dEE® (), X € Zq\ Bg 6.3)

wherevg p = ¥ Gxn+3o gorz) and whereu® is the harmonic measure ®fn ZpW.r. toAs—Al.
i=q

Denotevj :=1& + 16

—£0I’2

For n= 0 this is lemmg_ 6]1. Assuming that the property holdsrfer1 > 0 and viewingH; as
a solution inZq x R of a Dirichlet problem forAs— Al — & we get by lemmé& 6]1 and maximum
principle

Hio) < [ ([ T Hishaus) iy

—00

= /T/ /+°° /T//+°° (2, S+1+T)dvg1,p(T) dpty” (2) ] dvg(9)) dps (¥)
= LU st D a0 @) duiy
= [ et o)t @0k @) auiy

- /Té(/mf(z’”e)d"q,p(@)]duxz’)(z), X€ 2y,

—00

where we have used in the second line the induction assumptithe third the fact that integration
with respect tos and integration with respect tocommute and —in the last line— the formula

P = [ py®dusd(y) (for x € %,)- This proves[(6]3).
From (6.B) it follows that fox € Z; = 24\ By,

/’ / k quN d[_lx (Y) = k(X) VQN([_E’O))’ (64)

and the proposition follows from lemnfa .2 and the condi§gn, r# = +oco. [J

We now take fork the Green'’s functiok = G{; in < with pole at some poing € =\ Iy and with

respect tad\s— Al. Itis easily checked that for¢ <s<0,x € Iy, hy(s,X) > f(f"sl e Mg (x,y)dt.
Recall thatk(x) = [y e *'7g(x,y)dt and that the parabolic Green’s function with pole(y, to)
in 3 —and W.r. toAs — A — d— is T (X, t;yo,t0) : (X,1) = List, € A0 (X, y0); thusu(x,s) :=
[T 1o n T (X sy t)dt= (f S gt TE(X,y) dtis bounded by (x,s) in ZyN{—¢ < s< 0} by the
parabolic maximum principle.

Thus, the previous result can be read as follows.
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Lemma 6.5 For any sequencgy;} converging inX to the ends” of X defined by the cuts\B(a
basis for& is provided by the sefs)|) and everyA > 0, we have

im Jo e rg(x,y;)ds

=0
= [ e M (X, yj)ds

for every fixedd > 0 and every x 2.

Jig & M e(xy;) ds
So, limj_e 72

W—lforto>o xe€ ZandA >0.

Lemma 6.6 Let{y;} be as in lemm§ §.5. For§> « and for given realp, p’ the ratio

1 <p+<d 212
ot 2e” TR(xyj) dt]
1 (p'+(d-2)1)2

ot 2« " m(xyj)dt

(6.5)

d—2 ’
converges towards ez (") for each xc .

d—2)t)2 d-2)2

2
oot_le_el_te_t( 4

We havefé”t‘%e‘ T TR (x, yj)dt =e" e

T(x,yj)dt. If we setd(t) =

'[7767I -
/(:Otp(t)n(x,yj)dt - o(/towtp(t)n(x,yj)dt) (6.6)
In fact, with A > (- ) , we have fott; > 0 large enough
/ ()T (xy;)dt > Clts, A, d)/we*Atm(x,yj)dt 6.7)

(note that% > gf,ﬁl for t > t;, becausep (t)é is increasing fott Iarge enough). On the other

hand for such a fixeth, we have[§' ¢ (t)7k(x,y;)dt < C'(tz,A,p,d) [ A7 (xy;)dt and (6.p)
follows by lemmd 6]5.

2
Sincee & — 1 fort — oo (p being fixed) we see now that §s—+ +o,

/t‘ie‘me S m(x,yj)dtw/ t‘%e‘t(Tm(x,yj)dt (6.8)
0

Using also this result fop’ the lemma follows[]

6.3 The Martin boundary of the first example

Using Lemmd 6]6 we get a (partial) description of the Martodary of the cylinde® (£) =R x
 with respect td_ := 92, + d;zzﬁu + As. In particular it will be seen that there are Martin boundary
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points related to sequencgs,yj) € 6y (Z) with lim u; = 4 and distinct from the canonical point
F. given by Theoren 2.11.

