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ABSTRACTIN this paper, we address the problem of the usefulness afathef discovered asso-

ciation rules. This problem is important since real-lifetdlaases yield most of the time several
thousands of rules with high confidence. We propose newittigts based on Galois closed

sets to reduce the extraction to small covers (or bases)acteand approximate rules, adapted
from lattice theory and data analysis domain. Once frequésded itemsets — which constitute
a generating set for both frequent itemsets and associatites — have been discovered, no
additional database pass is needed to derive these basgeriEwents conducted on real-life

databases show that these algorithms are efficient and bdua practice.

RESUME.Nous traitons dans cet article du probleme de I'utilisaiéildes régles d’association
découvertes. Ce probléme est primordial car, dans la plupas cas, les jeux de données
réels conduisent & plusieurs milliers de régles d'assémmtont la mesure de confiance est
élevée. Nous proposons de nouveaux algorithmes, baséwsiisdtion de la fermeture de
la connexion de Galois, permettant d'extraire des couveduéduites (ou bases) pour les
regles d'association exactes et partielles, adaptées doailee de la théorie des treillis et de
I'analyse de données. L'approche proposée consiste aiextes itemsets fermés fréquents —
qui constituent un ensemble générateur pour les items&gsiénts et les régles d'association
— et générer ensuite ces bases sans autre acces a la base ni&edor_es expérimentations
menées sur des bases de données réelles montrent I'effieatiitilité de ces algorithmes.

KEYWORDSdata mining, Galois closure operator, frequent closed gets, bases for association
rules, algorithms.

MOTS-CLES extraction de connaissances dans les bases de donnéestiferrde la connexion
de Galois, itemsets fermés fréquents, bases pour les réglesociation, algorithmes.
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1. Introduction and Motivation

Data mining has been extensively addressed for the lass ygaecially the prob-
lem of discovering association rules. The aim when disdogeassociation rules
is to exhibit relationships between data items (or attébyand compute the preci-
sion of each relationship in the database. Usual precisieasores are support and
confidence [AGR 93] that point the proportion of databasedaations (or objects)
upholding each rule out. When an association rule has suppdrconfidence ex-
ceeding some user-defined minimum thresholds, the ruleisidered as relevant and
the extracted knowledge would likely be used for supportiegsion making. A clas-
sical example of association rules fits in the context of ratasket data analysis
and highlights a particular feature in customers behad0% of customers who buy
cereals and sugar also buy milk and 20% of customers buy bk ttems.

Since the problem was stated [AGR 93], various approacheseen proposed
for an increased efficiency of rule discovery [AGR 94, BAY ®&RI 97b, LIN 98,
PAS 98, PAS 99b, PAS 99a, SAV 95, TOI 96, ZAK 97]. Howeveryudking advan-
tage of exhibited knowledge means capabilities to handta suknowledge. In fact,
by using a synthetic dataset containing 100,000 objects) ewhich encompass-
ing around 10 items, our experiments yield more than 16,00 rwith confidence
outcoming 90%. The problem is much more critical when codiddata is highly cor-
related or dense, like in statistical or medical databaBes.instance, when applied
to a census dataset of 10,000 objects, each of which cheractdy values of 73 at-
tributes, experiments result in more than 2,000,000 ruigssupport and confidence
outcoming 90%.

Thus the talked issue could be rephrased as follows: whievaet knowledge
can be learned from several thousands of rules highly reahtfdWhich aid could
be offered to users for handling countless rules and fogusinuseful ones? Before
explaining how our approach answers the previous quest®ns examine proposed
solutions for meeting such needs.

1.1. Related Work: an Outline

Among approaches addressing the described issue, two readstcan be distin-
guished. The former provides users with mechanisms forifijgules. In [BAR 97,
KLE 94], the user defines templates, and rules not matchitfytivem are discarded.
In [NG 98, SRI 97], boolean operators are introduced forctelg rules including (or
not) given items. In [SRI 96, TOI 95], methods for pruningasilvith weak measures
of improvement, that characterize the difference betwegparts and confidences
of a rule and its sub-rules, i.e. with smaller antecedentsarde consequent, are
proposed. A similar approach expanded with boolean oper&bo selecting rules
is proposed in [BAY 99b]. In [MEO 96], an SQL-like operatorlled MINE RULE,
allowing the specification of general extraction criteimdefined. The use of the
user’'s domain knowledge for selecting unexpected ruldaguseasures of distance
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between rules called deviation measures, is proposed ilC[8E PIA 91, SIL 96].
In [BAY 99a], the proposed approach consists in selectingsrwith maximal an-
tecedent, called A-maximal rules, that are rules for whieh addition of an item to
the antecedent reduces the population concerned by theTudequoted approaches
operate “a posteriori”, i.e. once huge amount of rules ateeted, querying facilities
make it possible to handle rule subsets selected accomlithg tuser preferences.

In contrast, the second trend addresses the problem with @nidri” vision, by
attempting to minimize the number of exhibited rules. In [N85, SRI 95], informa-
tion about taxonomies are used to define criteria of intexbsth apply for pruning
redundant rules. The use of statistical measures, suchaasdPés correlation, chi-
squared test, conviction, interest, entropy gain, ginifarinstead of the confidence
measure is studied in [BRI 97a, MOR 98, SIL 98].

1.2. Contribution: an Overview

The approach presented in this paper belongs to the seamtigince it aims to
extract not all possible rules but a subset called small covdasis for association
rules. When computing such a basis, redundant rules arardest since they do not
vehicule relevant knowledge. Such a pruning operation isyastep during rule ex-
traction, and significantly reduces the resulting set. Mueg, since rules unexpected
by the user are important [LIU 97, SIL 96], presenting a listudes covering all the
frequent items in the dataset is also needed. The approagioged in this paper
meets this requirement.

First, using the closure operator of the Galois connect®iR [67], we charac-
terize frequent closed itemsets introduced in [PAS 98].nTlee show that frequent
closed itemsets represent a generating set for both fréifeersets and association
rules. The underlying theorem states the foundations obpproach since it makes
it possible to generate the bases from frequent closed ésny avoiding handling
of large sets of rules. We propose two new algorithms: thenésrachieves frequent
closed itemsets from frequent itemsets without accessiaglataset, and the latter,
called Apriori-Close, extends the Apriori algorithm [AGR]%y discovering simul-
taneously frequent itemsets and frequent closed itemstitewt additional execution
time.

