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ABSTRACT 
In this paper, we propose the algorithm PASCAL which in- 
troduces a novel optimization of the well-known algorithm 
Apriori. This optimization is based on a new strategy called 
pattern counting inference that relies on the concept of key 
patterns. We show that the support of frequent non-key 
patterns can be inferred from frequent key patterns with- 
out accessing the database. Experiments comparing PAS- 
CAL to the three algorithms Apriori, Close and Max-Miner, 
show that PASCAL is among the most efficient algorithms 
for mining frequent patterns. 

1. INTRODUCTION 
Knowledge discovery in databases (KDD) is defined as the 
non-trivial extraction of valld~ implicit, potentially useful 
and ultimately understandable information in large data- 
bases [11]. For several years, a wide range of applications in 
various domains have benefited from KDD techniques and 
many work has been conducted on this topic. The prob- 
lem of mining frequent patterns arose first as a sub-problem 
of mining association rules [1], but it then turned out to 
be present in a variety of problems [12]: mining sequential 
patterns [3], episodes [16], association rules [2], correlations 
[8; 23], multi-dimensional patterns [13; 14], maximal pat- 
terns [7; 26; 15], closed patterns [24; 20; 19; 21]. Since the 
complexity of this problem is exponential in the size of the 
binary database input relation and since this relation has to 
be scanned several times during the process, efficient algo- 
rithms for mining frequent patterns are required. 

1.1 Related work 
Three approaches have been proposed for mining frequent 
patterns. The first is traversing iteratively the set of all 
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patterns in a levelwise manner. During each iteration corre- 
sponding to a level, a set of candidate patterns is created by 
joining the frequent patterns discovered during the previous 
iteration, the supports of all candidate patterns are counted 
and infrequent ones are discarded. The most prominent al- 
gorithm based on this approach is the Apriori algorithm [2]. 
A variety of modifications of this algorithm arose [9; 17; 22; 
25] in order to improve different effciency aspects. How- 
ever, all of these algorithms have to determine the supports 
of all frequent patterns and of some infrequent ones in the 
database. 
The second approach is based on the extraction of maxi- 
mal 1 frequent patterns, from which all supersets are infre- 
quent and all subsets are frequent. This approach combines 
a levelwise bottom-up traversal with a top-down traversai in 
order to quickly find the maximal frequent patterns. Then, 
all frequent patterns are derived from these ones and one 
last database scan is carried on to count their support. The 
most prominent algorithm using this approach is Max-Miner 
[7]. Experimental results have shown that this approach is 
particularly effcient for extracting maximal frequent pat- 
terns, but when applied to extracting all frequent patterns 
performances drastically decrease because of the cost of the 
last scan which requires roughly an inclusion test between 
each frequent pattern and each object of the database. As 
for the first approach, algorithms based on this approach 
have to extract the supports of all frequent patterns from 
the database. 
The third approach, represented by the Close algorithm [20], 
is based on the theoretical framework introduced in [18] that 
uses the closure of the Galois connection [10]. In this ap- 
proach, the frequent closed patterns (and their support) are 
extracted from the database in a levelwise manner. A closed 
pattern is the greatest pattern common to a set of objects 
of the database; and each non-closed pattern has the same 
properties (i.e. the same set of objects containing it and 
thus the same support) as its closure, the smallest closed 
pattern containing it. Then, all frequent patterns as well as 
their support are derived from the frequent closed patterns 
and their support without accessing the database. Hence 
not all patterns are considered during the most expensive 
part of the algorithm (counting the supports of the pat- 
terns) and the search space is drastically reduced, especially 
for strongly correlated data. Experiments have shown that 
this approach is much more efficient than the two previous 
ones on such data. 

