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Closed Set Based Disovery of Small Coversfor Assoiation RulesNiolas Pasquier Yves Bastide Ra�k Taouil Lot� LakhalLaboratoire d'Informatique (LIMOS)Universit�e Blaise Pasal - Clermont-Ferrand IIComplexe Sienti�que des C�ezeaux24 Avenue des Landais, 63177 Aubi�ere Cedex Franefpasquier,bastide,taouil,lakhalg�libd2.univ-bplermont.frAbstratIn this paper, we address the problem of the usefulness of the set of disovered assoiation rules. Thisproblem is important sine real-life databases yield most of the time several thousands of rules withhigh on�dene. We propose new algorithms based on Galois losed sets to redue the extrationto small overs, or bases, for exat and approximate rules. One frequent losed itemsets { whihonstitute a generating set for both frequent itemsets and assoiation rules { have been disovered,no additional database pass is needed to derive these bases. Experiments onduted on real-lifedatabases show that these algorithms are eÆient and valuable in pratie.Keywords: data mining, Galois losure operator, frequent losed itemsets, bases for assoiationrules, algorithms.1 Introdution and MotivationData mining has been extensively addressed for the last years, speially the problem of disoveringassoiation rules. The aim when disovering assoiation rules is to exhibit relationships between dataitems (or attributes) and ompute the preision of eah relationship in the database. Usual preisionmeasures are support and on�dene [1℄ that point the proportion of database transations (or objets)upholding eah rule out. When an assoiation rule has support and on�dene exeeding some user-de�ned minimum thresholds, the rule is onsidered as relevant and the extrated knowledge would likelybe used for supporting deision making. A lassial example of assoiation rules �ts in the ontext ofmarket basket data analysis and highlights a partiular feature in ustomers behavior: 80% of ustomerswho buy ereals and sugar also buy milk.Sine the problem was stated [1℄, various approahes have been proposed for an inreased eÆienyof rule disovery [2, 4, 8, 17, 23, 24, 26, 30, 33℄. However, fully taking advantage of exhibited knowledgemeans apabilities to handle suh a knowledge. In fat, by using a syntheti dataset ontaining 100,000objets, eah of whih enompassing around 10 items, our experiments yield more than 16,000 rules withon�dene outoming 90%. The problem is muh more ritial when olleted data is highly orrelatedor dense, like in statistial or medial databases. For instane, when applied to a ensus dataset of 10,000objets, eah of whih haraterized by values of 73 attributes, experiments result in more than 2,000,000rules with support and on�dene outoming 90%.Thus the talked issue ould be rephrased as follows: whih relevant knowledge an be learned fromseveral thousands of rules highly redundant? Whih aid ould be o�ered to users for handling ountlessrules and fousing on useful ones? Before explaining how our approah answers the previous questions,let us examine proposed solutions for meeting suh needs.



1.1 Related Work: an OutlineAmong approahes addressing the desribed issue, two main trends an be distinguished. The formerprovides users with mehanisms for �ltering rules. In [3, 16℄, the user de�nes templates, and rules notmathing with them are disarded. In [22, 29℄, boolean operators are introdued for seleting rulesinluding (or not) given items. A similar approah expanded with a measure of usefulness of extratedrules, alled improvement, is proposed in [5℄. In [21℄, an SQL-like operator alled MINE RULE, allowing thespei�ation of general extration riteria, is proposed. The quoted approahes operate \a posteriori",i.e. one huge amount of rules are extrated, querying failities make it possible to handle rule subsetsseleted aording to the user preferenes. In ontrast, the seond trend addresses the problem withan \a priori" vision, by attempting to minimize the number of exhibited rules. In [14, 28℄, informationabout taxonomies are used to de�ne riteria of interest whih apply for pruning redundant rules. In[7, 25℄, statistial measures suh as Pearson's orrelation or the hi-squared test are used instead of theon�dene measure.1.2 Contribution: an OverviewThe approah presented in this paper belongs to the seond trend sine it aims to extrat not all possiblerules but a sub-set alled small over or basis for assoiation rules. When omputing suh a basis, re-dundant rules are disarded sine they do not vehiule relevant knowledge. Suh a pruning operation isa key-step during rule extration, and signi�antly redues the resulting set. For example, experimentsperformed using a real-life dataset desribing harateristis of mushrooms yield the 9 following assoi-ation rules with free gills in the anteedent and eatable in the onsequent, and with ommon support(51%) and on�dene (54%).1) free gills ! eatable 6) free gills, white veil ! eatable, partial veil2) free gills ! eatable, partial veil 7) free gills, partial veil ! eatable3) free gills ! eatable, white veil 8) free gills, partial veil ! eatable, white veil4) free gills ! eatable, partial veil, white veil 9) free gills, white veil, partial veil ! eatable5) free gills, white veil ! eatableAmong these rules, 8 are redundant beause they an be dedued from the 4th rule: free gills ! eatable,partial veil, white veil. Moreover, sine rules unexpeted by the user are important [18, 27℄, presenting alist of rules overing all the frequent items in the dataset is also needed.First, using the losure operator of the Galois onnetion [6℄, we haraterize frequent losed itemsets[23, 24℄. Then, we show that frequent losed itemsets represent a generating set for both frequent itemsetsand assoiation rules. The underlying theorem states the foundations of our approah sine it makes itpossible to generate the bases from frequent losed itemsets by avoiding handling of large sets of rules.We propose two new algorithms: the former ahieves frequent losed itemsets from frequent itemsetswithout aessing the dataset, and the latter, alled Apriori-Close, extends the Apriori algorithm [2℄ bydisovering simultaneously frequent itemsets and frequent losed itemsets without additional exeutiontime.Then, using the frequent losed itemsets and the pseudo-losed itemsets de�ned by Duquenne andGuigues in lattie theory [9, 11℄, we de�ne the Duquenne-Guigues basis for exat assoiation rules (ruleswith a 100% on�dene). Rules in this basis are non-redundant exat rules with minimal anteedent andmaximal onsequent. Besides, using the frequent losed itemsets and results proposed by Luxenburgerin lattie theory [19, 32℄, we de�ne the proper basis and the strutural basis for approximate assoiationrules. The proper basis is a small set ontaining the most informative and useful approximate rules: thenon-redundant informative rules. The strutural basis an be viewed as an abstrat of all approximaterules that hold and an be useful when the proper basis is large. We propose three algorithms intendedfor yielding these three bases. Using the set of frequent losed itemsets, generating the evoked bases isperformed without any aess to the dataset.An algorithm disovering losed and pseudo-losed itemsets has been proposed in [12℄ and implementedin ConImp [9℄. However, this algorithm does not onsider the support of itemsets and, sine it works