Then, using the frequent closed itemsets and the pseudectiemsets defined by
Duquenne and Guigues in lattice theory [BUR 98, DUQ 86], wisnée¢heDuquenne-
Guigues basis for exact association rulgsles with a 100% confidence). Rules in
this basis are non-redundant exact rules. Besides, usinfyequent closed itemsets
and results proposed by Luxenburger in lattice theory [LUX @e define theroper
basisand thestructural basis for approximate association ruléhe proper basis is
a small set containing non-redundant approximate asgorciatles. The structural
basis can be viewed as an abstract of all approximate rudésdid and can be useful
when the proper basis is large. We propose three algorithteaded for yielding
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these three bases. Using the set of frequent closed itengsetsrating the evoked
bases is performed without any access to the dataset.

An algorithm discovering closed and pseudo-closed itesnisas been proposed
in [GAN 91] and implemented in 6GNIMP [BUR 98]. However, this algorithm
does not consider the support of itemsets and, since it wonks in main mem-
ory, it cannot be applied when the number of objects exceen® shundreds and
the number of items some tens. From the results presentddJiX 91], no algo-
rithm was proposed. In [PAS 98, PAS 99a], the associatioa flimework based
on the Galois connection is defined. Fitting in this groundwowo efficient algo-
rithms that discover frequent closed itemsets for assoaciatiles are defined: the
Close algorithm [PAS 98, PAS 99a] for correlated data andAH@lose algorithm
[PAS 99b] for weakly correlated data. The work presentednis paper differs from
[PAS 98, PAS 99b, PAS 993] in the following points:

1. It shows that frequent closed itemsets constitute a géngrset for frequent
itemsets and association rules.

2. It extends the Apriori algorithm and algorithms for digedng maximal fre-
quent itemsets to generate frequent closed itemsets.

3. It adapts the Duquenne-Guigues basis and Luxenburgdtsdésr exact and
partial implications to the context of association rulekisTadaptation is based on 1.
(generating set).

4. It presents new algorithms for generating bases for exattapproximate as-
sociation rules using frequent closed itemsets.

5. It shows that the algorithms proposed are efficient foh liproving the use-
fulness of extracted association rules and decreasing#wgon time of the associ-
ation rule extraction.

1.3. Paper Organization

In Section 2, we present the association rule frameworkdasdhe Galois con-
nection. Section 3 addresses the concept of basis for battt ard approximate as-
sociation rules. New algorithms for discovering frequend &equent closed itemsets
are described in Section 4 and the following section prasalgorithms computing
the bases for association rules from the frequent closatsies. Experimental results
achieved from various datasets are given in Section 6. Iired a conclusion, we
evoke further work in Section 7.

2. Association Rule Framework

In this section, we present the association rule framewadedl on the Galois
connection, primarily introduced in [PAS 98].
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Definition 1 (Data mining context). A data mining contexis defineda® = (0,7, R),
where© andZ are finite sets of objects and items respectivRYC O x Z is a binary
relation between objects and items. Each couyplé) € R denotes the fact that the
objecto € O is related to the itemi € 7.

Depending on the target system, a data mining context carréation, a class,
or the result of an SQL/OQL query.

Example 1. An example data mining conteft consisting of 5 objects (identified by
their OID) and 5 items is illustrated in Table 1.

OID Items
1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E

Table 1. The example data mining context

Definition 2 (Galois connection).LetD = (O, Z, R) be a data mining context. For
O C O andI C Z, we define:

f:29 = 2% g:2% =29
fO)={ieT | Yoe€ O,(o0,i) € R} g(I)={o€e O | VieI,(o,i) € R}

f(O) associates witl) the items common to all objecise O and g(I) associates
with T the objects related to all itemse I. The couple of application§f, g) is a

Galois connection between the power set)a2®) and the power set ¢f (27). The

following properties hold for all, I, I, C Z andO, 0,0, C O:

(1) h CL=g(l) 2 g(l) (1) 01 € 02 = f(O1) 2 f(O2)
(2) O Cy(l) = 1C [f(O)
Definition 3 (Frequent itemsets).Let I C 7 be a set of items fror. The support
count of the itemsdtin D is:

supp(I) = %

I is said to be frequent if the support 6fin D is at least minsupp. The sét of
frequent itemsets i is:

L={IC7ZT | supp(I) > minsupp}

1. By extension, we will call dataset a data mining context.
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Definition 4 (Association rules). An association rule is an implication between two
itemsets, with the formy — I, wherel,, I, CZ, I, I, # @gandl; NI, = &. I; and

1> are called respectively the antecedent and the conseqtiémt oule. The support
supp(r) and confidence conf(r) of an association nutel; — I, are defined using the
Galois connection as follows:

lg(1y U )]

supp(l; U I)
o]’

onf(r) = supp(I1)

supp(r) =

Association rules holding in the context are those that rewygport and confidence

greater than or equal to the minsupp and minconf threshatdpectively. We define

the setAR of association rules holding i®» given minsupp and minconf thresholds
as follows:

AR={r: I 5> L\L | L CLLCTI A supp(ly) > minsupp

A conf(r) > minconf}

If conf(r)=1 then r is called an exact association rule or iligation rule, otherwise:
is called approximate association rule.

Example 2. Exact and approximate association rules extracted ffofar minsupp
= 2/5 andminconf= 1/2 are given in Table 2.

Exactrule Supp| Approximate rule Supp Conf Approximate rule Supp Conf
ABC=E 2/5 BCE— A 2/5 2/3 B — AE 2/5 2/4
ABE=C 2/5 AC — BE 2/5 23 E— AB 25 2/4
ACE=B 2/5 BE — AC 2/5  2/4 A — CE 25 23
AB=CE 2/5 CE— AB 25 213 C—AE 25  2/4
AE=BC 2/5 AC— B 2/5 23 E— AC 2/5 2/4
AB =C 2/5 BC— A 2/5 23 B —» CE 35 34
AB = E 2/5 BE— A 25  2/4 C—BE 35 34
AE=B 2/5 AC — E 2/5 23 E— BC 35 34
AE=C 2/5 CE—A 2/5 23 A—B 25 213
BC=E 3/5 BE—~C 35 34 B—A 25  2/4
CE=1B 3/5 A — BCE 2/5 23 C—A 35 3/4
A=C 3/5 B — ACE 215  2/4 A—E 25 213
B=E 4/5 C —» ABE 2/5 2/4 E—-A 2/5 2/4
E=B 4/5 E— ABC 215  2/4 B—C 35 34
A — BC 25 213 C—B 35 34
B— AC 25  2/4 C—E 35 34
C— AB 2/5 2/4 E—»C 35 34
A — BE 25 213