Denoteds = 95N {Un>10Z\} the set of points i@X “away from the ends”” (see Lemma4 6]5).
Because? is defined by a “smooth” system of cuts (the ba@jgor the mediator$/y of Ty andTy

in By) it follows from standard forms of the boundary Harnack pigite (see e.g[]4],[[6]) that for

A < A1(Z), the ends is the trace orx of the neighborhoods system —in the Martin compactification
of (£,As+ Al)—of a minimalAs+ A l-harmonic functiorkém (normalized akg) which vanishes on

9 ([f] Theoreme 2.5).

. - . - - - 2 H .
For a € [ao,0max) —recall ap := —d—22 and Omax := (d=2)+y (g 2 H4h(2) , defineKZ (u,x) :=

e““l(;("’)(x), (u,x) € ZxR. HereA (a) = a?+ (d—2)a (thusA (ap) = —("%42)2). RecallA denotes
the Martin boundary o%y(Z) w.r. toL, andA; its minimal part.

Theorem 6.7 The function K° is L-minimal (so K° = K; for some € A;) and there exists
®: X — R, going to+o along & and such that(uj,y;) — & when|u;| < ®(y;) and {y;} —
&. Moreover for evenyx € (do, Omax), KZ is minimal L-harmonic ir6,(X) and each associated
sequenceu;,yj} in 6 (Z) satisfies : (i){y;} — & and (i) uj — +co.

Similarly, for a € (amin, o), the functionK % is L-minimal in 6}, (X) and every associated sequence
{u;,y; } satisfies : (i{y;} converges t& and (ji) u; — —oo.

Proof. (a) By lemmd®6J6, iy;} is a sequence i& converging towards’ and such thaf(0,y;)}
converges to somé € A, the Martin functionK; satisfies:K¢ (p,x)/Kg (p’,x) = e 22— for

p,p € R. ThusKg(u,x) = ‘d%zuk(x) wherek is independent ofi and necessarily a positive
solution ofAsk+ Agk=01inZ, Ag = A(ap).

Using the John cuth, (the mediator irB, betweenT, andT;),n> 1, and Propositiof 4.2 we see
thath; vanishes o= x R. Soks =01in 0% and as mentioned befokemust be theAg, , + Aol )-

minimal function corresponding &, i.ek = I@@o

(b) It follows that(u;j,y;) — & when{u;} is bounded andy;} as before (see Propositipn J.12).
And for py growing sufficiently slowly to+- asy — &, the point(u,y) tends toé for y — & and

lu] < py (the convergence holds in the Martin spacé®f(>),L) ). In particular there is no minimal
boundary poin = lim(u;,y;), with y; — & of the finite type (i.e. non exponential in the vertical
variable) described in Propositi¢n 2.12 (iii).

(c) We now show thah; is minimal L-harmonic in%y(Z) and more generally that for eache

[0, Omax) the functionhp(u,x) = e9Yky(X), whereky = IQ,(“), is minimal harmonic fo%y (Z),L).
Consider its Martin’s disintegration into-minimal functions. This disintegration does not charge
the set of minimal functions in the forefUk(x) with 8 # o (this would contradict the behavior of
ho asu 1 +o oru | —). Sincehg =0 onR x dZ, it is supported by the set of minimal poinfs
such that{ = lim(u;,y;), |uj| — o andyJ — & (using Propositio@Z and (b) above) and hence
Kz (u,x) = ePUk(x) with k vanishing onds. Thusk = l@ and the disintegration is supported by a
minimal point{ such thaK; = ho.

The remaining assertion clearly follows from Coroll@ry] 4t the proof is completé]
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6.4 Proof of Theorem[4.6 and a second example

In this section we construct a second example —based on #te for which there are for each
a € (Omin, dmax) corresponding minimal and non minimal Martin poigtsvith K; (u,x) = e"k(x).
We first establish —in the spirit of][2]- Theordm|4.6.

A. Preliminaries. DenoteX ; the hemispherét € S_1;t; > 0} of §_1, % = (1,0,...,0) its center,
ando the reflexionx = (ty,...,tq) — (—t1,t2,...,tq).