only in main memory, it annot be applied when the number of objets exeeds some hundreds and thenumber of items some tens. From the results presented in [19℄, no algorithm was proposed. In [24℄,the assoiation rule framework based on the Galois onnetion is de�ned. Fitting in this groundwork,two eÆient algorithms that disover frequent losed itemsets for assoiation rules are de�ned: the Closealgorithm [24℄ for orrelated data and the A-Close algorithm [23℄ for weakly orrelated data. The workpresented in this paper di�ers from [23, 24℄ in the following points:1. It shows that frequent losed itemsets onstitute a generating set for frequent itemsets and assoi-ation rules.2. It extends the Apriori algorithm and algorithms for disovering maximal frequent itemsets to gen-erate frequent losed itemsets.3. It adapts the Duquenne-Guigues basis and Luxenburger results for exat and partial impliationsto the ontext of assoiation rules. This adaptation is based on 1. (generating set).4. It presents new algorithms for generating bases for exat and approximate assoiation rules usingfrequent losed itemsets.5. It shows that the algorithms proposed are eÆient for both improving the usefulness of extratedassoiation rules and dereasing the exeution time of the assoiation rule extration.As shown by experiments, the proposed proess for extrating bases does not require any overheadompared with the traditional approahes for disovering assoiation rules.1.3 Paper OrganizationIn Setion 2, we present the assoiation rule framework based on the Galois onnetion. Setion 3addresses the onept of basis for both exat and approximate assoiation rules. New algorithms fordisovering frequent and frequent losed itemsets are desribed in Setion 4 and the following setionpresents algorithms omputing the bases for assoiation rules from the frequent losed itemsets. Experi-mental results ahieved from various datasets are given in Setion 6. Finally, as a onlusion, we evokefurther work in Setion 7.2 Assoiation Rule FrameworkIn this setion, we present the assoiation rule framework based on the Galois onnetion, primarilyintrodued in [23, 24℄.De�nition 1 (Data mining ontext) A data mining ontext1 is de�ned as D = (O; I;R), where Oand I are �nite sets of objets and items respetively. R � O�I is a binary relation between objets anditems. Eah ouple (o; i) 2 R denotes the fat that the objet o 2 O is related to the item i 2 I.Depending on the target system, a data mining ontext an be a relation, a lass, or the result of anSQL/OQL query.Example 1 An example data mining ontext D onsisting of 5 objets (identi�ed by their OID) and 5items is illustrated in Table 1.De�nition 2 (Galois onnetion) Let D = (O, I, R) be a data mining ontext. For O � O andI � I, we de�ne:f : 2O ! 2I g : 2I ! 2Of(O)=fi 2 I j 8o 2 O; (o; i) 2 Rg g(I)=fo 2 O j 8i 2 I; (o; i) 2 Rg1By extension, we will all dataset a data mining ontext.



OID Items1 A C D2 B C E3 A B C E4 B E5 A B C ETable 1: The Example Data Mining Context D.f(O) assoiates with O the items ommon to all objets o 2 O and g(I) assoiates with I the objetsrelated to all items i 2 I. The ouple of appliations (f; g) is a Galois onnetion between the power set ofO (2O) and the power set of I (2I). The following properties hold for all I; I1; I2 � I and O;O1; O2 � O:(1) I1 � I2 ) g(I1) � g(I2) (1') O1 � O2 ) f(O1) � f(O2)(2) O � g(I)() I � f(O)De�nition 3 (Frequent itemsets) Let I � I be a set of items from D. The support ount of theitemset I in D is: supp(I) = kg(I)kkOkI is said to be frequent if the support of I in D is at least minsupp. The set L of frequent itemsets in Dis: L = fI � I j supp(I) � minsuppgDe�nition 4 (Assoiation rules) An assoiation rule is an impliation between two itemsets, withthe form I1 ! I2 where I1; I2 � I, I1; I2 6= ? and I1 \ I2 = ?. I1 and I2 are alled respetively theanteedent and the onsequent of the rule. The support supp(r) and on�dene onf(r) of an assoiationrule r : I1!I2 are de�ned using the Galois onnetion as follows:supp(r) = kg(I1 [ I2)kkOk ; onf(r) = supp(I1 [ I2)supp(I1)Assoiation rules holding in the ontext are those that have support and on�dene greater than or equalto the minsupp and minonf thresholds respetively. We de�ne the set AR of assoiation rules holding inD given minsupp and minonf thresholds as follows:AR = fr : I1 ! I2�I1 j I1 � I2 � I ^ supp(I2) � minsupp ^ onf(r) � minonfgIf onf(r)=1 then r is alled an exat assoiation rule or impliation rule, otherwise r is alled approximateassoiation rule.Example 2 Exat and approximate assoiation rules extrated from D for minsupp = 2/5 and minonf= 1/2 are given in Table 2.3 Bases for Assoiation RulesIn this setion, we �rst demonstrate that the frequent losed itemsets onstitute a generating set forfrequent itemsets and assoiation rules. Then, we haraterize the Duquenne-Guigues basis for exatassoiation rules and the proper and strutural bases for approximate assoiation rules. The Duquenne-Guigues basis, as de�ned in [11℄, is extended in this paper to the ontext of assoiation rules. Proofs ofTheorems 2, 3 and 4 are straightforward from Theorem 1 and [11, 19, 32℄. Interested readers ould referto [6, 31℄ for further details on losed sets.