t 'Maximal' means 'maximal with respect to set inclusion'. 
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1.2 Contr ibut ion  
We present the PASCAL 2 algorithm, introducing a novel, ef- 
fective and simple optimization of the Apriori algorithm. 
This optimization is based on pattern counting inference tha t  
relies on the new concept of key patterns. A key pat tern  is 
a minimal pat tern of an equivalence class gathering all pat- 
terns tha t  have the same objects s. The pat tern counting 
inference allows to determine the supports of some frequent 
and infrequent patterns (the key patterns) in the database 
only. The supports of all other frequent pat terns are de- 
rived from the frequent key patterns. This allows to reduce, 
a t  each database pass, the number of patterns considered, 
and, even more important,  to reduce the number  of passes 
in total. This optimization is valid since key pat terns have a 
property tha t  is compatible with the original Apriori (deter- 
ministic) heuristic; we show tha t  all subsets of a key pat tern  
are key pat terns and all supersets of a non-key pat tern  are 
non-key patterns. Then, the counting inference is performed 
in a levelwise manner: If a candidate pat tern  of size k which 
support  has to be determined is a non-key pattern,  then its 
support  is equal to the minimal support  among the pat terns 
of size k-1 tha t  axe its subsets. In comparison to most other 
modifications of Apriori~ this induces a minimal impact on 
the  understandability and simplicity of implementation of 
the algorithm. The important  difference is to determine 
as much support counts as possible without accessing the 
database by information gathered in previous passes. As 
shown by the experiments, the efficiency gain is up to one 
order of magnitude on correlated data. 

1.3 Organization of the paper 
In the next section, we recall the problem of mining fre- 
quent patterns. The essential notions and definitions of key 
patterns and pattern counting inference are given in Sec- 
tion 3. The PASCAL algorithm is described in Section 4 and 
experimental results for comparing its efficiency to those of 
Apriori, Max-Miner and Close are presented in Section 5. 
Section 6 concludes the paper. 

2. STATEMENT OF THE PROBLEM 
Let P be a finite set of items, O a finite set of objects (e. g., 
transaction ids) and R C O x P a binary relation (where 
(o, p) E R may be read as "item p is included in transaction 
o"). The triple D = (O, P, R) is called dataset. 
Each subset P of P is called a pattern. We say tha t  a pat tern 
P is included in an object o E O if (o,p) E R for all p E P. 
Let f be the  function which assigns to each pat tern P C P 
the set of all objects tha t  include this pattern:  f ( P )  = {o E 
O ] o includes P}. 
The support of a pat tern  P is given by: sup(P)  = 
card(f(P))/card(O). For a given threshold minsup E [0,1], 
a pa t tern  P is called frequent pattern if sup(P)  > minsup. 
The task of mining frequent pat terns consists in determining 
all frequent pat terns together with their supports for a given 
threshold minsup. 

2The French mathematician Blaise Pascal (*Clermont- 
Ferrand 1623, t 1662 Paris) invented an early computing 
device. 
3A similar notion of equivalence classes was also recently 
proposed by R. Bayardo and R. Agrawal [6] to character- 
ize "a-maximal" rules (i.e., association rules with maximal 
antecedent). 

3. P A T T E R N  C O U N T I N G  INFERENCE 
In this section, we give the theoretical basis of the new PAS- 
CAL algorithm. This basis provides at  the  same t ime the  
proof of correctness of the algorithm. In Section 4, these 
theorems will be turned into pseudo-code. 
Like Apriori, PASCAL will traverse the  powerset of P level- 
wise: At the k th iteration, the algorithm generates first all 
candidate k-patterns. 

Definition 1. A k-pat tern P is a subset of P such tha t  
card(P)  = k. A candidate k-pattern is a k-pattern where all 
its proper sub-patterns are frequent. 

Given the set of candidate k-patterns, one database pass is 
used to determine their support. Infrequent pat terns are 
then pruned. This approach works because of the well- 
known fact tha t  a pat tern  cannot be frequent if it has an 
infrequent sub-pattern.  

3.1 Key Patterns 
Our approach is based on the  observation tha t  frequent pub  
terns can be considered as "equivalent" if they are included 
in exactly the  same objects. We describe this  fact by the 
following equivalence relation 0 on the  frequent patterns. 

Definition 2. Given two pat terns P, Q c_ P, let P 0 Q if 
and only if f ( P )  = f(Q). The set of pat terns  which are 
equivalent to a pa t tern  P is given by [P] = {Q c ~ l  POQ}. 

