Yves Bastide

Rafik Taouil

Nicolas Pasquier

Gerd Stumme

Lotfi Lakhal

Mining Frequent Patterns with Counting Inference

In this paper, we propose the algorithm PASCAL which introduces a novel optimization of the well-known algorithm Apriori. This optimization is based on a new strategy called pattern counting inference that relies on the concept of key patterns. We show that the support of frequent non-key patterns can be inferred from frequent key patterns without accessing the database. Experiments comparing PAS-CAL to the three algorithms Apriori, Close and Max-Miner, show that PASCAL is among the most efficient algorithms for mining frequent patterns.

INTRODUCTION

Knowledge discovery in databases (KDD) is defined as the non-trivial extraction of valld~ implicit, potentially useful and ultimately understandable information in large databases [START_REF] Has | Data Mining: Concepts and Techniques[END_REF]. For several years, a wide range of applications in various domains have benefited from KDD techniques and many work has been conducted on this topic. The problem of mining frequent patterns arose first as a sub-problem of mining association rules [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF], but it then turned out to be present in a variety of problems [START_REF] Has | Mining frequent patterns without candidate generation[END_REF]: mining sequential patterns [START_REF] Agrawal | Mining sequential patterns[END_REF], episodes [START_REF] Mannila | Discovery of frequent episodes in event sequences[END_REF], association rules [START_REF] Srikant | Fast algorithms for mining association rules in large databases[END_REF], correlations [8; 23], multi-dimensional patterns [13; 14], maximal patterns [7; 26; 15], closed patterns [24; 20; 19; 21]. Since the complexity of this problem is exponential in the size of the binary database input relation and since this relation has to be scanned several times during the process, efficient algorithms for mining frequent patterns are required.

Related work

Three approaches have been proposed for mining frequent patterns. The first is traversing iteratively the set of all *LIMOS, universit~ Blaise Pascal, complexe scientifique des C6zeanx, 24 av. des Landais, 63177 Aubi~re Cedex, France tINRIA Lorraine, 54506 Vandceuvre-l~s-Nancy Cedex, France $I3S (CNRS UPRESA 6070) -uuiversit~ de Nice, 06903 Sophia Antipolis, France §Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren, Universit~it Karlsruhe (TH), D-76128 Karlsruhe, Germany ¶LIM (CNRS FRE 2246) -universit6 de la M~diterran~e, 13288 Marseille Cedex 09, France patterns in a levelwise manner. During each iteration corresponding to a level, a set of candidate patterns is created by joining the frequent patterns discovered during the previous iteration, the supports of all candidate patterns are counted and infrequent ones are discarded. The most prominent algorithm based on this approach is the Apriori algorithm [START_REF] Srikant | Fast algorithms for mining association rules in large databases[END_REF].

A variety of modifications of this algorithm arose [9; 17; 22; 25] in order to improve different effciency aspects. However, all of these algorithms have to determine the supports of all frequent patterns and of some infrequent ones in the database.

The second approach is based on the extraction of maximal 1 frequent patterns, from which all supersets are infrequent and all subsets are frequent. This approach combines a levelwise bottom-up traversal with a top-down traversai in order to quickly find the maximal frequent patterns. Then, all frequent patterns are derived from these ones and one last database scan is carried on to count their support. The most prominent algorithm using this approach is Max-Miner [START_REF] Bayardo | Efficiently mining long patterns from databases[END_REF]. Experimental results have shown that this approach is particularly effcient for extracting maximal frequent patterns, but when applied to extracting all frequent patterns performances drastically decrease because of the cost of the last scan which requires roughly an inclusion test between each frequent pattern and each object of the database. As for the first approach, algorithms based on this approach have to extract the supports of all frequent patterns from the database. The third approach, represented by the Close algorithm [START_REF] Pasquier | Efficient mining of association rules using closed itemset lattices[END_REF], is based on the theoretical framework introduced in [START_REF] Pasquier | Pruning closed itemset lattices for association rules[END_REF] that uses the closure of the Galois connection [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF]. In this approach, the frequent closed patterns (and their support) are extracted from the database in a levelwise manner. A closed pattern is the greatest pattern common to a set of objects of the database; and each non-closed pattern has the same properties (i.e. the same set of objects containing it and thus the same support) as its closure, the smallest closed pattern containing it. Then, all frequent patterns as well as their support are derived from the frequent closed patterns and their support without accessing the database. Hence not all patterns are considered during the most expensive part of the algorithm (counting the supports of the patterns) and the search space is drastically reduced, especially for strongly correlated data. Experiments have shown that this approach is much more efficient than the two previous ones on such data.

t'Maximal' means 'maximal with respect to set inclusion'.

