
HAL Id: hal-00467750
https://hal.science/hal-00467750

Submitted on 26 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining frequent patterns with counting inference
Yves Bastide, Rafik Taouil, Nicolas Pasquier, Gerd Stumme, Lotfi Lakhal

To cite this version:
Yves Bastide, Rafik Taouil, Nicolas Pasquier, Gerd Stumme, Lotfi Lakhal. Mining frequent patterns
with counting inference. SIGKDD explorations : newsletter of the Special Interest Group (SIG) on
Knowledge Discovery & Data Mining, 2000, 2 (2), pp.66-75. �hal-00467750�

https://hal.science/hal-00467750
https://hal.archives-ouvertes.fr

Mining Frequent Patterns with Counting Inference

Yves Bastide* Rafik Taouil t Nicolas Pasquier :1: Gerd Stumme §
stidOacm.org Rafik.taouilOloria.fr Nicolas.Pasquier~unice.fr stumm e~aifb.uni-karlsruhe.de

Lotfi Lakhal ¶
lakhalOlim.univ-mrs.fr

ABSTRACT
In this paper, we propose the algorithm PASCAL which in-
troduces a novel optimization of the well-known algorithm
Apriori. This optimization is based on a new strategy called
pattern counting inference that relies on the concept of key
patterns. We show that the support of frequent non-key
patterns can be inferred from frequent key patterns with-
out accessing the database. Experiments comparing PAS-
CAL to the three algorithms Apriori, Close and Max-Miner,
show that PASCAL is among the most efficient algorithms
for mining frequent patterns.

1. INTRODUCTION
Knowledge discovery in databases (KDD) is defined as the
non-trivial extraction of valld~ implicit, potentially useful
and ultimately understandable information in large data-
bases [11]. For several years, a wide range of applications in
various domains have benefited from KDD techniques and
many work has been conducted on this topic. The prob-
lem of mining frequent patterns arose first as a sub-problem
of mining association rules [1], but it then turned out to
be present in a variety of problems [12]: mining sequential
patterns [3], episodes [16], association rules [2], correlations
[8; 23], multi-dimensional patterns [13; 14], maximal pat-
terns [7; 26; 15], closed patterns [24; 20; 19; 21]. Since the
complexity of this problem is exponential in the size of the
binary database input relation and since this relation has to
be scanned several times during the process, efficient algo-
rithms for mining frequent patterns are required.

1.1 Related work
Three approaches have been proposed for mining frequent
patterns. The first is traversing iteratively the set of all

*LIMOS, universit~ Blaise Pascal, complexe scientifique des
C6zeanx, 24 av. des Landais, 63177 Aubi~re Cedex, France
tINRIA Lorraine, 54506 Vandceuvre-l~s-Nancy Cedex,
France
$I3S (CNRS UPRESA 6070) - uuiversit~ de Nice, 06903
Sophia Antipolis, France

§Institut fiir Angewandte Informatik und Formale Beschrei-
bungsverfahren, Universit~it Karlsruhe (TH), D-76128 Karl-
sruhe, Germany

¶LIM (CNRS FRE 2246) - universit6 de la M~diterran~e,
13288 Marseille Cedex 09, France

patterns in a levelwise manner. During each iteration corre-
sponding to a level, a set of candidate patterns is created by
joining the frequent patterns discovered during the previous
iteration, the supports of all candidate patterns are counted
and infrequent ones are discarded. The most prominent al-
gorithm based on this approach is the Apriori algorithm [2].
A variety of modifications of this algorithm arose [9; 17; 22;
25] in order to improve different effciency aspects. How-
ever, all of these algorithms have to determine the supports
of all frequent patterns and of some infrequent ones in the
database.
The second approach is based on the extraction of maxi-
mal 1 frequent patterns, from which all supersets are infre-
quent and all subsets are frequent. This approach combines
a levelwise bottom-up traversal with a top-down traversai in
order to quickly find the maximal frequent patterns. Then,
all frequent patterns are derived from these ones and one
last database scan is carried on to count their support. The
most prominent algorithm using this approach is Max-Miner
[7]. Experimental results have shown that this approach is
particularly effcient for extracting maximal frequent pat-
terns, but when applied to extracting all frequent patterns
performances drastically decrease because of the cost of the
last scan which requires roughly an inclusion test between
each frequent pattern and each object of the database. As
for the first approach, algorithms based on this approach
have to extract the supports of all frequent patterns from
the database.
The third approach, represented by the Close algorithm [20],
is based on the theoretical framework introduced in [18] that
uses the closure of the Galois connection [10]. In this ap-
proach, the frequent closed patterns (and their support) are
extracted from the database in a levelwise manner. A closed
pattern is the greatest pattern common to a set of objects
of the database; and each non-closed pattern has the same
properties (i.e. the same set of objects containing it and
thus the same support) as its closure, the smallest closed
pattern containing it. Then, all frequent patterns as well as
their support are derived from the frequent closed patterns
and their support without accessing the database. Hence
not all patterns are considered during the most expensive
part of the algorithm (counting the supports of the pat-
terns) and the search space is drastically reduced, especially
for strongly correlated data. Experiments have shown that
this approach is much more efficient than the two previous
ones on such data.

t 'Maximal' means 'maximal with respect to set inclusion'.