Table 2. Association rules extracted frofd for minsup = 2/5 and minconf = 1/2.
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3. Bases for Association Rules

In this section, we first demonstrate that the frequent ddtsnsets constitute
a generating set for frequent itemsets and associatios.rulaen, we characterize
the Duquenne-Guigues basis for exact association raled theproper and struc-
tural bases for approximate association rul&hese bases are adaptions of the bases
defined by Duquenne and Guigues [DUQ 86] and Luxenburger [BWUKin Lattice
Theory and Data Analysis to the context of association ruldgs adaptation is not
trivial since additional constraints related to the speitifiof association rules have
to be considered. Theorem 2 states that the union of the Dumgu€uigues basis
for exact association rules and the proper basis or thetataldasis for approxi-
mate association rules constitutes a basis for all validaason rules. The proof of
this theorem is straightforward from Theorem 1 and [DUQ 88X.91]. Interested
readers could refer to [BIR 67, GAN 99, WIL 92] for further dié$ on closed sets.

3.1. Generating Set

Definition 5 (Galois closure operators). The operators: = fog in 27 andh/ = gof
in 2@ are Galois closure operatotsGiven the Galois connectidf, g), the following
properties hold for alll, I, I C Z andO, 01,0, C O [BIR 67]:

Extension : (3)I C h(I) (3) O ChK(0)
Idempotency: (4)h(h(I)) = h(I) 4) h'(W(0)) =h(0)
Monotonicity: (5) I1 C I, = h(l;) C h(lz) (5) O1 C 02 = h'(O1) C h'(0-)

Definition 6 (Frequent closed itemsets) An itemsetl C Z in D is a closed itemset
iff h(I) = I. A closed itemsef is said to be frequent if the support bfin D is at
least minsupp. The smallest (minimal) closed itemset @untaan itemsef is h(I),
the closure off. The set FC of frequent closed itemset®iis defined as follows:

FC={ICT | I=h(I) A supp(I)> minsupp}

Example 3. A frequent closed itemset is a maximal set of items commonget &f
objects, for which support is at leastinsupp The frequent closed itemsets in the
contextD for minsup2/5 are presented in Table 3. The itemBét E is a frequent
closed itemset since it is the maximal set of items commoih¢oobjects{2, 3, 5}.
The itemsetB(C' is not a frequent closed itemset since it is not a maximalSéims
common to some objects: all objects in relation with the gdrandC' (objects 2, 3
and 5) are also in relation with the itef

Hereafter, we demonstrate that the set of frequent closetsits with their sup-
port is the smallest collection from which frequent iterssefith their support and
association rules can be generated (it is a generating set).

2. Here, we use the following notatiorfo g(I) = f(g(I)) andgof(O) = g(f(O)).
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Frequent closed itemset  Suppart
{2} 5/5
{C} 4/5
{AC} 3/5
{BE} 4/5
{BCE} 3/5
{ABCE} 2/5

Table 3. Frequent closed itemsets extracted frénfior minsupp = 2/5.

Lemma 1. [PAS 98, PAS 99a] The support of an item$e$ equal to the support of
the smallest closed itemset containihgsupp(I) = supp(h(I)).

Lemma 2. [PAS 98, PAS 99a] The set of maximal frequent itemddts= {I €
L|AI' € Lwherel C I'} isidentical to the set of maximal frequent closed itemsets
MC ={I€ FC|}I' € FC whereI C I'}.

Theorem 1 (Generating set).The set FC of frequent closed itemsets with their sup-
port is a generating set for all frequent itemsets and thepmort, and for all associ-
ation rules holding in the dataset, their support and thainfidence.

Proof. Based on Lemma 2, all frequent itemsets can be derived frermizximal
frequent closed itemsets. Based on Lemma 1, the supportcbffeequent itemset
can be derived from the support of frequent closed item3étsn, the set of frequent
closed itemset$'C' is a generating set for both the set of frequent item&edad the
set of association rule¢ R3. O

3.2. Duguenne-Guigues Basis for Exact Association Rules

Definition 7 (Frequent pseudo-closed itemsets)Anitemsef C Zin D is a pseudo-
closed itemset ifi(I) # I andVYI' C I suchadl’ is a pseudo-closed itemset, we have
h(I") C I. The set FP of frequent pseudo-closed itemsef3 imdefined as

FP={ICZ | supp(I)>minsupp A I#h(I) A VI' € FPsuchad' CI
we haven(I') C I}
Definition 8 (Duquenne-Guigues basis for exact associatiagnles). Let FP be the

set of frequent pseudo-closed itemset®inThe Duquenne-Guigues basis for exact
association rules is defined as:

DG:{Tlllih(Il)\Il | IleFP/\Il#Q}

3. Furthermore,F'C is the smallest generating set férand AR. Hence, even if frequent
itemsets can be derived from the maximal frequent itemgetsses over the dataset are still
needed to compute the frequent itemset supports.
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The Duquenne-Guigues basis is minimal with respect to tineawn of rules since
there can be no complete set with fewer rules than there egeiént pseudo-closed
itemsets [DEM 92, GAN 99].

Example 4. A frequent pseudo-closed itemdeis a frequent non-closed itemset that
includes the closures of all frequent pseudo-closed itesrieeluded inI. The set

F'P of frequent pseudo-closed itemsets and the Duquenne-Eaiigasis for exact
association rules extracted frofhfor minsupg-2/5 andminconf=1/2 are presented

in Table 4. The itemsed B is not a frequent pseudo-closed itemset since the closures
of A and B (respectivelyAC' and BE) are not included iMdB. ABCE is not a
frequent pseudo-closed itemset since it is closed.

Frequent pseudo-closed itemset  Support Exactrule  Support
A} 3/5 A=C 3/5
{B} 4/5 B=E 4/5
{(E} 4/5 E=B 4/5

Table 4.Frequent pseudo-closed itemsets and Duquenne-Guigués &esacted
from D for minsupp =2/5.

3.3. Proper Basisfor Approximate Association Rules

Definition 9 (Proper basis for approximate association ruls). Let F'C' be the set
of frequent closed itemsetsTh The proper basis for approximate association rules
is:

PB={r:I > L\IL | 1,3l e FCANI, 23 ANI, C Iz Aconf(r) > minconf}

Association rules i B are proper approximate association rules.