In the  case of pat terns  P and Q with POQ, both  pat terns 
obviously have the same support:  

LEMMA 1. Let P and Q be two patterns. 
(i) P0 Q ~ sup(F) = sup(Q) 

(ii) P C _ Q A s u p ( P ) = s u p ( Q )  ==#. P 0 Q  

PROOF. (i) P0Q ~ f(P)= f(Q) ~ sup(P)= 
card(f(P) )/card(O) = card(f(Q) )/card(O) = sup(Q). 
(ii) Since P c_ Q and f is monotonous decreasing, we 
have f (P)  ~ f(Q). sup(P)  = sup(Q) is equivalent to 
ca rd( f  (P))  = card(f (Q))  which implies with the  former 
I(P) = f(Q) and thus POQ. [] 

Hence if we knew the relation 0 in advance, we would need 
to count the support of only one pattern in each equivalence 
class. Of course this is not the case; but we can construct it 
step by step 4. Thus, we will (in general) need to determine 
the support of more than one pattern in each class, but not 
of all of them. If we already have determined the support of 
a pat tern  P in the database and encounter later a pa t tern  
Q E [P], then we need not access the database for it because 
we know that sup(Q) = sup(F). 
The first patterns of an equivalence class that we reach using 
a levelwise approach are exactly the minimal s patterns in 
the class: 

Definition 3. A pat tern P is a key pattern if P E min[P]; 
tha t  is, if no proper subset of P is in the same equivalence 
class. A candidate key pattern is a pa t tern  such tha t  all its 
proper sub-patterns are frequent key patterns.  

4In the  algorithm, the equivalence relation is not explicitly 
generated, bu t  is- -as  the algorithm is based on the following 
theorems--implicit ly used. 
S'Minimal' means 'minimal with respect to set inclusion'. 

SIGKDD Explorations. ACM SIGKDD,  December 2000. Volume 2, Issue 2 - page 67 



Observe that all candidate key patterns are also candidate 
patterns. 
Figure I presents the lattice of frequent patterns found on 
an example database with a minimum support minsup ---- 
2/5, highlighting key patterns and equivalence classes (the 
database is similar to the one described in the running ex- 
ample subsection of the PASCAL algorithm, except that the 
item F was removed). In this database, for instance, every 
object containing A also contains C; but not all of them con- 
tain B. Hence {A} and {AC} are in the same equivalence 
class--but not {AB}. 

ey pattern 

- ~  f '~  Equivalence 

Figure 1: Example lattice of frequent patterns 

3.2 Counting Inference 
In the algorithm, we apply the pruning strategy to both can- 
didate patterns and candidate key patterns. This is justified 
by the following theorem: 

THEOREM 2. (i) l f  Q is a frequent key pattern and P C 
Q, then P is also a frequent key pattern. 
(ii) I f  P is not a frequent key pattern and P C_ Q, then Q 
is not a frequent key pattern either, e 

PROOF. We will first prove a more general statement of 
this theorem with no hypothesis on the support. 
(ii) Let P and Q be two patterns with P C Q and P not 
being a key pattern. Then there exists pr E rain[P] with 
pr C P. We need to show that f (Q)  = f ( Q \ ( p \ p r ) ) .  
We can rewrite f(Q) as f ( (Q  \ (P \ P'))  t9 (P \ P')),  or 
f(Q\(P\P'!)f3f(P\I~). We know that .f(P') C f(e\P'), 
because f(P ) ---- l(P) and f is a decreasing function z, so 
f(Q) D f(Q \ (P \ p')) N f(P'). This formula is equivalent 
to f(Q) .D f((Q \ (P \ p')) t9 P'). Since naturally P' c_ 
(Q \ (p \ P')), it follows that f(Q) D f(Q \ (p \ P')). The 
opposite inequality is obvious. Hence, Q is not minimal in 

Pin mathematical terms, (i) and (ii) state that the set of fre- 
quent key patterns is an order ideal (or down-set) of (2 v, _C). 
ZThat is, P1 C P2 =~ f(P2) C f(P1). 

[Q] and thus by definition not a key pattern. (i) is a direct 
logical consequence of (ii). 
When taking the support into account, it is sufficient to 
notice that all subsets of a frequent pattern are frequent 
patterns, so the proof remains valid. [] 

The algorithm determines, at each iteration, the key pat- 
terns among the candidate key patterns by using (ii) of the 
following theorem: 

THEOREM 3. Let P be a frequent pattern. 
(i) Let p e P.  Then P e [ P  \ {p}] iff sup(P) = sup(P \ 

{p}). 
(ii) P is a key pattern i ffsup(P) ~ minpep(sup(P\  {p})). 