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 66

1.2 Contr ibut ion
We present the PASCAL 2 algorithm, introducing a novel, ef-
fective and simple optimization of the Apriori algorithm.
This optimization is based on pattern counting inference tha t
relies on the new concept of key patterns. A key pat tern is
a minimal pat tern of an equivalence class gathering all pat-
terns tha t have the same objects s. The pat tern counting
inference allows to determine the supports of some frequent
and infrequent patterns (the key patterns) in the database
only. The supports of all other frequent pat terns are de-
rived from the frequent key patterns. This allows to reduce,
a t each database pass, the number of patterns considered,
and, even more important, to reduce the number of passes
in total. This optimization is valid since key pat terns have a
property tha t is compatible with the original Apriori (deter-
ministic) heuristic; we show tha t all subsets of a key pat tern
are key pat terns and all supersets of a non-key pat tern are
non-key patterns. Then, the counting inference is performed
in a levelwise manner: If a candidate pat tern of size k which
support has to be determined is a non-key pattern, then its
support is equal to the minimal support among the pat terns
of size k-1 tha t axe its subsets. In comparison to most other
modifications of Apriori~ this induces a minimal impact on
the understandability and simplicity of implementation of
the algorithm. The important difference is to determine
as much support counts as possible without accessing the
database by information gathered in previous passes. As
shown by the experiments, the efficiency gain is up to one
order of magnitude on correlated data.

1.3 Organization of the paper
In the next section, we recall the problem of mining fre-
quent patterns. The essential notions and definitions of key
patterns and pattern counting inference are given in Sec-
tion 3. The PASCAL algorithm is described in Section 4 and
experimental results for comparing its efficiency to those of
Apriori, Max-Miner and Close are presented in Section 5.
Section 6 concludes the paper.

2. STATEMENT OF THE PROBLEM
Let P be a finite set of items, O a finite set of objects (e. g.,
transaction ids) and R C O x P a binary relation (where
(o, p) E R may be read as "item p is included in transaction
o"). The triple D = (O, P, R) is called dataset.
Each subset P of P is called a pattern. We say tha t a pat tern
P is included in an object o E O if (o,p) E R for all p E P.
Let f be the function which assigns to each pat tern P C P
the set of all objects tha t include this pattern: f (P) = {o E
O] o includes P}.
The support of a pat tern P is given by: sup(P) =
card(f(P))/card(O). For a given threshold minsup E [0,1],
a pa t tern P is called frequent pattern if sup(P) > minsup.
The task of mining frequent pat terns consists in determining
all frequent pat terns together with their supports for a given
threshold minsup.

2The French mathematician Blaise Pascal (*Clermont-
Ferrand 1623, t 1662 Paris) invented an early computing
device.
3A similar notion of equivalence classes was also recently
proposed by R. Bayardo and R. Agrawal [6] to character-
ize "a-maximal" rules (i.e., association rules with maximal
antecedent).

3. P A T T E R N C O U N T I N G INFERENCE
In this section, we give the theoretical basis of the new PAS-
CAL algorithm. This basis provides at the same t ime the
proof of correctness of the algorithm. In Section 4, these
theorems will be turned into pseudo-code.
Like Apriori, PASCAL will traverse the powerset of P level-
wise: At the k th iteration, the algorithm generates first all
candidate k-patterns.

Definition 1. A k-pat tern P is a subset of P such tha t
card(P) = k. A candidate k-pattern is a k-pattern where all
its proper sub-patterns are frequent.

Given the set of candidate k-patterns, one database pass is
used to determine their support. Infrequent pat terns are
then pruned. This approach works because of the well-
known fact tha t a pat tern cannot be frequent if it has an
infrequent sub-pattern.

3.1 Key Patterns
Our approach is based on the observation tha t frequent pub
terns can be considered as "equivalent" if they are included
in exactly the same objects. We describe this fact by the
following equivalence relation 0 on the frequent patterns.

Definition 2. Given two pat terns P, Q c_ P, let P 0 Q if
and only if f (P) = f(Q). The set of pat terns which are
equivalent to a pa t tern P is given by [P] = {Q c ~ l POQ}.

In the case of pat terns P and Q with POQ, both pat terns
obviously have the same support:

LEMMA 1. Let P and Q be two patterns.
(i) P0 Q ~ sup(F) = sup(Q)

(ii) P C _ Q A s u p (P) = s u p (Q) ==#. P 0 Q

PROOF. (i) P0Q ~ f(P)= f(Q) ~ sup(P)=
card(f(P))/card(O) = card(f(Q))/card(O) = sup(Q).
(ii) Since P c_ Q and f is monotonous decreasing, we
have f (P) ~ f(Q). sup(P) = sup(Q) is equivalent to
ca rd(f (P)) = card(f (Q)) which implies with the former
I(P) = f(Q) and thus POQ. []

Hence if we knew the relation 0 in advance, we would need
to count the support of only one pattern in each equivalence
class. Of course this is not the case; but we can construct it
step by step 4. Thus, we will (in general) need to determine
the support of more than one pattern in each class, but not
of all of them. If we already have determined the support of
a pat tern P in the database and encounter later a pa t tern
Q E [P], then we need not access the database for it because
we know that sup(Q) = sup(F).
The first patterns of an equivalence class that we reach using
a levelwise approach are exactly the minimal s patterns in
the class:

Definition 3. A pat tern P is a key pattern if P E min[P];
tha t is, if no proper subset of P is in the same equivalence
class. A candidate key pattern is a pa t tern such tha t all its
proper sub-patterns are frequent key patterns.