Contribution

We present the PASCAL 2 algorithm, introducing a novel, effective and simple optimization of the Apriori algorithm.

This optimization is based on pattern counting inference that relies on the new concept of key patterns. A key pattern is a minimal pattern of an equivalence class gathering all patterns that have the same objects s. The pattern counting inference allows to determine the supports of some frequent and infrequent patterns (the key patterns) in the database only. The supports of all other frequent patterns are derived from the frequent key patterns. This allows to reduce, at each database pass, the number of patterns considered, and, even more important, to reduce the number of passes in total. This optimization is valid since key patterns have a property that is compatible with the original Apriori (deterministic) heuristic; we show that all subsets of a key pattern are key patterns and all supersets of a non-key pattern are non-key patterns. Then, the counting inference is performed in a levelwise manner: If a candidate pattern of size k which support has to be determined is a non-key pattern, then its support is equal to the minimal support among the patterns of size k-1 that axe its subsets. In comparison to most other modifications of Apriori~ this induces a minimal impact on the understandability and simplicity of implementation of the algorithm. The important difference is to determine as much support counts as possible without accessing the database by information gathered in previous passes. As shown by the experiments, the efficiency gain is up to one order of magnitude on correlated data.

Organization of the paper

In the next section, we recall the problem of mining frequent patterns. The essential notions and definitions of key patterns and pattern counting inference are given in Section 3. The PASCAL algorithm is described in Section 4 and experimental results for comparing its efficiency to those of Apriori, Max-Miner and Close are presented in Section 5. Section 6 concludes the paper. Let f be the function which assigns to each pattern P C P the set of all objects that include this pattern:

STATEMENT OF THE PROBLEM

f(P) = {o E O] o includes P}.
The support of a pattern P is given by: sup(P) = card(f(P))/card(O). For a given threshold minsup E [0,1], a pattern P is called frequent pattern if sup(P) > minsup.

The task of mining frequent patterns consists in determining all frequent patterns together with their supports for a given threshold minsup.

2The French mathematician Blaise Pascal (*Clermont-Ferrand 1623, t 1662 Paris) invented an early computing device. 3A similar notion of equivalence classes was also recently proposed by R. Bayardo and R. Agrawal [START_REF] Bayardo | Mining the most interesting rules[END_REF] to characterize "a-maximal" rules (i.e., association rules with maximal antecedent).

PATTERN COUNTING INFERENCE

In this section, we give the theoretical basis of the new PAS-CAL algorithm. This basis provides at the same time the proof of correctness of the algorithm. In Section 4, these theorems will be turned into pseudo-code. Like Apriori, PASCAL will traverse the powerset of P levelwise: At the k th iteration, the algorithm generates first all candidate k-patterns.

Definition 1. A k-pattern P is a subset of P such that card(P) = k. A candidate k-pattern is a k-pattern where all its proper sub-patterns are frequent.

Given the set of candidate k-patterns, one database pass is used to determine their support. Infrequent patterns are then pruned. This approach works because of the wellknown fact that a pattern cannot be frequent if it has an infrequent sub-pattern.

Key Patterns

Our approach is based on the observation that frequent pub terns can be considered as "equivalent" if they are included in exactly the same objects. We describe this fact by the following equivalence relation 0 on the frequent patterns.

Definition 2. Given two patterns P, Q c_ P, let P 0 Q if and only if f(P) = f(Q). The set of patterns which are equivalent to a pattern P is given by [P] = {Q c ~l POQ}.