Example 5. The proper basis for approximate association rules extidobmD for
minsupp2/5 andminconf=1/2 is presented in Table 5.

Approximate rule  Support  Confidenge
BCE— A 2/5 2/3
AC — BE 2/5 2/3
BE — AC 2/5 2/4
BE—C 3/5 3/4
C — ABE 2/5 2/4
C— BE 3/5 3/4
C—oA 3/5 3/4

Table 5. Proper basis extracted frof®® for minsupp = 2/5 and minconf = 1/2.
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3.4. Structural Basis for Approximate Association Rules

Definition 10 (Undirected graphGr¢). Let F'C be the set of frequent closed item-
sets inD. We defingjrc = (V, E) as the undirected graph associated wiiC'
where the set of verticds and the set of edgds are defined as follows:

V={ICZI|IeFC}

E={(LL,1) eV x V|L CIy N supp(lz)/supp(l) > minconf}

With each edge ig ¢ between two vertice§ and I, with I; C I, is associated the
confidence =supp(lz) / supp(l;) of the proper approximate association rule —
I, \ I represented by the edge.

Definition 11 (Maximal confidence spanning forestFr¢). Let Fre = (V, E') be

the maximal confidence spanning forest associated With Fr¢ is obtained from

the undirected grap§rc = (V, E) by suppressing transitive edges and cycles. Cy-
cles are removed by deleting some edges that enter the ldsk yg(maximal vertex

with respect to the inclusion) of the cycle. Among all edgeereng in I, those with
confidence less than the maximal confidence value associdtteén edge with the
form (I',I) € E are deleted. If more than one edge have the maximal confidence
value, the first one in lexicographic order is kept.

215 213 213 213

24 BCE
3/4 3/4 34 34
415 45
Gro Frc

Figure 1. Undirected graphGrc and maximal confidence spanning foréste (a
tree in this example) derived frof for minsupp = 2/5 and minconf = 1/2.

Definition 12 (Structural basis for approximate associatim rules). Let.SB be the
set of association rules represented by edgeBn except rules from the vertde }.
The structural basis for approximate association rules is:

SB:{T:Il_)Iz\Il|Il,IQEV/\11CIz/\Il;AQA(Il,Iz)EEl}
In this basis, each frequent closed itemset is the conséqgfi@imost one approximate
association rule.

Example 6. The structural basis for approximate association rulesaeted fromD
for minsupp=2/5 andminconf=1/2 is presented in Table 6.
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Approximate rule  Support  Confidenge
AC — BE 2/5 2/3
BE—C 3/5 3/4
C—A 3/5 3/4

Table 6. Structural basis extracted fro for minsupp = 2/5 and minconf = 1/2.

3.5. Basisfor all Valid Association Rules

Theorem 2 (Basis for valid association rules).The union of the Duguenne-Guigues
basis for exact association rules and the proper basis orsthgctural basis for ap-
proximate association rules is a basis for all valid assticiarules, their support and
their confidence.

Proof. The proof of this theorem is straightforward from Theoremrmdl eesults pre-
sented in [DUQ 86, LUX 91]. All frequent closed itemsets ahdit support can be
derived from the union of the Duquenne-Guigues basis angrbjer or the struc-
tural basis since for each frequent closed itenisehere exists at least one associ-
ation rule of the formr : I, — I, \ I; with supp(l>) = supp(r) andsupp(l;) =
supp(r)/con f(r). Moreover, all valid association rules can be derived witkirtsup-
port from the setF'C' of frequent closed itemsets (Theorem 1). Then, obvioudly, a
valid association rules, their support and their confidesare be derived from this
union. O

4. Discovering Frequent and Frequent Closed Itemsets

In Section 4.1, we propose a new algorithm to achieve fregcesed itemsets
from frequent itemsets without accessing the dataset. dlgiithm discovers fre-
quent closed itemsets while for instance an algorithm fecalering maximal fre-
quent itemsets [BAY 98, LIN 98, ZAK 97] is used. In Section Av2e present an
extension of the Apriori algorithm [AGR 94] called Aprio@itose for discovering fre-
quent and frequent closed itemsets without additional edatjpn time. Like in the
Apriori algorithm, we assume in the following that items ameted in lexicographic
order and that: is the size of the largest frequent itemsets. Based on Lemas?2
also the size of the largest frequent closed itemsets.

4.1. Computing Frequent Closed | temsets from Frequent | temsets

Many efficient algorithms for mining frequent itemsets aheit support have
been proposed. Well-known proposals are presented in [AGBRBI 97b, SAV 95,
TOI 96]. Efficient algorithms for discovering the maximatfuent itemsets and then
achieve all frequent itemsets have also been proposed [BAY.]N 98, ZAK 97].
All these algorithms give as result the det= Ui'f L; whereL; contains all frequent



12 Networking and Information Systems Journal. Volumé £ n

i-itemsets (itemsets of siZg Based on Proposition 1 and Lemma 2 (Section 3.1), the
frequent closed itemsets and their support can be computecthe frequent itemsets
and their support without any dataset access.

The pseudo-code to determine frequent closed itemsets@fmeguent itemsets
is given in Algorithm 1. Notations are given in Table 7. Theun of the algorithm
are setd,;, 1 <i <k, containing all frequent itemsets in the dataset. It récalg
generates the sefsC;, 0 <i <k, of frequent closed-itemsets fromF'C}, to F'Cy.

L; Set of frequenti-itemsets and their support.
FC; Set of frequent closedlitemsets and their support.
isclosed Variable indicating if the considered itemset is closedatt n

Table 7. Notations.

Proposition 1. The support of a closed itemset is greater than the suppbai s
supersets.

Proof. Let! be a closed-itemset and; a superset of. We havd C s = g(I) D g(s)
(Property(1) of the Galois connection). i(1) = g(s) thenh(l) = h(s) = 1 = h(s) =
s C I (absurd). It follows thay(l) D g(s) = supp(l) > supp(s). O

Algorithm 1 Deriving frequent closed itemsets from frequent itemsets.