4In the algorithm, the equivalence relation is not explicitly
generated, bu t is- -as the algorithm is based on the following
theorems--implicit ly used.
S'Minimal' means 'minimal with respect to set inclusion'.

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 67

Observe that all candidate key patterns are also candidate
patterns.
Figure I presents the lattice of frequent patterns found on
an example database with a minimum support minsup ----
2/5, highlighting key patterns and equivalence classes (the
database is similar to the one described in the running ex-
ample subsection of the PASCAL algorithm, except that the
item F was removed). In this database, for instance, every
object containing A also contains C; but not all of them con-
tain B. Hence {A} and {AC} are in the same equivalence
class--but not {AB}.

ey pattern

- ~ f '~ Equivalence

Figure 1: Example lattice of frequent patterns

3.2 Counting Inference
In the algorithm, we apply the pruning strategy to both can-
didate patterns and candidate key patterns. This is justified
by the following theorem:

THEOREM 2. (i) l f Q is a frequent key pattern and P C
Q, then P is also a frequent key pattern.
(ii) I f P is not a frequent key pattern and P C_ Q, then Q
is not a frequent key pattern either, e

PROOF. We will first prove a more general statement of
this theorem with no hypothesis on the support.
(ii) Let P and Q be two patterns with P C Q and P not
being a key pattern. Then there exists pr E rain[P] with
pr C P. We need to show that f (Q) = f (Q \ (p \ p r)) .
We can rewrite f(Q) as f ((Q \ (P \ P')) t9 (P \ P')), or
f(Q\(P\P'!)f3f(P\I~). We know that .f(P') C f(e\P'),
because f(P) ---- l(P) and f is a decreasing function z, so
f(Q) D f(Q \ (P \ p')) N f(P'). This formula is equivalent
to f(Q) .D f((Q \ (P \ p')) t9 P'). Since naturally P' c_
(Q \ (p \ P')), it follows that f(Q) D f(Q \ (p \ P')). The
opposite inequality is obvious. Hence, Q is not minimal in

Pin mathematical terms, (i) and (ii) state that the set of fre-
quent key patterns is an order ideal (or down-set) of (2 v, _C).
ZThat is, P1 C P2 =~ f(P2) C f(P1).

[Q] and thus by definition not a key pattern. (i) is a direct
logical consequence of (ii).
When taking the support into account, it is sufficient to
notice that all subsets of a frequent pattern are frequent
patterns, so the proof remains valid. []

The algorithm determines, at each iteration, the key pat-
terns among the candidate key patterns by using (ii) of the
following theorem:

THEOREM 3. Let P be a frequent pattern.
(i) Let p e P. Then P e [P \ {p}] iff sup(P) = sup(P \

{p}).
(ii) P is a key pattern i ffsup(P) ~ minpep(sup(P\ {p})).

PROOF. (i) The 'if ' part follows from Lemma 1 (ii).
The 'only if' part is obvious. (ii) From (i) we deduce
that P is a key pattern itf sup(P) ~ sup(P \ ~p}), for all
p E P. Since sup is a monotonous decreasing function, this
is equivalent to (ii). []

As all candidate key patterns are also candidate patterns,
when generating all candidate patterns for the next level we
can at the same time determine the candidate key patterns
among them.
If we reach a candidate k-pattern which is not a candidate
key pattern, then we already passed along at least one of the
key patterns in its equivalence class in an earlier iteration.
Hence we already know its support. Using the following
theorem, we determine this support without accessing the
database:

THEOREM 4. I f P i a a non-key pattern, then

sup(P) ---- ~i~(sup(e \ {p})).

PROOF. "<" follows from the fact that sup is a monoto-
nous decreasing function. "~": If P is not a key pattern
then exists p E P with POP\{p}. Hence sup(P) -- sup(P \
{P}) ~ minqep(sup(P\ {q}). []

Thus the database pass needs to count the supports of the
candidate key patterns only. Knowing this, we can sum-
marize PASCAL as follows: It works exactly as Apriori, but
counts only those supports in the database pass which can-
not be derived from supports already computed. We can
thus, on each level, restrict the expensive count in the data-
base to some of the-c.andidates. Better yet, from some
level on, all candidate pattern may be known to be non-key
patterns. Then all remaining frequent patterns and their
support can be derived without accessing the database any
more. In the worst case (i. e.~ in weakly correlated data), all
candidate patterns are also candidate key patterns. The al-
gorithm behaves then exactly as Apriori, with no significant
overhead.