In the case of patterns P and Q with POQ, both patterns obviously have the same support: LEMMA 1. Let P and Q be two patterns.

(i) P0 Q ~ sup(F) = sup(Q) (ii) PC_QAsup(P)=sup(Q) ==#. P0Q PROOF. (i) P0Q ~ f(P)= f(Q) ~ sup(P)= card(f(P))/card(O) = card(f(Q))/card(O) = sup(Q).
(ii) Since P c_ Q and f is monotonous decreasing, we

have f(P) ~ f(Q). sup(P) = sup(Q) is equivalent to card(f (P)) = card(f(Q))
which implies with the former

I(P) = f(Q) and

thus POQ. []

Hence if we knew the relation 0 in advance, we would need to count the support of only one pattern in each equivalence class. Of course this is not the case; but we can construct it step by step 4. Thus, we will (in general) need to determine the support of more than one pattern in each class, but not of all of them. If we already have determined the support of a pattern P in the database and encounter later a pattern Q E [P], then we need not access the database for it because we know that sup(Q) = sup(F).

The first patterns of an equivalence class that we reach using a levelwise approach are exactly the minimal s patterns in the class:

Counting Inference

In the algorithm, we apply the pruning strategy to both candidate patterns and candidate key patterns. This is justified by the following theorem: THEOREM 2. (i) lf Q is a frequent key pattern and P C Q, then P is also a frequent key pattern. (ii) If P is not a frequent key pattern and P C_ Q, then Q is not a frequent key pattern either, e PROOF. We will first prove a more general statement of this theorem with no hypothesis on the support.

(ii) Let P and Q be two patterns with P C Q and P not being a key pattern. Then there exists pr E rain[P] with pr C P. We need to show that f(Q) = f(Q\(p\pr)).

We can rewrite f(Q) as f((Q \ (P \ P')) t9 (P \ P')), or f(Q\(P\P'!)f3f(P\I~). We know that .f(P') C f(e\P'), because f(P) ----l(P) and f is a decreasing function z, so

f(Q) D f(Q \ (P \ p')) N f(P'). This formula is equivalent to f(Q) .D f((Q \ (P \ p')) t9 P'). Since naturally P' c_ (Q \ (p \ P')), it follows that f(Q) D f(Q \ (p \ P'))
. The opposite inequality is obvious. Hence, Q is not minimal in Pin mathematical terms, (i) and (ii) state that the set of frequent key patterns is an order ideal (or down-set) of (2 v, _C). ZThat is, P1 C P2 =~ f(P2) C f(P1).

[Q] and thus by definition not a key pattern. (i) is a direct logical consequence of (ii).

When taking the support into account, it is sufficient to notice that all subsets of a frequent pattern are frequent patterns, so the proof remains valid. [] The algorithm determines, at each iteration, the key patterns among the candidate key patterns by using (ii) of the following theorem: THEOREM 3. Let P be a frequent pattern. (i) Let p e P. Then P e[P \ {p}] iff sup(P) = sup(P \ {p}).

(ii) P is a key pattern iffsup(P) ~ minpep(sup(P\ {p})).

PROOF. (i)

The 'if' part follows from Lemma 1 (ii). The 'only if' part is obvious. (ii)

From (i) we deduce that P is a key pattern itf sup(P) ~ sup(P \ ~p}), for all p E P. Since sup is a monotonous decreasing function, this is equivalent to (ii). [] As all candidate key patterns are also candidate patterns, when generating all candidate patterns for the next level we can at the same time determine the candidate key patterns among them. If we reach a candidate k-pattern which is not a candidate key pattern, then we already passed along at least one of the key patterns in its equivalence class in an earlier iteration. Hence we already know its support. Using the following theorem, we determine this support without accessing the database: THEOREM 4. If Pia a non-key pattern, then sup(P) ----~i~(sup(e \ {p})). PROOF. "<" follows from the fact that sup is a monotonous decreasing function. "~": If P is not a key pattern then exists p E P with POP\{p}. Hence sup(P) --sup(P \

{P}) ~ minqep(sup(P\ {q}). []

Thus the database pass needs to count the supports of the candidate key patterns only. Knowing this, we can summarize PASCAL as follows: It works exactly as Apriori, but counts only those supports in the database pass which cannot be derived from supports already computed. We can thus, on each level, restrict the expensive count in the database to some of the-c.andidates. Better yet, from some level on, all candidate pattern may be known to be non-key patterns. Then all remaining frequent patterns and their support can be derived without accessing the database any more. In the worst case (i. e.~ in weakly correlated data), all candidate patterns are also candidate key patterns. The algorithm behaves then exactly as Apriori, with no significant overhead.