1) FCy + Ly;

2) for (i «+ k—1;i # 0; i--) do begin

3) FC; + {};

4) forall itemsetd € L; do begin

5) isclosed + true;

6) forall itemsetd’ € L;11 do begin

7) if (I ¢ I') and (I.support 3’.supportthen isclosed < false;

8) end

9) if (isclosed = true) then FC; + FC; U {l};
10) end
11) end

13) forall itemsetd € L, do begin
14) if (I.support 5O|) then FCo + {};
15) end

First, the setF'C}, is initialized with the set of largest frequent itemséfs (step
1). Then, the algorithm iteratively determines whieltemsets inL; are closed from
L;_ 1oL, (steps 2to 11). Atthe beginning of tifé iteration the seF C; of frequent
closedi-itemsets is empty (step 3). In steps 4 to 10, for each fregtemset! in L;,
we verify that! has the same support as a frequéntj-itemset’ in L;;, in which
it is included. If so, we havé C h(l) and thenl # h(l): [ is not closed (step 7).
Otherwise/ is a frequent closed itemset and is inserted'ii; (step 9). During the
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last phase, the algorithm determines if the empty itemsdoied by first initializing
FCy with the empty itemset (step 12) and then considering adjemtl-itemsets in

L (steps 13 to 15). If a-itemsetl has a support equal to the number of objects in the
context, meaning thdtis common to all objects, then the itemsetannot be closed
(we havesupp({@}) = |O| = supp(l)) and is removed frond'Cy (step 14). Thus, at
the end of the algorithm, each J8C; contains all frequent closadtemsets.

Correctness Since all maximal frequent itemsets are maximal frequesged item-
sets (Lemma 2), the computation of the B&f}, containing the largest frequent closed
itemsets is correct. The correctness of the computatioatef&”; for i < k relies on
Proposition 1. This proposition enables to determine iegfient-itemset is closed
by comparing its support and the supports of the frequeti){itemsets in which is
included. If one of them has the same suppott #seni cannot be closed.

4.2. Apriori-Close Algorithm

In this section, we present an extension of the Apriori dtgor[AGR 94] comput-
ing simultaneously frequent and frequent closed itemsetg. pseudo-code is given
in Algorithm 2 and notations in Table 8. The algorithm itéraly generates the sets
L; of frequenti-itemsets from; to L. Besides, during th&” iteration, all frequent
closed {—1)-itemsets inf'C;_; are determined. The sétC), is determined during
the last step of the algorithm.

L; Set of frequent-itemsets, their support and markatlosed indicating if
closed or not.
FC; Setof frequent closeditemsets and their support.

Table 8. Notations.

First, the variablé: is initialized to O (step 1). Then, the sé{ of frequent 1-
itemsets is initialized with the list of items in the contgstep 2) and one pass is
performed to compute their support (step 3). The&g} is initialized with the empty
itemset (step 4) and the supports of itemsetsjrare considered (steps 5 to 8). All
infrequent 1-itemsets are removed frdm (step 6) and if a frequent 1-itemset has a
support equal to the number of objects in the context thearthgty itemset is removed
from F'Cy (step 7). During each of the following iterations (steps 28), frequent
itemsets of sizé+1, k > i > 1, and frequent closed itemsets of sizare computed
as follows. For all frequentitemsets inl;, the marketisclosed is initialized totrue
(step 10). A sefl;1, of possible frequenti¢l)-itemsets is created by applying the
Apriori-Gen function to the selt; (step 11). For each of these possible frequérit )-
itemsets, we check that all its subsets of gieist in L; (steps 12 to 16). One pass is
performed to compute the supports of the remaining iteniisdts, ; (step 17). Then,
for each {+1)-itemsetg € L;;, (steps 18 to 25), if is infrequent then it is discarded
from Ly, (step 19). Otherwise for aflsubsetd’ of I, we verify that supports of
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Algorithm 2 Discovering frequent and frequent closed itemsets withidkpClose.
1) k<« 0;
2) itemsetsinL; « {1-itemsets};
3) L + Support-Countl}y);

4) FCo + {2};
5) forall itemsetd € L, do begin
6) if (I.support< minsupp) then Ly < Ly \ {l};
7 else if(I.support= |O|) then FCp + {};
8) end
9) for (i < 1; L; # {}; i++) do begin
10) forall itemsetd’ € L; do!'.isclosed— true;
11) Li+1 < Apriori-Gen(L;);
12) forall itemsetd € L; 1 do begin
13) forall i-subsets’ of [ do begin
14) if (l, € Li) then Li+1 < Li+1 \ {l},
15) end
16) end
17) Liy1 < Support-Countl;+1);
18) forall itemsetd € L;; do begin
19) if (I.support< minsupp) then L; 1 < L;11 \ {l};
20) else do begin
21) forall i-subsetd’ € L; of I do begin
22) if (I.support =’.supportithen I .iscloseck— false;
23) end
24) end
25) end
26) FC; «+ {l € L; | lisclosed Frue};
27) k « 1
28) end
29) FCy « Ly;

" andl are equal; if so, thell cannot be a closed itemset and its markefosed
is set to false (steps 20 to 24). Then, all frequeitémsets inL; for which marker
isclosed is true are inserted in the sétC; of frequent closed-itemsets (step 26) and
the variablek is set to the value of (step 27). Finally, the setCy, is initialized with
the frequent-itemsets inL;, (step 29).

Apriori-Gen function The Apriori-Gen function [AGR 94] applies to a sét of
frequenti-itemsets. It returns a sét;,; of potential frequentif-1)-itemsets. A new
itemset inL;,; is created by joining two itemsets ih; sharing common firsi-1
items.

Support-Count function The Support-Count function takes a #gtof i-itemsets as
argument. It efficiently computes the supports of all itetmse L;. Only one dataset
pass is required: for each objectead, the supports of all itemsdtsE L; that are

included in the set of items associated with.e. I C f({o}), are incremented. The
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subsets off ({0}) are quickly found using the Subset function described intiGec

5.2.

Correctness Since the support of a frequent closed itenisist different from the
support of all its supersets (Proposition 1), the comparatif setsF'C; for i < k is

correct. Hence, a frequedtitemset!’ € L; is determined closed or not by comparing

its support with the supports of all frequenti{ 1)-itemsetd € L;,, for whichl’ C I.
Lemma 2 ensures the correctness of the computation of thEGgtcontaining the
largest frequent closed itemsets.