4. THE PASCAL ALGORITHM
In this section, we transform the theorems from the last
section into an algorithm. The pseudo-code is given in Al-
gorithm 1. A list of notations is provided in Table 1. We
assume that P is linearly ordered, e.g., • = (1 , . . . , n}. This
will be used in PASCAL-GEN.
The algorithm starts with the empty set, which always has a
support of 1 and which is (by definition) a key pattern (step

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 68

Table I: Notations used in PASCAL

k is the counter which indicates the current it-
eration. In the kth iteration, all frequent k-
patterns and all key patterns among them are
determined.

9~ contains after the kth iteration all frequent k-
patterns P together with their support P. sup,
and a boolean variable P.key indicating if P is
a (candidate) key pattern.

CA stores the candidate k-patterns together with
their support (if known)~ the boolean variable
P.keyl and a counter P.pred_sup which stores
the minimum of the supports of all (k - 1)-
sub-patterns of P.

A l g o r i t h m 1 PASCAL

1) 0. sup ~ 1; 0.key ~-- true;
2) 9o ~ {~};
3) 91 <-- (frequent 1-patterns};
4) foral l p E 91 do beg in
5) p.pred sup ~-- 1; p.key ~ (p. sup ~ 1);
6) end;
7) for (k ~- 2; 9~-1 ~ 0; k -I- -I-) do beg in
8) C/c ~ PASCAL-GEN(9~-i);
9) if 3(C E C~ where c.key ~- true) then

10) forall o E D do begin
11) Co ~ subset(Ca, o);
12) forall c E Co where e.key -- true do
13) c. sup W'-b;
14) end;
15) foral l c E Ck do
16) i f c. sup >_ minsup t h e n beg in
17) i f c.key and c. sup = c.pred_sup t h e n
18) c.key ~- false;
19) 94 ~ 9h U {c};
20) end;
21) end;
22) r e t u r n U/c 9k-

1 and 2). In step 3, frequent 1-patterns are determined.
They are marked as key patterns unless their support is 1
(steps 4--0). The main loop is similar to the one in Aprieri
(steps 7 to 21). First, PASCAL-GEN is called to compute the
candidate patterns. The support of key ones is determined
via a database pass (steps 10-14). The 'subset' function
(step 11) is the same as in Apriori: it returns all the candi-
date patterns included in the object o. Candidate patterns
are stored in a data structure allowing fast retrieval, like the
hash-tree in Apriori [2]. In our implementation, we used a
trie with hash nodes [18].
Then (steps 15-20) the ~traditional' pruning is done. At the
same time, for all remaining candidate key patterns, it is
determined whether they are key or net (step 17 and 18).
The way that PASCAL-GEN operates is basically known from
the generator function Apriori-Gen which was introduced in
[2]. When called at the kth iteration, it uses as input the
set of frequent (k - 1)-patterns 94-1. Its output is the set
of candidate k-patterns. Additionally to Apriori-Gen's join

A l g o r i t h m 2 PASCAL-GEN

Input: 9k-l, the set of frequent (k - 1)-patterns p with their
support p. sup and the p.key flag.

Output: CA, the set of candidate k-patterns c each with the
flag c.key, the value c.pred_sup, and the support c. sup if c
is not a key pattern.

1) inser t in to CA
select p.iteml, p.item2, . . . , p.item~_l, q.itemk-i
f rom 9~-1 p, 9u-1 q
w h e r e p.iteml = q.iteml, . . . ,
p.itemk-2 = q.itemk-2, p.item~_l < q.itemk-1;

2) foral l c E CA do beg in
3) c.key +- true; c.pred_sup ~- -t-oo;
4) re ta i l (k - 1)-subsets s of c do beg in
5) i f s ~ :P~-I t h e n
6) de le t e c from CA;
7) else beg in
8) c.pred_snp +- min(c.pred_sup, s. sup);
9) i f not s.key t h e n e.key .~- false;

10) end;
11) end;
12) i f not c.key t h e n c. sup ~ c.pred sup;
13) end;
14) r e t u r n Ck.

and prune steps, PASCAL-GEN makes the new candidates in-
herit the fact of being or not a candidate key pattern (step 9)
by using Theorem 2; and it determines at the same time the
support of all non-key candidate patterns (step 12) by using
Theorem 4.

Running example. We illustrate the PASCAL algorithm on
the following dataset for minsup = 2/5:

ID Items

1 A C D F
2 B C E F
3 A B C E F
4 B E F
5 A B C E F

The algorithm performs first one database pass to count the
support of the 1-patterns. The candidate pattern {D} is
pruned because it is infrequent. As ~F) has the same sup-
port as the empty set, .{F} is marked as a non-key pattern:

~Pl sup key

{A} 3/5 t
{S} 4/5 t
{ c } 4/5 t
{E} 4/5 t
~F) 1 f

At the next iteration, all candidate 2-patterns are created
and stored in C2. At the same time, the support of all pat-
terns containing ~F} as a sub-pattern is computed. Then a
database pass is performed to determine the supports of the
remaining six candidate patterns:

SIGKDD Explorations. ACM SIGKDD~ December 2000. Volume 2, Issue 2 - page 69

C2 pred sup key sup :P2 sup key

{AB} 3/5 t ? {AB} 2/5 t
{AC} 3/5 t ? {AG} 3/5 f
{AE} 415 t ? {AE} 2/5 t
{AF} 3/5 f 3/5 {AF} 3/5 f
{Be} 415 t ? {Be} 3/5 t
{BE} 4/5 t ? {BE} 4/5 f
{BF} 4/5 f 4/5 {BF} 4/5 f
{cE} 415 t ? {cE} 315 t
{CF} 4/5 f 4/5 {CF} 4/5 f
{EF} 4/5 f 4/5 {EF} 4/5 f

At the third iteration, it turns out in PASCAL-GEN tha t each
newly generated candidate pat tern contains at least one sub-
pat tern which is not a key pattern. Hence all new candidate
pat terns are not candidate key pattern, and all their sup-
ports are determined directly in PASCAL-GEN. From there
on, the database will not be accessed any more.

Cs pred_sup key sup Ps sup key

{ABF} 2/5 f 2/5 {ABF} 2/5 f
{ABe} 2/5 f 2/5 {ABe} 2/5 f
{ABE} 2/5 f 2/5 {ABE} 2/5 f
{ACE} 2/5 f 3/5 {ACE} 2/5 f
{ACF} 3/5 f 3/5 {ACF} 3/5 f
{AEF} 2/5 f 2/5 {AEF} 2/5 f
{BEE} 3/5 f 3/5 {BCE} 3/5 f
{BCF} 3/5 f 3/5 {BCF} 3/5 f
{BEE} 4/5 f 4/5 {BEF} 4/5 f
{CEF} 3/5 f 3/5 {CEF} 3/5 f

In the fourth and fifth iteration, all supports are determined
directly in PASCAL-GEN. In the sixth iteration, PASCAL-
GEN generates no new candidate patterns, thus no frequent
6-patterns are computed and the algorithm stops:

C4 pred_sup key sup P4 sup key

{ABCE} 2/5 f 2/5 {ABCE} 2/5 f
{ABCF} 2/5 f 2/5 {ABCF} 2/5 f
{ABEF} 2/5 f 2/5 {ABEF} 2/5 f
{ACEF} 2/5 f 3/5 {ACEF} 2/5 f
{BEEF} 3/5 f 3/5 {BEEF} 3/5 f

C5 pred_snp key sup 'P5 sup key

{ABCEF} 2/5 f 2/5 {ABCEF} 2/5 f

Hence PASCAL needs two database passes in which the al-
gorithm counts the supports of 6 + 6 = 12 patterns. Apri-
ori would have needed five database passes for counting the
supports of 6 + 10 + 10 + 5 + 1 = 32 pat terns for the same
dataset. All other current algorithms (with the only excep-
tion of Close) may need less than five passes, but they all
have to perform the 32 counts.

5. EXPERIMENTAL EVALUATION
We evaluated PASCAL against the algorithms Apriori, Close,
and Max-Miner. Max-Miner was extended to retrieve the
frequent pat terns with their support by a pass over the

databases; the two phases are shown in the tables below s.
PASCAL, Apriori, Close and this final step to Max-Miner all
shared the same data structures and general organization.
Optimizations such as special handling of pass two or items
reordering were disabled. Experiments were conducted on a
PC Pentium 3 600MHz with 512MiB of RAM.
Characteristics of the datasets used are given in Table 2.
These datasets are the C20D10K and C73D10K census data-
sets from the PUMS sample file e, the T25110D10K and
T25120D100K 10 synthetic dataset tha t mimics market bas-
ket data, and the MUSHROOMS .1 dataset describing mush-
rooms characteristics [5]. In all experiments, we a t tempted
to choose significant minimum support threshold values.

Name # of objects Avg. size # of items

T2016D100K 100,000 20 1,000
T25110DIOK 10,000 25 1,000
T25120D100K 100,000 25 10,000

C20D10K 10,000 20 386
C?3D10K 10,000 73 2,178

MUSH~.OOMS 8,416 23 128

Table 2: Datasets

Related work have shown tha t the behavior of algorithms for
extracting frequent pat terns depends mainly on the dataset
characteristics. Weakly correlated data, such as synthetic
data, constitute easy cases for the extraction since few pat-
terns are frequent. For such data, all algorithms give ac-
ceptable response times as we can observe in Section 5.1 in
which experimental results obtained for the T2016D100K,
T25110D10K and T25120D100K datasets are presented. On
the contrary, correlated data consti tute fax more diificult
cases for the extraction due to the important proportion of
patterns tha t are frequent among all patterns. Such data
represent a huge part of real-life dataset% and differences
between extraction times obtained widely vary depending
on the algorithm used. Experimental results obtained for
the C20D10K, C73D10K and MUSHROOMS datasets, t ha t
are made up of correlated data, are given in Section 5.2.