PROOF. (i) The 'if '  part follows from Lemma 1 (ii). 
The 'only if' part is obvious. (ii) From (i) we deduce 
that P is a key pattern itf sup(P) ~ sup(P \ ~p}), for all 
p E P. Since sup is a monotonous decreasing function, this 
is equivalent to (ii). [] 

As all candidate key patterns are also candidate patterns, 
when generating all candidate patterns for the next level we 
can at the same time determine the candidate key patterns 
among them. 
If we reach a candidate k-pattern which is not a candidate 
key pattern, then we already passed along at least one of the 
key patterns in its equivalence class in an earlier iteration. 
Hence we already know its support. Using the following 
theorem, we determine this support without accessing the 
database: 

THEOREM 4. I f  P i a  a non-key pattern, then 

sup(P) ---- ~i~(sup(e \ {p})). 

PROOF. "<" follows from the fact that sup is a monoto- 
nous decreasing function. "~": If P is not a key pattern 
then exists p E P with POP\{p}. Hence sup(P) -- sup(P \ 
{P}) ~ minqep(sup(P\  {q}). [] 

Thus the database pass needs to count the supports of the 
candidate key patterns only. Knowing this, we can sum- 
marize PASCAL as follows: It works exactly as Apriori, but 
counts only those supports in the database pass which can- 
not be derived from supports already computed. We can 
thus, on each level, restrict the expensive count in the data- 
base to some of the-c.andidates. Better yet, from some 
level on, all candidate pattern may be known to be non-key 
patterns. Then all remaining frequent patterns and their 
support can be derived without accessing the database any 
more. In the worst case (i. e.~ in weakly correlated data), all 
candidate patterns are also candidate key patterns. The al- 
gorithm behaves then exactly as Apriori, with no significant 
overhead. 

4. THE PASCAL ALGORITHM 
In this section, we transform the theorems from the last 
section into an algorithm. The pseudo-code is given in Al- 
gorithm 1. A list of notations is provided in Table 1. We 
assume that P is linearly ordered, e.g., • = (1 , . . . ,  n}. This 
will be used in PASCAL-GEN. 
The algorithm starts with the empty set, which always has a 
support of 1 and which is (by definition) a key pattern (step 
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Table I: Notations used in PASCAL 

k is the counter which indicates the current it- 
eration. In the kth iteration, all frequent k- 
patterns and all key patterns among them are 
determined. 

9~ contains after the kth iteration all frequent k- 
patterns P together with their support P. sup, 
and a boolean variable P.key indicating if P is 
a (candidate) key pattern. 

CA stores the candidate k-patterns together with 
their support (if known)~ the boolean variable 
P.keyl and a counter P.pred_sup which stores 
the minimum of the supports of all (k - 1)- 
sub-patterns of P.  

A l g o r i t h m  1 PASCAL 

1) 0. sup ~ 1; 0.key ~-- true; 
2) 9o ~ {~}; 
3) 91 <-- (frequent 1-patterns}; 
4) foral l  p E 91 do beg in  
5) p.pred sup ~-- 1; p.key ~ (p. sup ~ 1); 
6) end;  
7) for (k ~- 2; 9~-1 ~ 0; k -I- -I-) do  beg in  
8) C/c ~ PASCAL-GEN(9~-i); 
9) if 3(C E C~ where c.key ~- true) then 

10) forall o E D do begin 
11) Co ~ subset(Ca, o); 
12) forall c E Co where e.key -- true do 
13) c. sup W'-b; 
14) end;  
15) foral l  c E Ck do 
16) i f  c. sup >_ minsup t h e n  beg in  
17) i f  c.key and c. sup = c.pred_sup t h e n  
18) c.key ~- false; 
19) 94 ~ 9h U {c}; 
20) end; 
21) end; 
22) r e t u r n  U/c 9k- 

1 and 2). In step 3, frequent 1-patterns are determined. 
They are marked as key patterns unless their support is 1 
(steps 4--0). The main loop is similar to the one in Aprieri 
(steps 7 to 21). First, PASCAL-GEN is called to compute the 
candidate patterns. The support of key ones is determined 
via a database pass (steps 10-14). The 'subset' function 
(step 11) is the same as in Apriori: it returns all the candi- 
date patterns included in the object o. Candidate patterns 
are stored in a data structure allowing fast retrieval, like the 
hash-tree in Apriori [2]. In our implementation, we used a 
trie with hash nodes [18]. 
Then (steps 15-20) the ~traditional' pruning is done. At the 
same time, for all remaining candidate key patterns, it is 
determined whether they are key or net (step 17 and 18). 
The way that PASCAL-GEN operates is basically known from 
the generator function Apriori-Gen which was introduced in 
[2]. When called at the kth iteration, it uses as input the 
set of frequent (k  - 1)-patterns 94-1. Its output is the set 
of candidate k-patterns. Additionally to Apriori-Gen's join 

A l g o r i t h m  2 PASCAL-GEN 

Input: 9k-l, the set of frequent ( k -  1)-patterns p with their 
support p. sup and the p.key flag. 