Exat rule Supp Approximate rule Supp Conf Approximate rule Supp ConfABC ) E 2/5 BCE ! A 2/5 2/3 B ! AE 2/5 2/4ABE ) C 2/5 AC ! BE 2/5 2/3 E ! AB 2/5 2/4ACE ) B 2/5 BE ! AC 2/5 2/4 A ! CE 2/5 2/3AB ) CE 2/5 CE ! AB 2/5 2/3 C ! AE 2/5 2/4AE ) BC 2/5 AC ! B 2/5 2/3 E ! AC 2/5 2/4AB ) C 2/5 BC ! A 2/5 2/3 B ! CE 3/5 3/4AB ) E 2/5 BE ! A 2/5 2/4 C ! BE 3/5 3/4AE ) B 2/5 AC ! E 2/5 2/3 E ! BC 3/5 3/4AE ) C 2/5 CE ! A 2/5 2/3 A ! B 2/5 2/3BC ) E 3/5 BE ! C 3/5 3/4 B ! A 2/5 2/4CE ) B 3/5 A ! BCE 2/5 2/3 C ! A 3/5 3/4A ) C 3/5 B ! ACE 2/5 2/4 A ! E 2/5 2/3B ) E 4/5 C ! ABE 2/5 2/4 E ! A 2/5 2/4E ) B 4/5 E ! ABC 2/5 2/4 B ! C 3/5 3/4A ! BC 2/5 2/3 C ! B 3/5 3/4B ! AC 2/5 2/4 C ! E 3/5 3/4C ! AB 2/5 2/4 E ! C 3/5 3/4A ! BE 2/5 2/3Table 2: Assoiation Rules Extrated from D for minsup = 2/5 and minonf = 1/2.3.1 Generating SetDe�nition 5 (Galois losure operators) The operators h = fÆg in 2I and h0 = gÆf in 2O are Galoislosure operators2. Given the Galois onnetion (f; g), the following properties hold for all I; I1; I2 � Iand O;O1; O2 � O [6℄:Extension : (3) I � h(I) (3') O � h0(O)Idempoteny : (4) h(h(I)) = h(I) (4') h0(h0(O)) = h0(O)Monotoniity : (5) I1 � I2 ) h(I1) � h(I2) (5') O1 � O2 ) h0(O1) � h0(O2)De�nition 6 (Frequent losed itemsets) An itemset I � I in D is a losed itemset i� h(I) = I. Alosed itemset I is said to be frequent if the support of I in D is at least minsupp. The smallest (minimal)losed itemset ontaining an itemset I is h(I), the losure of I. The set FC of frequent losed itemsetsin D is de�ned as follows: FC = fI � I j I = h(I) ^ supp(I) � minsuppgExample 3 A frequent losed itemset is a maximal set of items ommon to a set of objets, for whihsupport is at least minsupp. The frequent losed itemsets in the ontext D forminsupp=2/5 are presentedin Table 3. The itemset BCE is a frequent losed itemset sine it is the maximal set of items ommonto the objets f2; 3; 5g. The itemset BC is not a frequent losed itemset sine it is not a maximal set ofitems ommon to some objets: all objets in relation with the items B and C (objets 2, 3 and 5) arealso in relation with the item E.Hereafter, we demonstrate that the set of frequent losed itemsets with their support is the smallestolletion from whih frequent itemsets with their support and assoiation rules an be generated (it isa generating set).Lemma 1 [24℄ The support of an itemset I is equal to the support of the smallest losed itemset on-taining I: supp(I) = supp(h(I)).Lemma 2 [24℄ The set of maximal frequent itemsets M = fI 2 L j � I 0 2 L where I � I 0g is identialto the set of maximal frequent losed itemsets MC = fI 2 FC j � I 0 2 FC where I � I 0g.2Here, we use the following notation: fÆg(I) = f(g(I)) and gÆf(O) = g(f(O)).



Frequent losed itemset Supportf?g 5/5fCg 4/5fACg 3/5fBEg 4/5fBCEg 3/5fABCEg 2/5Table 3: Frequent Closed Itemsets Extrated from D for minsupp = 2/5.Theorem 1 (Generating set) The set FC of frequent losed itemsets with their support is a generatingset for all frequent itemsets and their support, and for all assoiation rules holding in the dataset, theirsupport and their on�dene.Proof. Based on Lemma 2, all frequent itemsets an be derived from the maximal frequent loseditemsets. Based on Lemma 1, the support of eah frequent itemset an be derived from the support offrequent losed itemsets. Then, the set of frequent losed itemsets FC is a generating set for both theset of frequent itemsets L and the set of assoiation rules AR3. �3.2 Duquenne-Guigues Basis for Exat Assoiation RulesDe�nition 7 (Frequent pseudo-losed itemsets) An itemset I � I in D is a pseudo-losed itemseti� h(I) 6= I and 8I 0 � I suh as I 0 is a pseudo-losed itemset, we have h(I 0) � I. The set FP of frequentpseudo-losed itemsets in D is de�ned asFP = fI � I j supp(I) � minsupp ^ I 6= h(I) ^ 8I 0 2 FP suh as I 0 � I we have h(I 0) � IgTheorem 2 (Duquenne-Guigues Basis for Exat Assoiation Rules) Let FP be the set of fre-quent pseudo-losed itemsets in D. The setDG = fr : I1 ) h(I1)� I1 j I1 2 FP ^ I1 6= ?gis a basis for all exat assoiation rules holding in the dataset.The Duquenne-Guigues basis is minimal with respet to the number of rules sine there an be noomplete set with fewer rules than there are frequent pseudo-losed itemsets [10, 13℄.Example 4 A frequent pseudo-losed itemset I is a frequent non-losed itemset that inludes the losuresof all frequent pseudo-losed itemsets inluded in I . The set FP of frequent pseudo-losed itemsets and theDuquenne-Guigues basis for exat assoiation rules extrated from D for minsupp=2=5 and minonf=1=2are presented in Table 4. The itemset AB is not a frequent pseudo-losed itemset sine the losures ofA and B (respetively AC and BE) are not inluded in AB. ABCE is not a frequent pseudo-loseditemset sine it is losed.Frequent pseudo-losed itemset SupportfAg 3/5fBg 4/5fEg 4/5 Exat rule SupportA ) C 3/5B ) E 4/5E ) B 4/5Table 4: Frequent Pseudo-Closed Itemsets and Duquenne-Guigues Basis Extrated from D for minsupp= 2=5.3Furthermore, FC is the smallest generating set for L and AR. Hene, even if frequent itemsets an be derived from themaximal frequent itemsets, passes over the dataset are still needed to ompute the frequent itemset supports.