Example 7. Figure 2 illustrates the execution of the Apriori-Closealthm with the
contextD for a minimum support of 2/5.
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Figure 2. Discovering frequent and frequent closed itemsets withiokpClose.
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5. Generating Bases for Association Rules

In Section 5.1, we present an algorithm to generate the Duws&Suigues basis
for exact association rules. In Sections 5.2 and 5.3 aregidesicalgorithms achieving
the proper basis and the structural basis for approximateasion rules respectively.

5.1. Generating Duquenne-Guigues Basis for Exact Association Rules

The pseudo-code generating the Duquenne-Guigues basexdiot association
rules is given in Algorithm 3. Notations are given in TableThe algorithm takes as
input the setd.;, 1 <i <k, containing the frequent itemsets and their support, aad th
setsF'C;, 0 <i <k, containing the frequent closed itemsets and their supftditst
computes the frequent pseudo-closed itemsets iterafjstps 2 to 17) and then uses
them to generate the Duguenne-Guigues basis for exactiassnculesDG (steps
18to 22).

L; Set of frequent-itemsets and their support.

FC; Setof frequent closeditemsets and their support.

FP; Setof frequent pseudo-closgéitemsets, their closure and their support,
DG Duquenne-Guigues basis for exact association rules.

Table 9. Notations.

First, the setDG is initialized to the empty set (step 1). If the empty itemiset
not a closed itemset (it is then necessarily a pseudo-clitesedet), it is inserted in
FP, (step 2). Otherwisd'P, is empty (step 3). Then, the algorithm recursively
determines whicliritemsets inl; are pseudo-closed frofiy to L, (steps 4 to 16). At
each iteration, the sét P; is initialized with the list of frequent-itemsets that are not
closed (step 5) and each frequeétitemsetd in F'P; is considered as follows (steps 6
to 15). The variabl@seudas set totrue (step 7). We verify for each frequent pseudo-
closed itemsep previously discovered (i.e. if"P; with j < ¢) if p is contained il
(steps 8 to 13). In that case and if the closure @ not included in/, thenl is not
pseudo-closed and is removed frdi®; (steps 9 to 12). Otherwise, the closurd of
(i.e. the smallest frequent closed itemset contaih)ng determined (step 14). Once
all frequent pseudo-closed itemsgtnd their closure are computed, all rules with the
formr : p = (p.closure\ p) are generated (steps 17 to 21). The algorithm results in
the setDG containing all rules in the Duguenne-Guigues basis for eassociation
rules.

Correctness Since the itemsets has no subset, if it is not a closed itemset then it is
by definition a pseudo-closed itemset and the computatidheo§etF' P, is correct.
The correctness of the computation of frequent pseudedlogemsets inF'P; for

1 <i < krelies on Definition 7. All frequentitemsetd in L; that are not closed, i.e.
not in F'C;, are considered. Thogecontaining the closures of all frequent pseudo-
closed itemsets that are subsetd afe inserted inF’P;. According to Definition 7,
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Algorithm 3 Generating Duquenne-Guigues basis for exact associaties. r
1) DG « {};
2) if (FCy = {})then FP, « {o};
3) elseFPy + {};
4) for (i + 1;4 < k; i++) do begin

5) FPi<—Li\FCi;
6) forall itemsetd € F'P; do begin
7) pseudo <+ true;
8) forall itemsety € F'P; with j < ¢ do begin
9) if (p C 1) and (p.closureg I) then do begin
10) pseudo + false;
11) FP; « FP;\ {I};
12) end
13) end
14) if (pseudo = true) thenl.closure«— Minc({c € FCjs; | I Cc});
15) end
16) end
17) forall setsF'P; whereF P; # {} do begin
18) forall pseudo-closed itemsegtse F'P; do begin
19) DG + DG U {r: p = (p.closurdp),p.support};
20) end
21) end

thesei-itemsets are all frequent pseudo-clogatemsets and the sef8P; are cor-
rect. The association rules generated in the last phaseedlg¢forithm are all rules
with a frequent pseudo-closed itemset in the antecedern,Tthe resulting sebG
corresponds to the rules in the Duquenne-Guigues basis<émt @association rules
characterized in Definition 8.

Example 8. Figure 3 shows the generation of the Duquenne-Guigues foassact
association rules from the conteRtfor a minimum support of 2/5.

5.2. Generating Proper Basis for Approximate Association Rules

The pseudo-code generating the proper basis for approxiasabciation rules is
presented in Algorithm 4. Notations are given in Table 10e Blgorithm takes as
input the setsF'C;, 1 < i < k, containing the frequent closed non-empty itemsets
and their support. The output of the algorithm is the propsidfor approximate
association rule® B.

The setPB is first initialized to the empty set (step 1). Then, the alion iter-
atively considers all frequent closed itemskets FC; for 2 < i < k. It determines
which frequent closed itemseltse F'C;; are subsets dfand generates association
rules with the forn’ — [\ I’ that have sufficient confidence (steps 2 to 12) as follows.
During theit" iteration, each itemsétin FC; is considered (steps 3 to 11). For each
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Figure 3. Generating Duquenne-Guigues basis for exact associatitasr

PB

FC; Setof frequent closeditemsets and their support.
S; Set ofj-itemsets that are subsets of the considered itemset.
Proper basis for approximate association rules.

Table 10. Notations.

setF'C;, 1 <j<i, a setS; containing all frequent closeglitemsets inF'C; that are
subsets ofis created (step 5). Then, for each of these sulisets; (steps 6 to 9), we
compute the confidence of the proper approximate assatiatier : I’ — [\ I’ (step
7). If the confidence of is sufficient thenr is inserted inPB (steps 8 to 9). At the

end of the algorithm, the sé&B contains all rules of the proper basis for approximate
association rules.

Subset function The subset function takes a s€tof itemsets and an itemsgtas
arguments. It determines all itemsetg X that are subsets gf In algorithm imple-
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Algorithm 4 Generating proper basis for approximate association.rules

1) PB« {}
2) for (i < 2;i < k; i++) do begin
3) forall itemsetd € F'C; do begin
4) for (j «-i—1; 7 > 0; j--) do begin
5) S; + Subset§F'C},1);
6) forall itemsetd’ € S; do begin
7 conf(r) <+ l.supportl’.support;
8) if (conf(r) > minconf)
9) then PB « PBU{r:1I' -1\, l.supportconf(r)};
10) end
11) end
12) end
13) end

mentation, frequent and frequent closed itemsets aredsiora prefix-treestructure
[PAS 98, PAS 99a] in order to improve efficiency of the subsareh.