Output: CA, the set of candidate k-patterns c each with the 
flag c.key, the value c.pred_sup, and the support c. sup if c 
is not a key pattern. 

1) inser t  in to  CA 
select  p.iteml, p.item2, . . . ,  p.item~_l, q.itemk-i 
f rom 9~-1 p, 9u-1 q 
w h e r e  p.iteml = q.iteml, . . . ,  
p.itemk-2 = q.itemk-2, p.item~_l < q.itemk-1; 

2) foral l  c E CA do beg in  
3) c.key +- true; c.pred_sup ~- -t-oo; 
4) re ta i l  (k - 1)-subsets s of c do beg in  
5) i f  s ~ :P~-I t h e n  
6) de le t e  c from CA; 
7) else beg in  
8) c.pred_snp +- min(c.pred_sup, s. sup); 
9) i f  not s.key t h e n  e.key .~- false; 

10) end;  
11) end;  
12) i f  not c.key t h e n  c. sup ~ c.pred sup; 
13) end;  
14) r e t u r n  Ck. 

and prune steps, PASCAL-GEN makes the new candidates in- 
herit the fact of being or not a candidate key pattern (step 9) 
by using Theorem 2; and it determines at the same time the 
support of all non-key candidate patterns (step 12) by using 
Theorem 4. 

Running example. We illustrate the PASCAL algorithm on 
the following dataset for minsup = 2/5: 

ID Items 

1 A C D F 
2 B C E F 
3 A B C E F 
4 B E F 
5 A B C E F 

The algorithm performs first one database pass to count the 
support of the 1-patterns. The candidate pattern {D} is 
pruned because it is infrequent. As ~F) has the same sup- 
port as the empty set, .{F} is marked as a non-key pattern: 

~Pl sup key 

{A} 3/5 t 
{S} 4/5 t 
{ c }  4/5 t 
{E} 4/5 t 
~F) 1 f 

At the next iteration, all candidate 2-patterns are created 
and stored in C2. At the same time, the support of all pat- 
terns containing ~F} as a sub-pattern is computed. Then a 
database pass is performed to determine the supports of the 
remaining six candidate patterns: 
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C2 pred sup key sup :P2 sup key 

{AB} 3/5 t ? {AB} 2/5 t 
{AC} 3/5 t ? {AG} 3/5 f 
{AE} 415 t ? {AE} 2/5 t 
{AF} 3/5 f 3/5 {AF} 3/5 f 
{Be} 415 t ? {Be} 3/5 t 
{BE} 4/5 t ? {BE} 4/5 f 
{BF} 4/5 f 4/5 {BF} 4/5 f 
{cE} 415 t ? {cE} 315 t 
{CF} 4/5 f 4/5 {CF} 4/5 f 
{EF} 4/5 f 4/5 {EF} 4/5 f 

At the third iteration, it turns out in PASCAL-GEN tha t  each 
newly generated candidate pat tern  contains at  least one sub- 
pat tern which is not a key pattern.  Hence all new candidate 
pat terns are not candidate key pattern,  and all their sup- 
ports are determined directly in PASCAL-GEN. From there 
on, the database will not be accessed any more. 