THE PASCAL ALGORITHM

In this section, we transform the theorems from the last section into an algorithm. The pseudo-code is given in Algorithm 1. A list of notations is provided in Table 1. We assume that P is linearly ordered, e.g., • = (1,..., n}. This will be used in PASCAL-GEN. The algorithm starts with the empty set, which always has a support of 1 and which is (by definition) a key pattern (step 2) 9o ~ {~};

19)

94 ~ 9h U {c}; [START_REF] Pasquier | Efficient mining of association rules using closed itemset lattices[END_REF] end; 21) end; 22) return U/c 9k-1 and 2). In step 3, frequent 1-patterns are determined. They are marked as key patterns unless their support is 1 (steps 4--0). The main loop is similar to the one in Aprieri (steps 7 to 21). First, PASCAL-GEN is called to compute the candidate patterns. The support of key ones is determined via a database pass (steps 10-14). The 'subset' function (step 11) is the same as in Apriori: it returns all the candidate patterns included in the object o. Candidate patterns are stored in a data structure allowing fast retrieval, like the hash-tree in Apriori [START_REF] Srikant | Fast algorithms for mining association rules in large databases[END_REF]. In our implementation, we used a trie with hash nodes [START_REF] Pasquier | Pruning closed itemset lattices for association rules[END_REF]. Then (steps 15-20) the ~traditional' pruning is done. At the same time, for all remaining candidate key patterns, it is determined whether they are key or net (step 17 and 18). The way that PASCAL-GEN operates is basically known from the generator function Apriori-Gen which was introduced in [START_REF] Srikant | Fast algorithms for mining association rules in large databases[END_REF]. When called at the kth iteration, it uses as input the set of frequent (k -1)-patterns 94-1. Its output is the set of candidate k-patterns. Additionally to Apriori-Gen's join Algorithm 2 PASCAL-GEN Input: 9k-l, the set of frequent (k-1)-patterns p with their support p. sup and the p.key flag.

Output: CA, the set of candidate k-patterns c each with the flag c.key, the value c.pred_sup, and the support c. sup if c is not a key pattern.

1) insert into CA select p.iteml, p.item2, ..., p.item~_l, q.itemk-i from 9~-1 p, 9u-1 q where p.iteml = q.iteml, ..., p.itemk-2 = q.itemk-2, p.item~_l < q.itemk-1; 2) forall c E CA do begin 3) c.key +-true; c.pred_sup ~--t-oo; 4) retail (k -1)-subsets s of c do begin and prune steps, PASCAL-GEN makes the new candidates inherit the fact of being or not a candidate key pattern (step 9) by using Theorem 2; and it determines at the same time the support of all non-key candidate patterns (step 12) by using Theorem 4.

Running example.

We illustrate the PASCAL algorithm on the following dataset for minsup = 2/5:

ID Items 1 A C D F 2 B C E F 3 A B C E F 4 B E F 5 A B C E F
The algorithm performs first one database pass to count the support of the 1-patterns.