5.1 Weakly correlated data
The T2016D100K, T25110D10K and T25120D100K synthetic
datasets are constructed according to the properties of mar-
ket basket data tha t are typical weakly correlated data. In
these datasets, the number of frequent pat terns is small com-
pared to the total number of pat terns and, in most cases,
nearly all the frequent pat terns are also key patterns.
Response times for the T2016D10OK dataset are presented
numerically in Table 3 and graphically in Figure 2. In this
dataset, all frequents pat terns are key pat terns and Apriori
and PASCAL behave identically and response times obtained
from them and Max-Miner are similar. The Close algorithm
gives higher response times due to the number of intersec-
tion operations needed for computing the closures of the

SThis second phase is by far the most costly par t of the
'Max-Miner + ' run-times.
O f t p : / / f t p 2 . cc.ukans, edu /pub / ippbr / census/pums/
pums90ks.zip

1o h t t p : / / ~ , almaden, ibm. com/cs/quest/syndata, html
11 f t p : / / f t p , i c s . uc i . edu/pub/
machine- l e a r n i n g - dat abases/mushro ore/
agaricus- lepiota, data

SIGKDD Explorations. A C M SIGKDD, December 2000. Volume 2, Issue 2 - page 70

cand ida te pa t te rns .

Sup. # ~ e q . PascM Ap~o~ Close Max-Miner +

1.00 1,534 13.14 13.51 25.91 2.60 5.03
0.75 4,710 20.41 20.67 35.29 4.44 11.06
0.50 26,950 44.00 44.38 67.82 6.87 35.37
0.25 155,673 117.97 117.79 182.95 15.64 109.14

Table 3: Response times for T2016Di00K

200

150

100

50

' ' Pascai o
Apriori ---~--
Close -"'9--.

Max_Miner + ._ ~<.)z"

/

a I , I ,

0.75 0.5 0.25

Minimum Support (%)

Figure 2: Exper imen ta l resul ts for T2016D100K

2500

2000

1500 I
Pascal

Apriori ---:--

Max_Miner + ,'

m
v

.i
I000

500

0 I

1

, f"
/

, /

,.'Y
0.75 0.5

Minimum Support (%)

Figure 3: Expe r imen t a l resul ts for T25120D10K

Sup. ~ freq. Pascal Apriori Close Max-Miner +

1.00 3,300 3.24 3.62 6.67 0.63 1.05
0.75 17,583 5.17 6.95 9.38 1.09 3.83
0.50 331,280 17.82 41.06 26.43 2.76 35.53
0.25 2,270,573 70.37 187.92 86.08 6.99 154.89

Sup. # freq. Pascal Apriori Close Max-Miner +

l.O0 583 5.15 5.76 11.15 1.24 1.3
0.75 1,155 9.73 11.13 35.57 1.99 1.77
0.50 1,279,254 968.64 935.14 2,151.34 24.94 879.85

Table 5: Response times for T25110DIOK

Table 4: Response times for T25120DI00K

Results for t h e T25120DI00K da tase t are p resen ted numeri-
cally in Table 4 and graphically in Figure 3. For this dataset,
nearly all frequent patterns are key patterns, and results are
similar to those obtained for the T2016D100K dataset: PAS-
CAL and Apriori give identical response times and suffer a
slight performance loss over Max-Miner while Close is the
worst performer.
In Table 5 and Figure 4, execution times for the T25110D10K
dataset are presented. In this dataset, the proportion of fre-
quent patterns that are not key patterns is much more im-
portant than for the T25120D100K dataset. For the 1.00
and 0.75 minsup thresholds, Max-Miner performs better
than Apriori and PASCAL that themselves perform better
than Close. For the lower 0.50 and 0.25 minsup thresholds,
PASCAL becomes the best performer and is slightly better
than Close whereas they both clearly outperform Apriori
and Max-Miner: When the proportion of frequent patterns
that are not key is significant~ the mechanism used by PAS-
CAL (resp. Close) to consider only key (resp. closed) pat-
terns enables to reduce considerably the number of support
counts performed.

m v

E~

200

150

I00

50

' ' Pascai o
Apriori ---~---
Close --9-.-

Max.Miner + - _ ~<__ ;,
/

,,/'ii, "£
/ / /

/ I / p

/ill... !
0.75 0.5

Minimum Support (%)

Figure 4: Expe r imen ta l resu l t s for T25110D10K

0.25

S I G K D D Explorat ions. A C M S I G K D D , December 2000. Volume 2, Issue 2 - page 71

5.2 C o r r e l a t e d data
Response times obtained from the C20D10K and C73D10K
census datasets are given numerically in Tables 6 and 7, and
graphically in Figures 5 and 6. Results for the MUSHROOMS
dataset are presented in Table 8 and Figure 7. In these three
datasets, constituted of correlated data, the proportion of
patterns that are frequent is important but few of them are
also key patterns. Hence, using pattern counting inference,
PASCAL has to perform much fewer support counts than the
Apriori and the Max-Miner algorithms. The same observa-
tion stands for the Close algorithm, that uses the closure
mechanism to reduce the number of support counts, and
both PASCAL and Close are an order of magnitude faster
than Apriori and Max-Miner. Differences between the exe-
cution times of PASCAL and Close and those of Apriori and
Max-Miner can be counted in tens of minutes for C20D10K
and MUSHROOMS and in hours for C73D10K. Moreover, pat-
tern counting inference and closure mechanism allow to re-
duce the number of passes on the datasets since the supports
of all candidate patterns of some iteration are all deduced
from the supports of key, or closed, patterns of previous it-
erations. On C73D10K with m i n s u p = 60%, for instance,
PASCAL and Close both make 13 passes while the largest
frequent patterns are of size 19. For this dataset and this
threshold value, frequent patterns could not be derived from
the maximal frequent patterns extracted with Max-Miner
since we did not implement memory management for this
phase and it required in this case more memory space than
available.