3.3 Proper Basis for Approximate Assoiation RulesTheorem 3 (Proper Basis for Approximate Assoiation Rules) Let FC be the set of frequentlosed itemsets in D. The setPB = fr : I1 ! I2 � I1 j I1; I2 2 FC ^ I1 6= ? ^ I1 � I2 ^ onf(r) � minonfgis a basis for all approximate assoiation rules holding in the dataset. Assoiation rules in PB are properapproximate assoiation rules.Example 5 The proper basis for approximate assoiation rules extrated from D for minsupp=2/5 andminonf=1/2 are presented in Table 5.Approximate rule Support Con�deneBCE ! A 2/5 2/3AC ! BE 2/5 2/3BE ! AC 2/5 2/4BE ! C 3/5 3/4C ! ABE 2/5 2/4C ! BE 3/5 3/4C ! A 3/5 3/4Table 5: Proper Basis Extrated from D for minsupp = 2/5 and minonf = 1/2.3.4 Strutural Basis for Approximate Assoiation RulesDe�nition 8 (Undireted graph GFC) Let FC be the set of frequent losed itemsets in D. We de�neGFC = (V;E) as the undireted graph assoiated with FC where the set of verties V and the set of edgesE are de�ned as follows: V = fI � I j I 2 FCgE = f(I1; I2) 2 V � V j I1 � I2 ^ supp(I2)=supp(I1) � minonfgWith eah edge in GFC between two verties I1 and I2 with I1 � I2 is assoiated the on�dene = supp(I2)/ supp(I1) of the proper approximate assoiation rule I1 ! I2 � I1 represented by the edge.De�nition 9 (Maximal Con�dene Spanning Forest FFC) Let FFC = (V;E0) be the maximal on-�dene spanning forest assoiated with FC. FFC is obtained from the undireted graph GFC = (V;E)by suppressing transitive edges and yles. Cyles are removed by deleting some edges that enter the lastvertex I (maximal vertex with respet to the inlusion) of the yle. Among all edges entering in I, thosewith on�dene less than the maximal on�dene value assoiated with an edge with the form (I 0; I) 2 Eare deleted. If more than one edge have the maximal on�dene value, the �rst one in lexiographi orderis kept.Theorem 4 (Strutural Basis for Approximate Assoiation Rules) Let SB be the set of assoi-ation rules represented by edges in FFC exept rules from the vertex f?g. The setSB = fr : I1 ! I2 � I1 j I1; I2 2 V ^ I1 � I2 ^ I1 6= ? ^ (I1; I2) 2 E0gis a basis for all approximate assoiation rules holding in the dataset (I is the onsequent of at most oneapproximate assoiation rule in SB).Example 6 The strutural basis for approximate assoiation rules extrated from D for minsupp=2/5and minonf=1/2 is presented in Table 6.
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ØFFCFigure 1: Undireted Graph GFC and Maximal Con�dene Spanning Forest FFC (a tree in this example)Derived from D for minsupp = 2/5 and minonf = 1/2.Approximate rule Support Con�deneAC ! BE 2/5 2/3BE ! C 3/5 3/4C ! A 3/5 3/4Table 6: Strutural Basis Extrated from D for minsupp = 2/5 and minonf = 1/2.4 Disovering Frequent and Frequent Closed ItemsetsIn Setion 4.1, we propose a new algorithm to ahieve frequent losed itemsets from frequent itemsetswithout aessing the dataset. This algorithm disovers frequent losed itemsets while for instane analgorithm for disovering maximal frequent itemsets [4, 17, 33℄ is used. In Setion 4.2, we present anextension of the Apriori algorithm [2℄ alled Apriori-Close for disovering frequent and frequent loseditemsets without additional omputation time. Like in the Apriori algorithm, we assume in the followingthat items are sorted in lexiographi order and that k is the size of the largest frequent itemsets. Basedon Lemma 2, k is also the size of the largest frequent losed itemsets.4.1 Computing Frequent Closed Itemsets from Frequent ItemsetsMany eÆient algorithms for mining frequent itemsets and their support have been proposed. Well-known proposals are presented in [2, 8, 26, 30℄. EÆient algorithms for disovering the maximal frequentitemsets and then ahieve all frequent itemsets have also been proposed [4, 17, 33℄. All these algorithmsgive as result the set L = Si=ki=1 Li where Li ontains all frequent i-itemsets (itemsets of size i). Based onProposition 1 and Lemma 2 (Setion 3.1), the frequent losed itemsets and their support an be omputedfrom the frequent itemsets and their support without any dataset aess.The pseudo-ode to determine frequent losed itemsets among frequent itemsets is given in Algorithm1. Notations are given in Table 7. The input of the algorithm are sets Li, 1� i�k, ontaining all frequentitemsets in the dataset. It reursively generates the sets FCi, 0� i�k, of frequent losed i-itemsets fromFCk to FC0. Li Set of frequent i-itemsets and their support.FCi Set of frequent losed i-itemsets and their support.islosed Variable indiating if the onsidered itemset is losed or not.Table 7: Notations.Proposition 1 The support of a losed itemset is greater than the supports of all its supersets.