Correctness The correctness of the algorithm relies on the fact that wpédnt all
proper approximate association rules holding in the dat&se each frequent closed
itemset, the algorithm computes, among its subsets, at dtbquent closed itemsets.
Then, the generation of all rules between two frequent dasamsets having suffi-
cient confidence is ensured. These rules are all proper sippaite association rules
holding in the dataset, and the resulting 888 is the proper basis for approximate
association rules defined in Theorem 3.

Example 9. Figure 4 shows the generation of the proper basis for apprate associ-
ation rules in the contex? for a minimum support of 2/5 and a minimum confidence
of 1/2.

5.3. Generating Structural Basisfor Approximate Association Rules

The pseudo-code generating the structural basis for appabe association rules
is given in Algorithm 5. Notations are given in Table 11. Thgoaithm takes as input
the setsF'C;, 1 < i < k, of frequent closed non-empty itemsets and their suppbrt. |
generates the structural basis for approximate assatiatiesS B represented by the
maximal confidence spanning forest~ associated witlF'C' = Uff FC; (without
the empty itemset).

The setSB is first initialized to the empty set (step 1). Then, the alfon iter-
atively considers all frequent closed itemskets FC; for 2 < i < k. It determines
which frequent closed itemsetse F'C;.; are covered by, i.e. are direct predeces-
sors ofl, and then generates the maximal confidence associaticnwitle the form
I — 1"\ I that hold (steps 2 to 25). During th#" iteration, each itemsdtin FC;
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Figure 4. Generating proper basis for approximate association rules

FC; Setof frequent closeditemsets and their support.

S; Set ofj-itemsets that are subsets of the itemset considered.
CR  Set of candidate approximate association rules.

SB  Structural basis for approximate association rules.

Table 11. Notations.

is considered (steps 3 to 24) as follows. TheSét of candidate association rules
with [ in the consequent is initialized to the empty set (step 4).1Fg j < i, sets

S; containing all frequent closeflitemsets inF'C;; that are subsets dfare created
(steps 5to 7). Then, all these subset$ afe considered in decreasing order of their
sizes (steps 8 to 18). For each of these suli$etsS;, the confidence of the proper
approximate association rute I' — [\ I’ is computed (step 10). If the confidence of
r is sufficient,r is inserted inC' R (step 12) and all subset$ of I’ are removed from
Sn<; (steps 13to 15). This because rules with the féftm» 1\ 1" with 1" € S,,; are
transitive proper approximate rules. Finally, the cantdigaoper approximate rules
with [ in the consequent that aredhR are pruned (steps 19 to 23): the maximum con-
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fidence valuamaxconfof rules inC'R is determined (step 20) and the first rule with
such a confidence is insertedSB (steps 21 and 22). At the end of the algorithm, the
setS B thus contains all rules in the structural basis for appreteassociation rules.

Algorithm 5 Generating structural basis for approximate associatitasr

1) SB«+ {};

2) for (i < 2;i < k; i++) do begin

3) forall itemsetd € F'C; do begin

4) CR «+ {};

5) for (j «-i—1; 7 > 0; j--) do begin

6) S; + Subset§F'C},1);

7) end

8) for (j +-i—1; 7 > 0; j--) do begin

9) forall itemsetd’ € S; do begin
10) conf(r) + l.supportl’.support;
11) if (conf(r) > minconf) then do begin
12) CR <+ CRU{r:l' -1\, l.supportconf(r)};
13) for (n < j—1;n > 0; n--) do begin
14) Sn + Sn\ SubsetS,,I');
15) end
16) end
17) end
18) end
19) if (CR # {}) then do begin
20) mazconf < Maxrccr(conf(r));
21) find first {r € CR | conf(r) = mazconf};
22) SB + SBU {r};
23) end
24) end
25) end

Correctness The algorithm considers all association rules: [ \ I’ with confidence
> minconfbetween two frequent closed itemsétand!’ wherel coversl’. These
rules are all proper non-transitive approximate assagiatiles that hold and can be
represented by the edges of the gr&ph- (Definition 8) without transitive edges.
Moreover, among all rules with the for&i — [ \ X (generated fronf), we keep only
the first one with confidence equal to the maximal confidencele$ X — [\ X. Only
preserving this rule is equivalent to the cycle removingia graphGr¢ in the same
manner as explained in Definition 9. Then, the resultingsdgtcan be represented as
the maximal confidence spanning forgst. without edges from the empty itemset.
S B contains all rules in the structural basis for approximatmaiation rules defined
in Theorem 4.

Example 10. Figure 5 depicts the generation of the structural basisgpraimate
association rules in the conteRtfor a minimum support of 2/5 and a minimum con-
fidence of 1/2.
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Figure 5. Generating structural basis for approximate associatiales.

6. Experimental Results

Experiments were performed on a Pentium Il PC with a 350 Mbekctate, 128
MBytes of RAM, running the Linux operating system. Algoritk were implemented
in C++. Characteristics of the datasets used are given ileTab These datasets are
the T1014D100K synthetic dataset that mimics market basket data, the C2RRfhd
the C73D10K census datasets from the PUMS sampke,fdad the MusHRoOMS
dataset describing mushroom characteristics. In all éxgarts, we attempted to
choose significant minimum support and confidence threstallees: we observed
threshold values used in other papers for experiments offasidata types and in-
spected rules extracted in the bases.

Name Number of objects  Average size of objects  Number ofstem
T1014D100K 100,000 10 1,000
MUSHROOMS 8,416 23 127

C20D10K 10,000 20 386
C73D10K 10,000 73 2,177

Table 12.Datasets.

6.1. Relative Performance of Apriori and Apriori-Close

We conducted experiments to compare response times othtaitre Apriori and
Apriori-Close on the four datasets. Results for the T10l@d0K and MUSHROOMS

4. http://iwww.almaden.ibm.com/cs/quest/syndata.html
5. ftp://ftp2.cc.ukans.edu/publ/ippbr/census/pums/puks2ip
6. ftp://ftp.ics.uci.edu/"cmerz/mlidb.tar.Z
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datasets are presented in Table 13. We can observe thatiexeimes are identical
for the two algorithms: adding the frequent closed itemseivdtion to the frequent
itemset discovery does not induce additional computatiog.t Similar results were
obtained for C20D10K and C73D10K datasets.