Cs pred_sup key sup Ps sup key 

{ABF} 2/5 f 2/5 {ABF} 2/5 f 
{ABe} 2/5 f 2/5 {ABe} 2/5 f 
{ABE} 2/5 f 2/5 {ABE} 2/5 f 
{ACE} 2/5 f 3/5 {ACE} 2/5 f 
{ACF} 3/5 f 3/5 {ACF} 3/5 f 
{AEF} 2/5 f 2/5 {AEF} 2/5 f 
{BEE} 3/5 f 3/5 {BCE} 3/5 f 
{BCF} 3/5 f 3/5 {BCF} 3/5 f 
{BEE} 4/5 f 4/5 {BEF} 4/5 f 
{CEF} 3/5 f 3/5 {CEF} 3/5 f 

In the fourth and fifth iteration, all supports are determined 
directly in PASCAL-GEN. In the sixth iteration, PASCAL- 
GEN generates no new candidate patterns, thus no frequent 
6-patterns are computed and the algorithm stops: 

C4 pred_sup key sup P4 sup key 

{ABCE} 2/5 f 2/5 {ABCE} 2/5 f 
{ABCF} 2/5 f 2/5 {ABCF} 2/5 f 
{ABEF} 2/5 f 2/5 {ABEF} 2/5 f 
{ACEF} 2/5 f 3/5 {ACEF} 2/5 f 
{BEEF} 3/5 f 3/5 {BEEF} 3/5 f 

C5 pred_snp key sup 'P5 sup key 

{ABCEF} 2/5 f 2/5 {ABCEF} 2/5 f 

Hence PASCAL needs two database passes in which the al- 
gorithm counts the supports of 6 + 6 = 12 patterns. Apri- 
ori would have needed five database passes for counting the 
supports of 6 + 10 + 10 + 5 + 1 = 32 pat terns for the same 
dataset. All other current algorithms (with the only excep- 
tion of Close) may need less than five passes, but  they all 
have to perform the 32 counts. 

5. EXPERIMENTAL EVALUATION 
We evaluated PASCAL against the algorithms Apriori, Close, 
and Max-Miner. Max-Miner was extended to retrieve the 
frequent pat terns with their support  by a pass over the 

databases; the two phases are shown in the tables below s. 
PASCAL, Apriori, Close and this final step to Max-Miner all 
shared the same data  structures and general organization. 
Optimizations such as special handling of pass two or items 
reordering were disabled. Experiments were conducted on a 
PC Pentium 3 600MHz with 512MiB of RAM. 
Characteristics of the  datasets used are given in Table 2. 
These datasets are the C20D10K and C73D10K census data- 
sets from the PUMS sample file e, the T25110D10K and 
T25120D100K 10 synthetic dataset tha t  mimics market bas- 
ket data, and the MUSHROOMS .1 dataset  describing mush- 
rooms characteristics [5]. In all experiments, we a t tempted 
to choose significant minimum support  threshold values. 

Name # of objects Avg. size # of items 

T2016D100K 100,000 20 1,000 
T25110DIOK 10,000 25 1,000 
T25120D100K 100,000 25 10,000 

C20D10K 10,000 20 386 
C?3D10K 10,000 73 2,178 

MUSH~.OOMS 8,416 23 128 

Table 2: Datasets 

Related work have shown tha t  the behavior of algorithms for 
extracting frequent pat terns depends mainly on the dataset 
characteristics. Weakly correlated data, such as synthetic 
data, constitute easy cases for the extraction since few pat- 
terns are frequent. For such data, all algorithms give ac- 
ceptable response times as we can observe in Section 5.1 in 
which experimental results obtained for the T2016D100K, 
T25110D10K and T25120D100K datasets are presented. On 
the  contrary, correlated data  consti tute fax more diificult 
cases for the extraction due to the  important  proportion of 
patterns tha t  are frequent among all patterns. Such data  
represent a huge part  of real-life dataset% and differences 
between extraction times obtained widely vary depending 
on the algorithm used. Experimental results obtained for 
the C20D10K, C73D10K and MUSHROOMS datasets, t ha t  
are made up of correlated data, are given in Section 5.2. 

5.1 Weakly correlated data 
The T2016D100K, T25110D10K and T25120D100K synthetic 
datasets are constructed according to the properties of mar- 
ket basket data  tha t  are typical weakly correlated data. In 
these datasets, the number of frequent pat terns  is small com- 
pared to the total  number  of pat terns and, in most cases, 
nearly all the frequent pat terns  are also key patterns. 
Response times for the T2016D10OK dataset are presented 
numerically in Table 3 and graphically in Figure 2. In this 
dataset, all frequents pat terns are key pat terns  and Apriori 
and PASCAL behave identically and response times obtained 
from them and Max-Miner are similar. The Close algorithm 
gives higher response times due to the number of intersec- 
tion operations needed for computing the closures of the 

SThis second phase is by far the  most costly par t  of the 
'Max-Miner + '  run-times. 
O f t p : / / f t p 2 .  cc.ukans, edu /pub / ippbr  / census/pums/  
pums90ks.zip 

1o h t t p : / / ~ ,  almaden, ibm. com/cs/quest/syndata, html 
11 f t p : / / f t p ,  i c s  . uc i .  edu/pub/  
machine- l e a r n i n g -  dat  abases/mushro ore/ 
agaricus- lepiota, data 
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cand ida te  pa t te rns .  