Proposition 6.8 Assume thak > >, and denote G the Green’s functionRfx . Givenp > 0,
there is a C= C(d, p) such that wheneverg >, x€ Z, and u< v—2p

Gyy) (U, X) 1= G(U,x;v,y) < CGyy)(U,X%o) (6.9)
Proof.a) By a known general estimate (sEe [2], [4]) of the Greemgtion of a domain containing

aC?-ball (here{(t,x) € %/ (Z); |x—x0/? + [t —w|? < 2}) -together with Harnack inequalities and
elementary observations- we have whren>,,Z € Z, W —w| > p:

G(W,Z;w,2) <Cqp G(W=Ep,X0;W, 2) (6.10)

a(x)). Applying the maximum principle ifR x Z, to the functionsGy,,

b) Denoted (t,x) = (t,
o(Z,)) -extend the second by zero outside(o(X))- we have

andG(\Ly) o0 in 6y ( )
vy (W2) < Giyy) (W.0(2)) < SUP(Gyyy) (WZ); Z € 2.} (6.12)
forzez =%\Z,, w;«é v. In particular we need only consider 2, (takew = u).

Similarly, if ufulx), t € R, is theL-harmonic measure afu,x), u <t, in the truncated cylinder
Ct =% (E)N{(w,2);w<t}we have foxc %,

Hiux < 0(Hux) in {t} xo(Z_)cact (6.12)

This is because the adjoint Green’s functi(ik;ﬁJ with respect taC! is larger tharr*szu‘x) odin
CLNn{(w2);ze 2, }, andyf,, (t,d2) is dWGt ,dos(2).

c) Now Write the réduite (w. r. to the cylindéfy (%)) of G, over =} :=

p= %

- {U+P} X ZJ,_, i e.,
([B] [L3]), as a potentiaB,, of a positive measurg on{ . Then

(vy)

Cu(ux) = [, Gux)du()
<C/ G(u,%0; () du({)

_CGIJ(U7X0) SCG(\/,y)(U7XO)7 (613)

using (6.1p).

d) Finally g = G, — p is majorized inC""” by the solutionh to the Dirichlet problem irC*",
with the boundary conditioh = Gy, in =_ x {u+ p } andh = 0 on the rest 0fU. By (6.11) and

6-12),9(u,x) < ux)andby-)qux ) < C Gy (U,%o). O
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Corollary 6.9 Supposex; C X. Let{y;} be a sequence ia" and let y — 4+ in R. Then
{(vj,yj)} converges to the canonical Martin point &, i.e.,lim; K, y) = F:.

This is Theorenj 4]6. Similarly of course Mf — —oo, y; € £, we have lim Ky = F-

Proof. If { is a cluster Martin point fof (vj,yj)}j>1 it immediately follows from Propositiof §.8
that if h denotes thé-harmonic measure d0} x X in (%),

Kz (u,X) < CKz(Uo,Xo) h(u— uo,x)

for u <up, x € Z. This shows thak, vanishes ot x 9% and thatk, is bounded fou < up. Thus
K; = F; by Theoren{ 2.310]

B. Assumingd > 4 we construck as follows. We start with the hemisphexe, a pointPy € 02
and a sequence of poinB € 0%, such that|P, — P =4", n> 1. For eactn > 1, letQ, be

a domain inS_1, Qn C Bsu,l(inn—lH) \ 2, of the type considered in remafk]6.3, (starting with
disjoint ballsBy, j, j > 1, in S—1 converging to some poit@, in B(P,, 4n—1+1) \ 2, and such that the
sum of the squares of their radii diverges). Lgtbe a region irB(R,, 4n—£1) \ (Z+ UQn) such that
Un,NE, is a closed baly, in 95, of centerP, andU,NQ, a caphy, C 0Bn1MdQn (WhereA, and

A, are the relative interiors).

The domair is the union ofz, , the joining region&J,, and the diskd\, andA;, n > 1.