Sup. # freq. Pascal Apriori Close Max-Miner +

20.0 20,239 9.44 57.15 14.36 0.17 77.40
15.0 3 6 , 3 5 9 12.31 85.35 18.99 0 .26 113.22
10.0 89 ,883 19 .29 164.81 29.58 0 .34 201.33
7.5 153,163 23 .53 232.40 36.02 0 .35 268.80
5.0 352,611 33 .06 395.32 50.46 0 .48 428.65
2.5 1,160,363 55 .33 754.64 78.63 0 .81 775.56

Table 6: Response times for C20D10K

Sup. ~ freq. Pascal Apriori Close Max-Miner +

80 109,159 177.49 3,661.27 241.91 0.87 3,717.99
75 235,271 392.80 7,653.58 549.27 1.06 7,730.36
70 572,087 786.49 17,465.10 1,112.42 2.28 17,618.40
60 4,355,543 3,972.10 109,204.00 5,604.91 7.72 (*)

(*) Not enough memory.

Table 7: Response times for C73D10K

Sup. # freq. Pascal Apriori Close Max-Miner +

20.0 53,337 6.48 115.82 9.63 0 . 3 1 134.31
15.0 99,079 9.81 190.94 14.57 0 . 5 0 218.93
10.0 600,817 2 3 . 1 2 724.35 29.83 0 . 8 9 745.72
7.5 936,247 32.08 1,023.24 41.05 1 .25 1,035.48
5.0 4,140,453 97.12 2,763.42 98.81 1 .99 2,752.05

Table 8: Response times for MUSHROOMS

900

800

700

600

500

t~ 400

3OO

2OO

lO0

0

90

80

70

60

50

N 4o

30

20

10

I I ' I

Pascal
Apriori ---÷--- .

Close---6-- ,
Max.Miner + ~;~:,

i ,

i s '

/ / "

. 2. "~'°°

.... ~ • i Y i

20 15 I0 5

Minimum Support (%)

Close ---÷---

/ / / / /

0 , I t I i I

20 15 10 5

Minimum Support (%)

Figure 5: Experimental results for C20D10K

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 72

120000 I

100000 [

80000

60000

40000

20000 ~..~.....~

0 '
80

6000

5000

4000

3000

2000

1000

80

I ,

Pascal #
Apriori ---4----

Close -'-'e-'"
Max.Miner + - _ ~ 7 ~-

/
/

/

/
/

/
/

/

/

/
s t

/
/

/
/

75
Minimum Support (%)

a i i

Pascal *
Close ---~---"

/
/

/ "
/

, /
/

, I , I , I ,

75 70 65

Minimum Support (%)

70 65 60

60

Figure 6: Exper imenta l results for C73D10K

3000

2500

2000

.~ 1500

1000

5OO

2O

100

80

60

4O

20

0
20

' ' Pascal' *
Apriori ---+--.

Close -'-'~--
Max_Miner + -- ~.-.

/
/

/
/

/
/

15 10

Minimum Support (%)

' ' Pascal *
Close ---÷--" '

I = I =

15 10

Minimum Support (%)

Figure 7: Exper imenta l results for MUSHROOMS

SIGKDD Explorations. A C M S I G K D D , December 2000. Volume 2, Issue 2 - page 73

6. CONCLUSION
We presented PASCAL, a novel optimization of the Apriori
algorithm for fast discovery of frequent patterns. PASCAL is
both effective and easy to implement or to integrate in ex-
isting implementations based on the Apriori approach. This
optimization uses pattern counting inference, using the key
patterns in equivalence classes to reduce the number of pat-
terns counted and database passes.
We conducted performance evaluations to compare the ef-
ficiency of PASCAL with those of Apriori, Max-Miner and
Close. The results showed that PASCAL gives response times
equivalent to those of Apriori and Max-Miner when extract-
ing all frequent patterns and their support from weakly cor-
related data, and that it is the most efficient among the four
algorithms when data are dense or correlated.
Frequent key patterns are also used for simplifying rule gen-
eration, as they can be seen as the left hand sides of minimal
non-redundant association rules [4].

7. ACKNOWLEDGEMENTS
We would like to thank Robexto Bayardo, who provided us
with the implementation of Max-Miner used in the tests and
commented on an earlier version of this work.

8. REFERENCES

[1] R. Agrawal, T. hnielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. ACM SIGMOD Int'l Conf. on Management of
Data, pages 207-216, May 1993.