Proof. Let l be a losed i-itemset and s a superset of l. We have l � s ) g(l) � g(s) (Property (1) ofthe Galois onnetion). If g(l) = g(s) then h(l) = h(s) ) l = h(s) ) s � l (absurd). It follows thatg(l) � g(s) ) supp(l) > supp(s). �Algorithm 1 Deriving Frequent Closed Itemsets from Frequent Itemsets.1) FCk  Lk;2) for (i k�1; i 6= 0; i - -) do begin3) FCi  fg;4) forall itemsets l 2 Li do begin5) islosed true;6) forall itemsets l0 2 Li+1 do begin7) if (l � l0) and (l.support= l0.support) then islosed false;8) end9) if (islosed = true) then FCi  FCi [ flg;10) end11) end12) FC0  f?g;13) forall itemsets l 2 L1 do begin14) if (l.support = kOk) then FC0  fg;15) endFirst, the set FCk is initialized with the set of largest frequent itemsets Lk (step 1). Then, thealgorithm iteratively determines whih i-itemsets in Li are losed from Lk�1 to L1 (steps 2 to 11). Atthe beginning of the ith iteration the set FCi of frequent losed i-itemsets is empty (step 3). In steps 4to 10, for eah frequent itemset l in Li, we verify that l has the same support as a frequent (i+1)-itemsetl0 in Li+1 in whih it is inluded. If so, we have l0 � h(l) and then l 6= h(l): l is not losed (step 7).Otherwise, l is a frequent losed itemset and is inserted in FCi (step 9). During the last phase, thealgorithm determines if the empty itemset is losed by �rst initializing FC0 with the empty itemset (step12) and then onsidering all frequent 1-itemsets in L1 (steps 13 to 15). If a 1-itemset l has a supportequal to the number of objets in the ontext, meaning that l is ommon to all objets, then the itemset? annot be losed (we have supp(f?g) = kOk = supp(l)) and is removed from FC0 (step 14). Thus, atthe end of the algorithm, eah set FCi ontains all frequent losed i-itemsets.Corretness Sine all maximal frequent itemsets are maximal frequent losed itemsets (Lemma 2), theomputation of the set FCk ontaining the largest frequent losed itemsets is orret. The orretness ofthe omputation of sets FCi for i<k relies on Proposition 1. This proposition enables to determine if afrequent i-itemset l is losed by omparing its support and the supports of the frequent (i+1)-itemsetsin whih l is inluded. If one of them has the same support as l, then l annot be losed.4.2 Apriori-Close AlgorithmIn this setion, we present an extension of the Apriori algorithm [2℄ omputing simultaneously frequentand frequent losed itemsets. The pseudo-ode is given in Algorithm 2 and notations in Table 8. Thealgorithm iteratively generates the sets Li of frequent i-itemsets from L1 to Lk. Besides, during the ithiteration, all frequent losed (i�1)-itemsets in FCi�1 are determined. The set FCk is determined duringthe last step of the algorithm.Li Set of frequent i-itemsets, their support and marker islosed indiating if losed or not.FCi Set of frequent losed i-itemsets and their support.Table 8: Notations.First, the variable k is initialized to 0 (step 1). Then, the set L1 of frequent 1-itemsets is initializedwith the list of items in the ontext (step 2) and one pass is performed to ompute their support (step



Algorithm 2 Disovering Frequent and Frequent Closed Itemsets with Apriori-Close.1) k  0;2) itemsets in L1  f1-itemsetsg;3) L1  Support-Count(L1);4) FC0  f?g;5) forall itemsets l 2 L1 do begin6) if (l.support < minsupp) then L1  L1 n flg;7) else if (l.support = kOk) then FC0  fg;8) end9) for (i 1; Li 6= fg; i++) do begin10) forall itemsets l0 2 Li do l0.islosed  true;11) Li+1  Apriori-Gen(Li);12) forall itemsets l 2 Li+1 do begin13) forall i-subsets l0 of l do begin14) if (l0 62 Li) then Li+1  Li+1 n flg;15) end16) end17) Li+1  Support-Count(Li+1);18) forall itemsets l 2 Li+1 do begin19) if (l.support < minsupp) then Li+1  Li+1 n flg;20) else do begin21) forall i-subsets l0 2 Li of l do begin22) if (l.support = l0.support) then l0.islosed  false;23) end24) end25) end26) FCi  fl 2 Li j l:islosed = trueg;27) k  i;28) end29) FCk  Lk;3). The set FC0 is initialized with the empty itemset (step 4) and the supports of itemsets in L1 areonsidered (steps 5 to 8). All infrequent 1-itemsets are removed from L1 (step 6) and if a frequent 1-itemset has a support equal to the number of objets in the ontext then the empty itemset is removedfrom FC0 (step 7). During eah of the following iterations (steps 9 to 28), frequent itemsets of size i+1,k > i � 1, and frequent losed itemsets of size i are omputed as follows. For all frequent i-itemsets inLi, the marker islosed is initialized to true (step 10). A set Li+1 of possible frequent (i+1)-itemsets isreated by applying the Apriori-Gen funtion to the set Li (step 11). For eah of these possible frequent(i+1)-itemsets, we hek that all its subsets of size i exist in Li (steps 12 to 16). One pass is performed toompute the supports of the remaining itemsets in Li+1 (step 17). Then, for eah (i+1)-itemsets l 2 Li+1(steps 18 to 25), if l is infrequent then it is disarded from L1+1 (step 19). Otherwise for all i-subsets l0of l, we verify that supports of l0 and l are equal; if so, then l0 annot be a losed itemset and its markerislosed is set to false (steps 20 to 24). Then, all frequent i-itemsets in Li for whih marker islosed istrue are inserted in the set FCi of frequent losed i-itemsets (step 26) and the variable k is set to thevalue of i (step 27). Finally, the set FCk is initialized with the frequent k-itemsets in Lk (step 29).Apriori-Gen funtion The Apriori-Gen funtion [2℄ applies to a set Li of frequent i-itemsets. Itreturns a set Li+1 of potential frequent (i+1)-itemsets. A new itemset in Li+1 is reated by joining twoitemsets in Li sharing ommon �rst i-1 items.Support-Count funtion The Support-Count funtion takes a set Li of i-itemsets as argument. IteÆiently omputes the supports of all itemsets l 2 Li. Only one dataset pass is required: for eah objeto read, the supports of all itemsets l 2 Li that are inluded in the set of items assoiated with o, i.e.l � f(fog), are inremented. The subsets of f(fog) are quikly found using the Subset funtion desribed



in Setion 5.2.Corretness Sine the support of a frequent losed itemset l is di�erent from the support of all itssupersets (Proposition 1), the omputation of sets FCi for i< k is orret. Hene, a frequent i-itemsetl0 2 Li is determined losed or not by omparing its support with the supports of all frequent (i + 1)-itemsets l 2 Li+1 for whih l0 � l. Lemma 2 ensures the orretness of the omputation of the set FCkontaining the largest frequent losed itemsets.Example 7 Figure 2 illustrates the exeution of the Apriori-Close algorithm with the ontext D for aminimum support of 2/5.
San D�! L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fDg 1/5fEg 4/5 Pruninginfrequent�! L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fEg 4/5 Determininglosed�! FC0Itemset Suppf?g 5/5
San D�! L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5 Pruninginfrequent�! L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5 Determininglosed�! FC1Itemset SuppfCg 4/5
San D�! L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5 Pruninginfrequent�! L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5 Determininglosed�! FC2Itemset SuppfACg 3/5fBEg 4/5San D�! L4Itemset SuppfABCEg 2/5 Pruninginfrequent�! L4Itemset SuppfABCEg 2/5 Determininglosed�! FC3Itemset SuppfBCEg 3/5L4Itemset SuppfABCEg 2/5 Closedk-itemsets�! FC4Itemset SuppfABCEg 2/5Figure 2: Disovering Frequent and Frequent Closed Itemsets with Apriori-Close.5 Generating Bases for Assoiation RulesIn Setion 5.1, we present an algorithm to generate the Duquenne-Guigues basis for exat assoiationrules. In Setions 5.2 and 5.3 are desribed algorithms ahieving the proper basis and the strutural basisfor approximate assoiation rules respetively.