EXPERIMENTAL EVALUATION

We evaluated PASCAL against the algorithms Apriori, Close, and Max-Miner. Max-Miner was extended to retrieve the frequent patterns with their support by a pass over the databases; the two phases are shown in the tables below s. PASCAL, Apriori, Close and this final step to Max-Miner all shared the same data structures and general organization. Optimizations such as special handling of pass two or items reordering were disabled. Experiments were conducted on a PC Pentium 3 600MHz with 512MiB of RAM. Characteristics of the datasets used are given in Table 2. These datasets are the C20D10K and C73D10K census datasets from the PUMS sample file e, the T25110D10K and T25120D100K 10 synthetic dataset that mimics market basket data, and the MUSHROOMS .1 dataset describing mushrooms characteristics [START_REF] Bay | The UCI KDD Archive[END_REF]. In all experiments, we attempted to choose significant minimum support threshold values. Related work have shown that the behavior of algorithms for extracting frequent patterns depends mainly on the dataset characteristics. Weakly correlated data, such as synthetic data, constitute easy cases for the extraction since few patterns are frequent. For such data, all algorithms give acceptable response times as we can observe in Section 5.1 in which experimental results obtained for the T2016D100K, T25110D10K and T25120D100K datasets are presented. On the contrary, correlated data constitute fax more diificult cases for the extraction due to the important proportion of patterns that are frequent among all patterns. Such data represent a huge part of real-life dataset% and differences between extraction times obtained widely vary depending on the algorithm used. Experimental results obtained for the C20D10K, C73D10K and MUSHROOMS datasets, that are made up of correlated data, are given in Section 5.2.

Weakly correlated data

The T2016D100K, T25110D10K and T25120D100K synthetic datasets are constructed according to the properties of market basket data that are typical weakly correlated data. In these datasets, the number of frequent patterns is small compared to the total number of patterns and, in most cases, nearly all the frequent patterns are also key patterns.

Response times for the T2016D10OK dataset are presented numerically in Table 3

Correlated data

Response times obtained from the C20D10K and C73D10K census datasets are given numerically in Tables 6 and7, and graphically in Figures 5 and6. Results for the MUSHROOMS dataset are presented in Table 8 and Figure 7. In these three datasets, constituted of correlated data, the proportion of patterns that are frequent is important but few of them are also key patterns. Hence, using pattern counting inference, PASCAL has to perform much fewer support counts than the Apriori and the Max-Miner algorithms.

CONCLUSION

We presented PASCAL, a novel optimization of the Apriori algorithm for fast discovery of frequent patterns. PASCAL is both effective and easy to implement or to integrate in existing implementations based on the Apriori approach. This optimization uses pattern counting inference, using the key patterns in equivalence classes to reduce the number of patterns counted and database passes. We conducted performance evaluations to compare the efficiency of PASCAL with those of Apriori, Max-Miner and Close. The results showed that PASCAL gives response times equivalent to those of Apriori and Max-Miner when extracting all frequent patterns and their support from weakly correlated data, and that it is the most efficient among the four algorithms when data are dense or correlated.

Frequent key patterns are also used for simplifying rule generation, as they can be seen as the left hand sides of minimal non-redundant association rules [START_REF] Bastide | Mining minimal non-redundant rules using frequent closed itemsets[END_REF].

Figure 1 :

 1 Figure 1: Example lattice of frequent patterns

3)

 3 91 <--(frequent 1-patterns}; 4) forall p E 91 do begin 5) p.pred sup ~--1; p.key ~ (p. sup ~ 1); 6) end; 7) for (k ~-2; 9~-1 ~ 0; k -I--I-) do begin 8) C/c ~ PASCAL-GEN(9~-i); 9) if 3(C E C~ where c.key ~-true) sup >_ minsup then begin 17) if c.key and c. sup = c.pred_sup then 18) c.key ~-false;

Figure 2 :Figure 3 :

 23 Figure 2: Experimental results for T2016D100K

Figure 4 :

 4 Figure 4: Experimental results for T25110D10K

Figure 5 :

 5 Figure 5: Experimental results for C20D10K

Table I :

 I Notations used in PASCAL

	k	is the counter which indicates the current it-
		eration. In the kth iteration, all frequent k-
		patterns and all key patterns among them are
		determined.
	9~ contains after the kth iteration all frequent k-
		patterns P together with their support P. sup,
		and a boolean variable P.key indicating if P is
		a (candidate) key pattern.
	CA stores the candidate k-patterns together with
		their support (if known)~ the boolean variable
		P.keyl and a counter P.pred_sup which stores
		the minimum of the supports of all (k -1)-
		sub-patterns of P.
	Algorithm 1 PASCAL
	1) 0. sup ~ 1; 0.key ~--true;

 The candidate pattern {D} is pruned because it is infrequent. As ~F) has the same support as the empty set, .{F} is marked as a non-key pattern:At the third iteration, it turns out in PASCAL-GEN that each newly generated candidate pattern contains at least one subpattern which is not a key pattern. Hence all new candidate patterns are not candidate key pattern, and all their supports are determined directly in PASCAL-GEN. From there on, the database will not be accessed any more.