[2] R. Agrawal and l~. Srikant. Fast algorithms for mining
association rules in large databases. In Proe. of the ~Oth
Int'l Conf. on Very Large Data Bases (VLDB), pages
478-499, June 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns.
In Proe. of the l l th Int'l Conf. on Data Engineering
(ICDE), pages 3-14, Mar. 1995.

[4] Y. Bastide, N. Pasquier, R. Taoull, G. Stumme, and
L. Lakhal. Mining minimal non-redundant rules using
frequent closed itemsets. In Proc. of the 1st Int'l Conf.
on Computational Logic (6th Int'l Conf. on Database
Systems - DOOD), pages 972-986. Springer, July 2000.

[5] S. D. Bay. The UCI KDD Archive [http://kdd.icn.
uci .edu]. Irvine, CA: University of California, Depart-
ment of Information and Computer Science.

[6] R. Bayardo and R. Agrawal. Mining the most inter-
esting rules. In Proc. of the 5th lnt'l Conf. on Knowl-
edge Discovery and Data Mining (KDD), pages 145-
154, Aug. 1999.

[7] R. J. Bayardo. Efficiently mining long patterns from
databases. In Proc. ACM SIGMOD Int'l Conf. on Man-
agement of Data, pages 85-93, June 1998.

[8] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: Generalizing association rules to correlation.
In Proc. ACM SIGMOD Int'l Conf. on Management of
Data, pages 265-276, May 1997.

[9] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket data. In Proc. ACM SIGMOD Int'l Conf. on
Management of Data, pages 255-264, May 1997.

[10] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, 1999.

[11] J. Has and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, Sept. 2000.

[12] J. Has, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. ACM SIGMOD
lnt'l Conf. on Management of Data, pages 1-12, May
2000.

[13] M. Kamber, J. Han, and Y. Chiang. Metarule-guided
mining of multi-dimensionM association rules using
data cubes. In Proe. of the 3rd KDD Int'l Con]., Aug.
1997.

[14] B. Lent, A. Swami, and J. Widom. Clustering associ-
ation rules. In Proc. of the 15'th Int'l Conf. on Data
Engineering (ICDB), pages 220-231, Mar. 1997.

[15] D. Lin and Z. M. Kedem. Pincer-Search: A new al-
gorithm for discovering the maximum frequent set. In
Proc. of the 6th Int'l Coal.on Bstending Database Tech-
nology (EDBT), pages 105-119, Mar. 1998.

[16] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery
of frequent episodes in event sequences. Data Mining
and Kno~jledge Discovery, 1(3):259-289, Sept. 1997,

[17] J. S. Park, M. S. Chen, and P. S. Yn. An efficient hash
based algorithm for mining association rules. In Proc.
ACM SIGMOD lnt'l Conf. on Management of Data,
pages 175-186, May 1995.

[18] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Pruning closed itemset lattices for association rules. In
Acres des 14" journ~es ¢ Bases de donates avanc&s 4,
pages 177-196, Oct. 1998.

[19] N. Pasquier, Y. Bastide, R. Taouil, and L. Laldml. Dis-
covering frequent closed itemsets for association rules.
In Proc. of the 7th lnt~ Conf. on Database Theory
(ICDT), pages 398-416, Jan. 1999.

[20] N. Pasquier, Y. Bastide, R. Taoull, and L. Lakhal. Ef-
ficient mining of association rules using closed itemset
lattices. Journal of Information Systems, 24(1):25-46,
Mar. 1999.

[21] J. Pei, J. Han, and R. Mao. Closet: An efficient al-
gorithm for mining frequent closed itemsets. In Proc.
Workshop on Research Issues on Data Mining and
Knowledge Discovery (DMKD), pages 21-30, May
2000.

[22] A. Savasere, E. Omiecinski, and S. Navathe. An effi-
cient algorithm for mining association rules in large
databases. In Proe. of the ~ith Int'l Conf. on Very Large
Data Bases (VLDB), pages 432-444, Sept. 1995.

[23] C. Silverstein, S. Brin, and R. Motwani. Beyond market
baskets: Generalizing association rules to dependence
rules. Data Mining and Knowledge Discovery, 2(1), Jan.
1998.

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2, Issue 2 - page 74

[24] I~. Taouil, N. Pasquier, Y. Bastide, and L. Lakhah Min-
ing basis for association rules using closed sets. In Proc.
of the 16th lnt'l Conf. on Data Bngineerin 9 (ICDB),
page 307, Feb.-Mar. 2000.

[25] H. Toivonen. Sampling large databases for association
rules. In Proe. of the PZnd Int'l Conf. on Very La~je
Data Bases (VLDB), pages 134-145, Sept. 1996.

[26] M. J. Znki, S. Parthasarathy, M. Ogihara, and W. Li.
New algori thm for fast discovery of association rules.
In Proe. of the 3rd Int'l Conf. on tfnowledge Discovery
in Databases (KDD), pages 283-286, Aug. 1997.

SIGKDD Explorations. ACM SIGKDD, December 2000. Volume 2~ Issue 2 - page 75