Sup. # ~ e q .  PascM Ap~o~ Close Max-Miner + 

1.00 1,534 13.14 13.51 25.91 2.60 5.03 
0.75 4,710 20.41 20.67 35.29 4.44 11.06 
0.50 26,950 44.00 44.38 67.82 6.87 35.37 
0.25 155,673 117.97 117.79 182.95 15.64 109.14 

Table 3: Response times for T2016Di00K 
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Figure  2: Exper imen ta l  resul ts  for T2016D100K 
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Figure  3: Expe r imen t a l  resul ts  for T25120D10K 

Sup. ~ freq. Pascal Apriori Close Max-Miner + 

1.00 3,300 3.24 3.62 6.67 0.63 1.05 
0.75 17,583 5.17 6.95 9.38 1.09 3.83 
0.50 331,280 17.82 41.06 26.43 2.76 35.53 
0.25 2,270,573 70.37 187.92 86.08 6.99 154.89 

Sup. # freq. Pascal Apriori Close Max-Miner + 

l.O0 583 5.15 5.76 11.15 1.24 1.3 
0.75 1,155 9.73 11.13 35.57 1.99 1.77 
0.50 1,279,254 968.64 935.14 2,151.34 24.94 879.85 

Table 5: Response times for T25110DIOK 

Table 4: Response times for T25120DI00K 

Results for t h e  T25120DI00K da tase t  are p resen ted  numeri- 
cally in Table 4 and graphically in Figure 3. For this dataset, 
nearly all frequent patterns are key patterns, and results are 
similar to those obtained for the T2016D100K dataset: PAS- 
CAL and Apriori give identical response times and suffer a 
slight performance loss over Max-Miner while Close is the 
worst performer. 
In Table 5 and Figure 4, execution times for the T25110D10K 
dataset are presented. In this dataset, the proportion of fre- 
quent patterns that are not key patterns is much more im- 
portant than for the T25120D100K dataset. For the 1.00 
and 0.75 minsup thresholds, Max-Miner performs better 
than Apriori and PASCAL that themselves perform better 
than Close. For the lower 0.50 and 0.25 minsup thresholds, 
PASCAL becomes the best performer and is slightly better 
than Close whereas they both clearly outperform Apriori 
and Max-Miner: When the proportion of frequent patterns 
that are not key is significant~ the mechanism used by PAS- 
CAL (resp. Close) to consider only key (resp. closed) pat- 
terns enables to reduce considerably the number of support 
counts performed. 
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Figure  4: Expe r imen ta l  resu l t s  for T25110D10K 
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5.2 C o r r e l a t e d  data 
Response times obtained from the C20D10K and C73D10K 
census datasets are given numerically in Tables 6 and 7, and 
graphically in Figures 5 and 6. Results for the MUSHROOMS 
dataset are presented in Table 8 and Figure 7. In these three 
datasets, constituted of correlated data, the proportion of 
patterns that  are frequent is important but few of them are 
also key patterns. Hence, using pattern counting inference, 
PASCAL has to perform much fewer support counts than the 
Apriori and the Max-Miner algorithms. The same observa- 
tion stands for the Close algorithm, that  uses the closure 
mechanism to reduce the number of support counts, and 
both PASCAL and Close are an order of magnitude faster 
than Apriori and Max-Miner. Differences between the exe- 
cution times of PASCAL and Close and those of Apriori and 
Max-Miner can be counted in tens of minutes for C20D10K 
and MUSHROOMS and in hours for C73D10K. Moreover, pat- 
tern counting inference and closure mechanism allow to re- 
duce the number of passes on the datasets since the supports 
of all candidate patterns of some iteration are all deduced 
from the supports of key, or closed, patterns of previous it- 
erations. On C73D10K with m i n s u p  = 60%, for instance, 
PASCAL and Close both make 13 passes while the largest 
frequent patterns are of size 19. For this dataset and this 
threshold value, frequent patterns could not be derived from 
the maximal frequent patterns extracted with Max-Miner 
since we did not implement memory management for this 
phase and it required in this case more memory space than 
available. 