Let o € (Omin, Omax) @andn > 1. As before, by[[4] there is a unique positiige+ A (a )1 )-harmonic
functionk, in Z vanishing indX\ {Qn} and such thak,(xo) = 1 (Xo is the center of the hemisphere
). Moreoverk, is minimalA-harmonic in> and by Theorerh 6.7 the functimg?(u, X) = €9Ykn(X)

is minimal L-harmonic i, (Z). Denoteh(®)(u,x) = e?Yk(x) the similarL-harmonic function in
¢y (Z) with a pole at.

Proposition 6.10 The function ) is a non minimal Martin function fof& (Z),L).

Proof. It follows from standard arguments that tkevanish uniformly on the boundary &f away
from Py (asn — ), so thatk = limk,. Thush(@ = lim Kéon') andh(@ is anL-Martin function in
¢y (%) associated to a poirt € A. If a > ag (resp. a < ao), there is a sequendgv;,y;)} with
yj € Qj, limvj = 4o (resp. limvj = —o0) converging tod.

By Corollary[6.9, the poinf —as a Martin boundary point— is not in the closureRok 2. Thus
every sufficiently small neighborhood of { meetR x Qy, for all largen, but notR x ~,. And
V N% (%) is not connected. But (by a general property) each neighioattof aminimal Martin
boundary point contains another whose tracei>) is connected (see e.d. [29] p. 223). Helce
is not minimal.[J

7 Extensions to more general cylinders

The argument in sections 2 and 3 can be extended to more gseeoad order elliptic operators in
cylinders. We describe here a simple generalization arne #ta corresponding results. Assuie
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is arelatively compactegion in aC! Riemannian manifold/ of dimensiond — 1 (d > 2) equipped
with a second order elliptic operatby;, in the form

Lw(¢) = div(AO¢) +B.0¢ + yé (7.1)

whereA is a measurable, bounded and uniformly elliptic sectionrmad(EE (M), B a bounded mea-
surable vector field iM andy a nonpositive bounded measurable functioMigref. [33]). We also
assume thal \ Z is non polar. Thuy admits a Green function iB.

We consider now a differential operator in the cylind&(X) = R x X which is a direct sunk. =
Lr @ Lm whereLr = u2 + b ; Is translation invariant ifR (i.e., bis a real constant). Again we fix
somexp € Z and take(0, o) as the normalization point i#, (%) for the Martin functions.

We defined; := A1(Lm; ) as the supremum of all reebsuch thaty +tl admits a Green’s function
in Z (or such that the cone of nonnegatlvg + tl-superharmonic functions has a dimensiei).

It is well known that 0< A1 < o« and that fort := A; all nonnegative(Ly + tl )—superharmonic
functions inZ are proportional to the unique (up to scalar multiplicatipositive Ly + tl positive
solutiongo in . This solutiongg is bounded, vanishes in the weak sense on the boursttagnd
¢o € H}(Z). As also well-known we have similar properties for the fokhadjoint operatot;,, and
moreovem1(Ly,; Z) = A1(Lm; Z). We denotep; a positive(L* + A1l )-superharmonic function iB.
Again ¢4 is unique up to multiplication by a constant, vanishes)@rand is(L§; + A1l )-harmonic
inZX.

Repeating the argument used in secfon 2 we obtain a siméssription of the_-minimal Martin
function associated with the end— +o in ¢ (Z).

Proposition 7.1 If K is a minimal L-Martin function in&y(X) = R x Z associated to a sequence
(uj,%j) with uj — +o0, X; € Z, then K is in the form

K(u,x) = €"“K(0,x), (u,x) ERxZ (7.2)

for somea > —g and §x) = K(0,x) is a proper function ins: Lys+As=0,A = a?+ba. So
q = “REvPHaA and—%2 < A < Ag; moreover s igLy +Al)—minimal inZ.

As before there is a natural bijectidh— K between the seA*® of the Martin function arising
from some sequendg;,y;j) in ¢ () with limv; = 4+ and the analogue s&&~* (related to the
condition limv; = —eo) by letting K (u,x) = e"UK (—u,x).

Theoren{2.33 can also be extended to the present framewdrk, dight modification is required

in the proof. SeF, (u,x) = emat! "’0(( andF_(u,x) = efmnt 5505 %09 \yheredmay = L VP4 and

$o(x0)
. —b—+/b%+4A;
Omin == ——5——-

)

Theorem 7.2 If f is L-harmonic in% (Z) and vanishes in weak sensel®x 0%, then f is a linear
combination of F and F_. In particular, if moreovetiminf e“mn" f (u,xg) = 0then f is proportional
U——oo0

to F.. Thus K and F are L-minimal in%(X).