5.1 Generating Duquenne-Guigues Basis for Exat Assoiation RulesThe pseudo-ode generating the Duquenne-Guigues basis for exat assoiation rules is given in Algorithm3. Notations are given in Table 9. The algorithm takes as input the sets Li, 1� i� k, ontaining thefrequent itemsets and their support, and the sets FCi; 0� i�k, ontaining the frequent losed itemsetsand their support. It �rst omputes the frequent pseudo-losed itemsets iteratively (steps 2 to 17) andthen uses them to generate the Duquenne-Guigues basis for exat assoiation rules DG (steps 18 to 22).Li Set of frequent i-itemsets and their support.FCi Set of frequent losed i-itemsets and their support.FPi Set of frequent pseudo-losed i-itemsets, their losure and their support.DG Duquenne-Guigues basis for exat assoiation rules.Table 9: Notations.First, the set DG is initialized to the empty set (step 1). If the empty itemset is not a losed itemset(it is then neessarily a pseudo-losed itemset), it is inserted in FP0 (step 2). Otherwise FP0 is empty(step 3). Then, the algorithm reursively determines whih i-itemsets in Li are pseudo-losed from L1to Lk (steps 4 to 16). At eah iteration, the set FPi is initialized with the list of frequent i-itemsetsthat are not losed (step 5) and eah frequent i-itemsets l in FPi is onsidered as follows (steps 6 to15). The variable pseudo is set to true (step 7). We verify for eah frequent pseudo-losed itemset ppreviously disovered (i.e. in FPj with j < i) if p is ontained in l (steps 8 to 13). In that ase and ifthe losure of p is not inluded in l, then l is not pseudo-losed and is removed from FPi (steps 9 to 12).Otherwise, the losure of l (i.e. the smallest frequent losed itemset ontaining l) is determined (step14). One all frequent pseudo-losed itemsets p and their losure are omputed, all rules with the formr : p ) (p.losure � p) are generated (steps 17 to 21). The algorithm results in the set DG ontainingall rules in the Duquenne-Guigues basis for exat assoiation rules.Algorithm 3 Generating Duquenne-Guigues Basis for Exat Assoiation Rules.1) DG fg;2) if (FC0 = fg) then FP0  f?g;3) else FP0  fg;4) for (i 1; i � k; i++) do begin5) FPi  Li n FCi;6) forall itemsets l 2 FPi do begin7) pseudo true;8) forall itemsets p 2 FPj with j < i do begin9) if (p � l) and (p.losure 6� l) then do begin10) pseudo false;11) FPi  FPi n flg;12) end13) end14) if (pseudo = true) then l.losure  Min�(f 2 FCj>i j l � g);15) end16) end17) forall sets FPi where FPi 6= fg do begin18) forall pseudo-losed itemsets p 2 FPi do begin19) DG DG [ fr : p) (p.losure�p),p.supportg;20) end21) endCorretness Sine the itemset ? has no subset, if it is not a losed itemset then it is by de�nition apseudo-losed itemset and the omputation of the set FP0 is orret. The orretness of the omputationof frequent pseudo-losed i-itemsets in FPi for 1 � i � k relies on De�nition 7. All frequent i-itemsets l



in Li that are not losed, i.e. not in FCi, are onsidered. Those l ontaining the losures of all frequentpseudo-losed itemsets that are subsets of l are inserted in FPi. Aording to De�nition 7, these i-itemsetsare all frequent pseudo-losed i-itemsets and the sets FPi are orret. The assoiation rules generatedin the last phase of the algorithm are all rules with a frequent pseudo-losed itemset in the anteedent.Then, the resulting set DG orresponds to the rules in the Duquenne-Guigues basis for exat assoiationrules de�ned in Theorem 2.Example 8 Figure 3 shows the generation of the Duquenne-Guigues basis for exat assoiation rulesfrom the ontext D for a minimum support of 2/5.L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fEg 4/5FC1Itemset SuppfCg 4/5 1�! FP1Itemset Closure SuppfAg fACg 3/5fBg fBEg 4/5fEg fBEg 4/5
L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5FC3Itemset SuppfBCEg 3/5 3�! FP3?

L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5FC2Itemset SuppfACg 3/5fBEg 4/5
2�! FP2? L4Itemset SuppfABCEg 2/5FC4Itemset SuppfABCEg 2/5 4�! FP4?

FP = SFPiItemset Closure SuppfAg fACg 3/5fBg fBEg 4/5fEg fBEg 4/5 5�! DGRuleA ) CB ) EE ) BFigure 3: Generating Duquenne-Guigues Basis for Exat Assoiation Rules.5.2 Generating Proper Basis for Approximate Assoiation RulesThe pseudo-ode generating the proper basis for approximate assoiation rules is presented in Algorithm4. Notations are given in Table 10. The algorithm takes as input the sets FCi, 1� i�k, ontaining thefrequent losed non-empty itemsets and their support. The output of the algorithm is the proper basisfor approximate assoiation rules PB.The set PB is �rst initialized to the empty set (step 1). Then, the algorithm iteratively onsiders allfrequent losed itemsets l 2 FCi for 2 � i � k. It determines whih frequent losed itemsets l0 2 FCj<iare subsets of l and generates assoiation rules with the form l0 ! l � l0 that have suÆient on�dene(steps 2 to 12) as follows. During the ith iteration, eah itemset l in FCi is onsidered (steps 3 to 11).For eah set FCj , 1�j<i, a set Sj ontaining all frequent losed j-itemsets in FCj that are subsets of lis reated (step 5). Then, for eah of these subsets l0 2 Sj (steps 6 to 9), we ompute the on�dene of