Sup. # freq. Pascal Apriori Close Max-Miner + 

20.0 20,239 9.44 57.15 14.36 0.17 77.40 
15.0 3 6 , 3 5 9  12.31 85.35 18.99 0 .26  113.22 
10.0  89 ,883  19 .29  164.81 29.58 0 .34 201.33 
7.5 153,163 23 .53  232.40 36.02 0 .35  268.80 
5.0 352,611 33 .06  395.32 50.46 0 .48  428.65 
2.5 1,160,363 55 .33  754.64 78.63 0 .81 775.56 

Table 6: Response times for C20D10K 

Sup. ~ freq. Pascal Apriori Close Max-Miner + 

80 109,159 177.49 3,661.27 241.91 0.87 3,717.99 
75 235,271 392.80 7,653.58 549.27 1.06 7,730.36 
70 572,087 786.49 17,465.10 1,112.42 2.28 17,618.40 
60 4,355,543 3,972.10 109,204.00 5,604.91 7.72 (*) 

(*) Not enough memory. 

Table 7: Response times for C73D10K 

Sup. # freq. Pascal Apriori Close Max-Miner + 

20.0  53,337 6.48 115.82 9.63 0 . 3 1  134.31 
15.0 99,079 9.81 190.94 14.57 0 . 5 0  218.93 
10.0 600,817 2 3 . 1 2  724.35 29.83 0 . 8 9  745.72 
7.5 936,247 32.08 1,023.24 41.05 1 .25  1,035.48 
5.0 4,140,453 97.12 2,763.42 98.81 1 .99  2,752.05 

Table 8: Response times for MUSHROOMS 
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Figure 5: Experimental results for C20D10K 

SIGKDD Explorations. ACM SIGKDD,  December 2000. Volume 2, Issue 2 - page 72 



120000 I 

100000 [ 

80000 

60000 

40000 

20000 ~..~.....~ 

0 ' 
80 

6000 

5000 

4000 

3000 

2000 

1000 

80 

I , 

Pascal # 
Apriori ---4---- 

Close -'-'e-'" 
Max.Miner + - _ ~ 7  ~- 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
s t 

/ 
/ 

/ 
/ 

75 
Minimum Support (%) 

a i i 

Pascal * 
Close ---~---" 

/ 
/ 

/ "  
/ 

, /  
/ 

, I , I , I , 

75 70 65 

Minimum Support (%) 

70 65 60 

60 

Figure 6: Exper imenta l  results  for C73D10K 

3000 

2500 

2000 

.~ 1500 

1000 

5OO 

2O 

100 

80 

60 

4O 

20 

0 
20 

' ' Pascal' * 
Apriori ---+--. 

Close -'-'~-- 
Max_Miner + --  ~.-. 

/ 
/ 

/ 
/ 

/ 
/ 

15 10 

Minimum Support (%) 

' ' Pascal * 
Close ---÷--" ' 

I = I = 

15 10 

Minimum Support (%) 

Figure 7: Exper imenta l  results  for MUSHROOMS 

SIGKDD Explorations.  A C M  S I G K D D ,  December  2000. Volume 2, Issue 2 - page 73 



6. CONCLUSION 
We presented PASCAL, a novel optimization of the Apriori 
algorithm for fast discovery of frequent patterns. PASCAL is 
both effective and easy to implement or to integrate in ex- 
isting implementations based on the Apriori approach. This 
optimization uses pattern counting inference, using the key 
patterns in equivalence classes to reduce the number of pat- 
terns counted and database passes. 
We conducted performance evaluations to compare the ef- 
ficiency of PASCAL with those of Apriori, Max-Miner and 
Close. The results showed that PASCAL gives response times 
equivalent to those of Apriori and Max-Miner when extract- 
ing all frequent patterns and their support from weakly cor- 
related data, and that it is the most efficient among the four 
algorithms when data are dense or correlated. 
Frequent key patterns are also used for simplifying rule gen- 
eration, as they can be seen as the left hand sides of minimal 
non-redundant association rules [4]. 
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