Minsupp  Apriori  Apriori-Close Minsupp  Apriori  Apriori-Close
2.0% 1.99s 1.97s 90% 0.28s 0.28s
1.0% 3.47s 3.46s 70% 0.73s 0.73s
0.5% 9.62s 9.70s 50% 2.40s 2.70s
0.25% 15.02s 14.92s 30% 18.22s 17.93s

T1014D100K MUsSHROOMS

Table 13.Execution times of Apriori and Apriori-Close.

6.2. Number of Rules and Execution Times of the Rule Generation

Table 14 shows the total number of exact association ruldstagir number in
the Duquenne-Guigues basis for exact rules. Table 15 shwoevsotal number of
approximate association rules, their number in the propsistand in the structural
basis for approximate rules, and the number of non-traeditiles in the proper basis
for approximate rules (8 column). For example in the conte®, rulesC — A and
AC — BE are extracted, as well as the rdle— ABE which is clearly transitive.
Since by construction, its confidence — retrieved by muliig the confidences of
the two former — is less than theirs, this rule is the lesg@sting among the three.
Reducing the extraction to non-transitive rules in the prapasis for approximate
rules can also be interesting. Such rules are generated hyiamt/of Algorithm 5
with the last pruning strategy (steps 20 and 21) removeccaaitlidate rules 'R
are inserted ir B.

Table 16 shows for the four datasets the average relatieeo$ibases compared
with the sets of all rules obtained. Inthe case of weaklyalated data (T1014D100K),
no exact rule is generated and the proper basis for appréximkes contains all ap-
proximate rules that hold. The reason is that, in such d#t&eguent itemsets are
frequent closed itemsets. In the case of correlated datas@vooms C20D10K
and C73D10K), the number of extracted rules in bases is mueltier than the total
number of rules that hold.

Figure 6 shows for each dataset the execution times of theutation of all
rules (using the algorithm described in [AGR 94]) and basEgecution times of
the derivation of the Duquenne-Guigues basis for exacsrael the proper basis for
non-transitive approximate rules are not presented sheedre identical to those of
the derivation of the Duquenne-Guigues basis for exactsraitel the structural basis
for approximate rulesjuquenne-Guigues and structural bases
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Dataset Minsupp Exactrules Duquenne-Guigues basis
T1014D100K 0.5% 0 0
MUSHROOMS 30% 7,476 69
C20D10K 50% 2,277 11
C73D10K 90% 52,035 15

Table 14.Number of exact association rules extracted.

Dataset Minconf  Approximate Proper Non-transitive  Stunak
(Minsupp) rules basis basis basis
90% 16,260 16,260 3,511 914
T1014D100K 70% 20,419 20,419 4,004 1,058
(0.5%) 50% 21,686 21,686 4,191 1,14p
30% 22,952 22,952 4,519 1,367
90% 12,911 806 563 313
MUSHROOMS  70% 37,671 2,454 968 384
(30%) 50% 56,703 3,870 1,169 41
30% 71,412 5,727 1,260 424
90% 36,012 4,008 1,379 443
C20D10K 70% 89,601 10,005 1,948 455
(50%) 50% 116,791 13,179 1,948 455
30% 116,791 13,179 1,948 454
95% 1,606,726 23,084 4,052 939
C73D10K 90% 2,053,896 32,644 4,089 941
(90%) 85% 2,053,936 32,646 4,089 941
80% 2,053,936 32,646 4,089 941

Table 15.Number of approximate association rules extracted.

Dataset Duquenne-Guigues Proper Non-transitive  Straictur
basis basis basis basis
T1014D100K - 100.00% 20.05% 5.49%
MUSHROOMS 0.92% 6.90% 2.69% 1.19%
C20D10K 0.48% 11.21% 2.33% 0.63%
C73D10K 0.03% 1.55% 0.21% 0.05%

Table 16. Average relative size of bases.

7. Conclusion

In this paper, we present new algorithms for efficiently gatieg bases for asso-
ciation rules. A basis is a set of non-redundant rules frontkvhll association rules
can be derived, thus it captures all useful information. &bwer, its size is signifi-
cantly reduced compared with the set of all possible ruleabige redundant, and thus
useless, rules are discarded. Our approach has a twofadehzdye: on one hand, the
user is provided with a smaller set of resulting rules, easidnandle, and vehicul-
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Figure 6. Execution times of the association rule derivation.

ing information of improved quality. On the other hand, exttan times are reduced
compared with the discovering of all association rules. iS@sults are proved (in
the groundwork of lattice theory and data analysis) andtitated by experiments,
achieved from real-life datasets.

Integrating reduction methods Templates, as defined in [BAR 97, KLE 94], can
directly be used for extracting from the bases all assaxiatiles matching some user
specified patterns. Information in taxonomies associatédtive dataset can also be
integrated in the process as proposed in [HAN 95, SRI 95] kraeting bases for
generalized (multi-level) association rules. Integrgibem constraints and statistical
measures, such as described in [BAY 99b, NG 98, SRI 97] and $BR, PIA 91]
respectively, in the generation of bases requires furttoek w

Functional and approximate dependenciesAlgorithms presented in this paper can
be adapted to generate bases for functional and approxitepéadencies. In[HUH 98,
LOP 00, MAN 94], such bases and algorithms for generatingtixere proposed.
However, the Duguenne-Guigues basis is smaller than the feafunctional depen-
dencies constituted of minimal non-trivial functional @epencies. Hence, the num-
ber of rules in the Duquenne-Guigues basis is minimal [DEM®&ZN 99]. Further-



26 Networking and Information Systems Journal. Volumé £ n

more, the proper and structural bases for approximate antealso smaller than the
basis for approximate dependencies defined in [HUH 98]. Aidgur algorithms to
the discovery of functional and approximate dependensias iongoing research.

Minimal non-redundant association rules The bases for association rules defined
in this paper significantly reduce the number of extractéekrand give a high quality
non-redundant summary of valid association rules. Howekiey are not constituted
of the non-redundant rules with minimal antecedent and makconsequent, called
minimal non-redundant association ruléSuch rules are the most informatives, since
they provide a minimal set that maximizes the informatiom@&yed, and can be char-
acterized using frequent closed itemsets and their gesrsrathis is demonstrated
in [BAS 00, PAS 00] and algorithms for generating them usimgjfient closed item-
sets and their generators, such as extracted by the Close ér€lose algorithm, or
using the frequent itemsets, for extending an existing émgntation, are proposed.
Results of experiments conducted on real-life datasetxdnibited and show that this
generation is both efficient and useful.
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