FCi Set of frequent losed i-itemsets and their support.Sj Set of j-itemsets that are subsets of the onsidered itemset.PB Proper basis for approximate assoiation rules.Table 10: Notations.the proper approximate assoiation rule r : l0 ! l � l0 (step 7). If the on�dene of r is suÆient then ris inserted in PB (step 8). At the end of the algorithm, the set PB ontains all rules of the proper basisfor approximate assoiation rules.Algorithm 4 Generating Proper Basis for Approximate Assoiation Rules.1) PB  fg2) for (i 2; i � k; i++) do begin3) forall itemsets l 2 FCi do begin4) for (j  i�1; j > 0; j- -) do begin5) Sj  Subsets(FCj ; l);6) forall itemsets l0 2 Sj do begin7) onf(r) l.support / l0.support;8) if (onf(r) � minonf) then PB  PB [ fr : l0 ! l � l0; l.support, onf(r)g;9) end10) end11) end12) endSubset funtion The subset funtion takes a set X of itemsets and an itemset y as arguments. Itdetermines all itemsets x 2 X that are subsets of y. In algorithm implementation, frequent and frequentlosed itemsets are stored in a pre�x-tree struture [24℄ in order to improve eÆieny of the subset searh.Corretness The orretness of the algorithm relies on the fat that we inspet all proper approximateassoiation rules holding in the dataset. For eah frequent losed itemset, the algorithm omputes, amongits subsets, all other frequent losed itemsets. Then, the generation of all rules between two frequent loseditemsets having suÆient on�dene is ensured. These rules are all proper approximate assoiation rulesholding in the dataset, and the resulting set PB is the proper basis for approximate assoiation rulesde�ned in Theorem 3.Example 9 Figure 4 shows the generation of the proper basis for approximate assoiation rules in theontext D for a minimum support of 2/5 and a minimum on�dene of 1/2.5.3 Generating Strutural Basis for Approximate Assoiation RulesThe pseudo-ode generating the strutural basis for approximate assoiation rules is given in Algorithm5. Notations are given in Table 11. The algorithm takes as input the sets FCi, 1 � i � k, of frequentlosed non-empty itemsets and their support. It generates the strutural basis for approximate assoiationrules SB represented by the maximal on�dene spanning forest FFC assoiated with FC = Si=ki=1 FCi(without the empty itemset).FCi Set of frequent losed i-itemsets and their support.Sj Set of j-itemsets that are subsets of the itemset onsidered.CR Set of andidate approximate assoiation rules.SB Strutural basis for approximate assoiation rules.Table 11: Notations.



FC2Itemset SuppfACg 3/5fBEg 4/5FC1Itemset SuppfCg 4/5 1�! PBRule Supp ConfC ! A 3/5 3/4 FC3Itemset SuppfBCEg 3/5FC2 [ FC1Itemset SuppfACg 3/5fBEg 4/5fCg 4/5 2�! PBRule Supp ConfC ! A 3/5 3/4C ! BE 3/5 3/4BE ! C 3/5 3/4FC4Itemset SuppfABCEg 2/5FC3 [ FC2 [ FC1Itemset SuppfBCEg 3/5fACg 3/5fBEg 4/5fCg 4/5 3�! PBRule Supp ConfC ! A 3/5 3/4C ! BE 3/5 3/4BE ! C 3/5 3/4C ! ABE 2/5 2/4AC ! BE 2/5 2/3BE ! AC 2/5 2/4BCE ! A 2/5 2/3Figure 4: Generating Proper Basis for Approximate Assoiation Rules.The set SB is �rst initialized to the empty set (step 1). Then, the algorithm iteratively onsiders allfrequent losed itemsets l 2 FCi for 2 � i � k. It determines whih frequent losed itemsets l0 2 FCj<iare overed by l, i.e. are diret predeessors of l, and then generates the maximal on�dene assoiationrules with the form l! l0� l that hold (steps 2 to 25). During the ith iteration, eah itemset l in FCi isonsidered (steps 3 to 24) as follows. The set CR of andidate assoiation rules with l in the onsequentis initialized to the empty set (step 4). For 1 � j < i, sets Sj ontaining all frequent losed j-itemsetsin FCj that are subsets of l are reated (steps 5 to 7). Then, all these subsets of l are onsidered indereasing order of their sizes (steps 8 to 18). For eah of these subsets l0 2 Sj , the on�dene of theproper approximate assoiation rule r : l0 ! l�l0 is omputed (step 10). If the on�dene of r is suÆient,r is inserted in CR (step 12) and all subsets l00 of l0 are removed from Sn<j (steps 13 to 15). This beauserules with the form l00 ! l � l00 with l00 2 Sn<j are transitive proper approximate rules. Finally, theandidate proper approximate rules with l in the onsequent that are in CR are pruned (steps 19 to 23):the maximum on�dene value maxonf of rules in CR is determined (step 20) and the �rst rule withsuh a on�dene is inserted in SB (steps 21 and 22). At the end of the algorithm, the set SB thusontains all rules in the strutural basis for approximate assoiation rules.Corretness The algorithm onsiders all assoiation rules l0! l � l0 with on�dene � minonf be-tween two frequent losed itemsets l and l0 where l overs l0. These rules are all proper non-transitiveapproximate assoiation rules that hold and an be represented by the edges of the graph GFC (De�nition8) without transitive edges. Moreover, among all rules with the form X ! l � X (generated from l),we keep only the �rst one with on�dene equal to the maximal on�dene of rules X! l � X . Onlypreserving this rule is equivalent to the yle removing in the graph GFC in the same manner as explainedin De�nition 9. Then, the resulting set SB an be represented as the maximal on�dene spanning forestFFC without edges from the empty itemset. SB ontains all rules in the strutural basis for approximateassoiation rules de�ned in Theorem 4.Example 10 Figure 5 depits the generation of the strutural basis for approximate assoiation rules inthe ontext D for a minimum support of 2/5 and a minimum on�dene of 1/2.