As in the proof of Theorer 2.]13, we may reduce ourselves tavghe following. A functionF
in % (Z) which vanishes ofR x 9% and which is in the fornF (u,x) = [, K;(u,x)du({) where
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A={eAT™NAy; —g <a({) < a1}, 01 < dmax and whereu is a finite positive Borel measure
on A, must be the zero function. Denot¢ = a2 + baj.

As before the functiorp (x) = [, K;(0,x)du({) is positive superharmonic with respectlig =
Ly + Agl, Ag = —%2 and vanishes in the weak sensedi The measure-Lo(¢) is given by the
density(x) = [o(A —Ao) k? (x)dus (x). It follows that¢ is theLo-Green’s potential irx of ¢ and
again,G;° () = ¢ > x5 @ in I, whereG;® is Green's function irE w.r. to Lo. To conclude we
then slightly modify the argument in sectijn 2 using now ttieimal heat semi-group; generated
byLin%.

" 400

/Z.G;O(W)(bsdaM :/0 /ZertR(l.U)(bSdGM dt:/()+m/ze_(Al_A°)tlll¢5det

becausd®’ (go) = e ¢g. Thus f; G5 () ¢ dow = x5 [ @ ¢ dow.

But on the other hand fron&s*(y) > x5 W it follows that JsG(W) ¢g dow is larger than
Tl,\oftllfl’é‘da- Thus[Y¢ido=0andyP =0in3. So¢p =0.0

Corollary 7.3 Every positive L-harmonic function(d, x) on %Y (Z) vanishing (in the weak sense)
onR x 9% and such thatimsupf (u,xg) < o —xy € —is proportional to ..

U——00

Theoremg 3|1 an[d 5.1 extend as follows.

Theorem 7.4 Letéj = (vj,Yj), ] > 1, be a sequence of points#y () such that y — 4. Ifd <3
orif d > 4 and {y;} is relatively compact ik, the functions I (u,x) converge to K (u,x) :=
€%z (Yp(x). In particular when d< 3, . is the only Martin point at infinity.

The proofs are the same as above in sedfjon 5 using the natteaisions of (5} 1) (witly in a
relatively compact subset @fwhend > 4) to our present setting. Denofe; } the heat semi-group
generated by the in = and as aboveg any positive eigenfunction of the adjoint elliptic operato
—L* in X for the eigenvalu@\;. Then we have :

(i) if d =3, there is @y > 0 and a functiorC : [tg, ) — (1,+) such that lina,. C(t) = 1 and —if
Co= ([ 9o(y)95(y)do(y)) 2

CoC(t) te ™M go(x0) 95 (y) < Th(X0,y) < CoC(t) &M do(x0) §(y), t > to (7.3)

for all y € =. The proof in [Ip] Theorem 1 for the Laplacian can be adapttn ane shows that the
Cranston-McConnell inequalitie§ J14] [7] (see alfp [9])chfor all subdomainsw of Z: i.e., there
is a constan€ = C(Z) such that for every and every positivé-harmonic functiorh in w one has
G?(h) <C|wlh.

(i) for all d > 3, it is well-known that [(7]3) holds provideglis restricted to a relatively compact
subsetA of X (see [3P] Theorem 1.2 (jii) with a class of elliptic operatatightly different from

ours, see alsq [B1][[B2)).

Let us finally also mention that the results in sectipnb 4df&ag extend to the present setting if we
restrict to John conditions witN = 1, whereN is the number of poles —recall the needed results in



Positive harmonic functions in cones and cylinders 24

[B] require forN > 2 the symmetry of the underlying operator. WHga- 0 andA is symmetric,
the restrictionN = 1 can be removed sinde= Lg + 92, + bd, is then symmetric with respect to
the reference measurgdu,dx) = €®duday (x) (i.e. L is symmetric inM x R equipped with the
riemannian metrigy, y (du,dx) = € (du)?gw (dx)).
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