	C2	pred sup key sup	:P2 sup key
	{AB} {AC} {AE} {AF} {Be} {BE} {BF} {cE} {CF}	3/5 3/5 415 3/5 415 4/5 4/5 415 4/5	t t t f 3/5 ? ? ? t ? t ? f 4/5 t ? f 4/5	{AB} 2/5 t {AG} 3/5 f {AE} 2/5 t {AF} 3/5 f {Be} 3/5 t {BE} 4/5 f {BF} 4/5 f {cE} 315 t {CF} 4/5 f
	{EF}	4/5	f 4/5	{EF} 4/5 f
	Cs	pred_sup key sup	Ps	sup key
	{ABF} {ABe} {ABE} {ACE} {ACF} {AEF}	2/5 2/5 2/5 2/5 3/5 2/5	f 2/5 f 2/5 f 2/5 f 3/5 f 3/5 f 2/5	{ABF} 2/5 f {ABe} 2/5 f {ABE} 2/5 f {ACE} 2/5 f {ACF} 3/5 f {AEF} 2/5 f
	{BEE} {BCF} {BEE} {CEF}		3/5 3/5 4/5 3/5	f 3/5 f 3/5 f 4/5 f 3/5	{BCE} 3/5 f {BCF} 3/5 f {BEF} 4/5 f {CEF} 3/5 f
	In the fourth and fifth iteration, all supports are determined
	directly in PASCAL-GEN. In the sixth iteration, PASCAL-
	GEN generates no new candidate patterns, thus no frequent
	6-patterns are computed and the algorithm stops:
	C4	pred_sup key sup	P4	sup key
	{ABCE} 2/5	f 2/5	{ABCE} 2/5 f
	{ABCF}	2/5	f 2/5	{ABCF} 2/5 f
	{ABEF}	2/5	f 2/5	{ABEF} 2/5 f
	{ACEF}	2/5	f 3/5	{ACEF} 2/5 f
	{BEEF}		3/5	f 3/5	{BEEF} 3/5 f
	C5		pred_snp key sup	'P5	sup key
	{ABCEF}	2/5	f 2/5	{ABCEF} 2/5 f
	Hence PASCAL needs two database passes in which the al-gorithm counts the supports of 6 + 6 = 12 patterns. Apri-ori would have needed five database passes for counting the supports of 6 + 10 + 10 + 5 + 1 = 32 patterns for the same dataset. All other current algorithms (with the only excep-tion of Close) may need less than five passes, but they all	~Pl sup key {A} 3/5 t {S} 4/5 t {c} 4/5 t {E} 4/5 t ~F) 1 f
	have to perform the 32 counts.

At the next iteration, all candidate 2-patterns are created and stored in C2. At the same time, the support of all patterns containing ~F} as a sub-pattern is computed. Then a database pass is performed to determine the supports of the remaining six candidate patterns: SIGKDD Explorations.

ACM SIGKDD~ December 2000. Volume 2, Issue 2 -page 69

Table 2 :

 2 Datasets

	Name	# of objects Avg. size # of items
	T2016D100K	100,000	20	1,000
	T25110DIOK	10,000	25	1,000
	T25120D100K	100,000	25	10,000
	C20D10K	10,000	20	386
	C?3D10K	10,000	73	2,178
	MUSH~.OOMS	8,416	23	128

Table 3 :

 3 Response times for T2016Di00K

	200	'		' Pascai o Apriori ---~--
					Close -"'9--.
				Max_Miner + ._ ~<.)z"
	150				
					/
	100				
	50				
	a	I	,	I	,
		0.75		0.5	0.25
		Minimum Support (%)	

Table 5 :

 5 Response times for T25110DIOK

	1.00	3,300	3.24	3.62	6.67 0.63	1.05
	0.75	17,583	5.17	6.95	9.38 1.09	3.83
	0.50	331,280	17.82 41.06 26.43 2.76 35.53
	0.25	2,270,573	70.37	187.92	86.08	6.99	154.89

Table 4 :

 4 Response times for T25120DI00KResults for the T25120DI00K dataset are presented numerically in Table4and graphically in Figure3. For this dataset, nearly all frequent patterns are key patterns, and results are similar to those obtained for the T2016D100K dataset: PAS-CAL and Apriori give identical response times and suffer a slight performance loss over Max-Miner while Close is the worst performer.

	In Table 5 and Figure 4, execution times for the T25110D10K
	dataset are presented. In this dataset, the proportion of fre-
	quent patterns that are not key patterns is much more im-
	portant than for the T25120D100K dataset. For the 1.00
	and 0.75 minsup thresholds, Max-Miner performs better
	than Apriori and PASCAL that themselves perform better
	than Close. For the lower 0.50 and 0.25 minsup thresholds,
	PASCAL becomes the best performer and is slightly better

than Close whereas they both clearly outperform Apriori and Max-Miner: When the proportion of frequent patterns that are not key is significant~ the mechanism used by PAS-CAL (resp. Close) to consider only key (resp. closed) patterns enables to reduce considerably the number of support counts performed.

Table 6 :

 6 The same observation stands for the Close algorithm, that uses the closure mechanism to reduce the number of support counts, and both PASCAL and Close are an order of magnitude faster than Apriori and Max-Miner. Differences between the execution times of PASCAL and Close and those of Apriori and Max-Miner can be counted in tens of minutes for C20D10K and MUSHROOMS and in hours for C73D10K. Moreover, pattern counting inference and closure mechanism allow to reduce the number of passes on the datasets since the supports of all candidate patterns of some iteration are all deduced from the supports of key, or closed, patterns of previous iterations. On C73D10K with minsup = 60%, for instance, PASCAL and Close both make 13 passes while the largest frequent patterns are of size 19. For this dataset and this threshold value, frequent patterns could not be derived from the maximal frequent patterns extracted with Max-Miner since we did not implement memory management for this phase and it required in this case more memory space than available. Response times for C20D10K

	Sup.	# freq. Pascal Apriori Close Max-Miner +
	20.0	20,239	9.44	57.15 14.36 0.17	77.40
	15.0	36,359 12.31	85.35 18.99 0.26 113.22
	10.0	89,883 19.29 164.81 29.58 0.34 201.33
	7.5	153,163 23.53 232.40 36.02 0.35 268.80
	5.0	352,611 33.06 395.32 50.46 0.48 428.65
	2.5 1,160,363 55.33 754.64 78.63 0.81 775.56
	Sup. ~ freq.	Pascal	Apriori	Close	Max-Miner +
	80 109,159 177.49 3,661.27 241.91 0.87 3,717.99
	75 235,271 392.80 7,653.58 549.27 1.06 7,730.36
	70 572,087 786.49 17,465.10 1,112.42 2.28 17,618.40
	60 4,355,543 3,972.10 109,204.00 5,604.91 7.72	(*)
	(*) Not enough memory.		

Table 7 :

 7 Response times for C73D10K

	Sup.	# freq. Pascal	Apriori Close	Max-Miner +
	20.0	53,337	6.48	115.82 9.63 0.31	134.31
	15.0	99,079	9.81	190.94 14.57 0.50	218.93
	10.0	600,817 23.12 724.35 29.83 0.89	745.72
	7.5	936,247 32.08 1,023.24 41.05 1.25 1,035.48
	5.0 4,140,453 97.12 2,763.42 98.81 1.99 2,752.05

Table 8 :

 8 Response times for MUSHROOMS

ACKNOWLEDGEMENTS

We would like to thank Robexto Bayardo, who provided us with the implementation of Max-Miner used in the tests and commented on an earlier version of this work.

Minimum Support (%)