Algorithm 5 Generating Strutural Basis for Approximate Assoiation Rules.1) SB  fg;2) for (i 2; i � k; i++) do begin3) forall itemsets l 2 FCi do begin4) CR fg;5) for (j  i�1; j > 0; j- -) do begin6) Sj  Subsets(FCj ; l);7) end8) for (j  i�1; j > 0; j- -) do begin9) forall itemsets l0 2 Sj do begin10) onf(r) l.support / l0.support;11) if (onf(r) � minonf) then do begin12) CR CR [ fr : l0 ! l� l0; l.support, onf(r)g;13) for (n j�1; n > 0; n- -) do begin14) Sn  Sn� Subsets(Sn; l0);15) end16) end17) end18) end19) if (CR 6= fg) then do begin20) maxonf  Maxr2CR(onf(r));21) �nd �rst fr 2 CR j onf(r) = maxonfg;22) SB  SB [ frg;23) end24) end25) endFC2Itemset SuppfACg 3/5fBEg 4/5 1�! SBRule ConfC ! A 3/4 FC3Itemset SuppfBCEg 3/5 2�! SBRule ConfC ! A 3/4BE ! C 3/4FC4Itemset SuppfABCEg 2/5 3�! SBRule ConfC ! A 3/4BE ! C 3/4AC ! BE 2/3Figure 5: Generating Strutural Basis for Approximate Assoiation Rules.6 Experimental ResultsExperiments were performed on a Pentium II PC with a 350 Mhz lok rate, 128 MBytes of RAM,running the Linux operating system. Algorithms were implemented in C++. Charateristis of thedatasets used are given in Table 12. These datasets are the T10I4D100K4 syntheti dataset that mimismarket basket data, the C20D10K and the C73D10K ensus datasets from the PUMS sample �le5 , andthe Mushrooms6 dataset desribing mushroom harateristis. In all experiments, we attempted tohoose signi�ant minimum support and on�dene threshold values: we observed threshold values usedin other papers for experiments on similar data types and inspeted rules extrated in the bases.4http://www.almaden.ibm.om/s/quest/syndata.html5ftp://ftp2..ukans.edu/pub/ippbr/ensus/pums/pums90ks.zip6ftp://ftp.is.ui.edu/~merz/mldb.tar.Z



Name Number of objets Average size of objets Number of itemsT10I4D100K 100,000 10 1,000Mushrooms 8,416 23 127C20D10K 10,000 20 386C73D10K 10,000 73 2,177Table 12: Datasets.6.1 Relative Performane of Apriori and Apriori-CloseWe onduted experiments to ompare response times obtained with Apriori and Apriori-Close on thefour datasets. Results for the T10I4D100K and Mushrooms datasets are presented in Table 13. Wean observe that exeution times are idential for the two algorithms: adding the frequent losed itemsetderivation to the frequent itemset disovery does not indue additional omputation time. Similar resultswere obtained for C20D10K and C73D10K datasets.Minsupp Apriori Apriori-Close2.0% 1.99s 1.97s1.0% 3.47s 3.46s0.5% 9.62s 9.70s0.25% 15.02s 14.92s Minsupp Apriori Apriori-Close90% 0.28s 0.28s70% 0.73s 0.73s50% 2.40s 2.70s30% 18.22s 17.93sT10I4D100K MushroomsTable 13: Exeution Times of Apriori and Apriori-Close.6.2 Number of Rules and Exeution Times of the Rule GenerationTable 14 shows the total number of exat assoiation rules and their number in the Duquenne-Guiguesbasis for exat rules. Table 15 shows the total number of approximate assoiation rules, their number inthe proper basis and in the strutural basis for approximate rules, and the number of non-transitive rulesin the proper basis for approximate rules (5th olumn). For example in the ontext D, rules C ! A andAC ! BE are extrated, as well as the rule C ! ABE whih is learly transitive. Sine by onstrution,its on�dene { retrieved by multiplying the on�denes of the two former { is less than theirs, this rule isthe less interesting among the three. Reduing the extration to non-transitive rules in the proper basisfor approximate rules an also be interesting. Suh rules are generated by a variant of Algorithm 5 withthe last pruning strategy (steps 20 and 21) removed: all andidate rules in CR are inserted in SB.Table 16 shows for the four datasets the average relative size of bases ompared with the sets of allrules obtained. In the ase of weakly orrelated data (T10I4D100K), no exat rule is generated and theproper basis for approximate rules ontains all approximate rules that hold. The reason is that, in suhdata, all frequent itemsets are frequent losed itemsets. In the ase of orrelated data (Mushrooms,C20D10K and C73D10K), the number of extrated rules in bases is muh smaller than the total numberof rules that hold.Figure 6 shows for eah dataset the exeution times of the omputation of all rules (using the algorithmdesribed in [2℄) and bases. Exeution times of the derivation of the Duquenne-Guigues basis for exatrules and the proper basis for non-transitive approximate rules are not presented sine they are identialto those of the derivation of the Duquenne-Guigues basis for exat rules and the strutural basis forapproximate rules (Duquenne-Guigues and strutural bases).7 ConlusionIn this paper, we present new algorithms for eÆiently generating bases for assoiation rules. A basis isa set of non-redundant rules from whih all assoiation rules an be derived, thus it aptures all useful



Dataset Minsupp Exat rules Duquenne-Guigues basisT10I4D100K 0.5% 0 0Mushrooms 30% 7,476 69C20D10K 50% 2,277 11C73D10K 90% 52,035 15Table 14: Number of Exat Assoiation Rules Extrated.Dataset Minonf Approximate Proper Non-transitive Strutural(Minsupp) rules basis basis basis90% 16,260 16,260 3,511 916T10I4D100K 70% 20,419 20,419 4,004 1,058(0.5%) 50% 21,686 21,686 4,191 1,14030% 22,952 22,952 4,519 1,36790% 12,911 806 563 313Mushrooms 70% 37,671 2,454 968 384(30%) 50% 56,703 3,870 1,169 41030% 71,412 5,727 1,260 42490% 36,012 4,008 1,379 443C20D10K 70% 89,601 10,005 1,948 455(50%) 50% 116,791 13,179 1,948 45530% 116,791 13,179 1,948 45595% 1,606,726 23,084 4,052 939C73D10K 90% 2,053,896 32,644 4,089 941(90%) 85% 2,053,936 32,646 4,089 94180% 2,053,936 32,646 4,089 941Table 15: Number of Approximate Assoiation Rules Extrated.Dataset Duquenne-Guigues Proper Non-transitive Struturalbasis basis basis basisT10I4D100K - 100.00% 20.05% 5.49%Mushrooms 0.92% 6.90% 2.69% 1.19%C20D10K 0.48% 11.21% 2.33% 0.63%C73D10K 0.03% 1.55% 0.21% 0.05%Table 16: Average Relative Size of Bases.information. Moreover, its size is signi�antly redued ompared with the set of all possible rules beauseredundant, and thus useless, rules are disarded. Our approah has a twofold advantage: on one hand,the user is provided with a smaller set of resulting rules, easier to handle, and vehiuling informationof improved quality. On the other hand, exeution times are redued ompared with the disovering ofall assoiation rules. Suh results are proved (in the groundwork of lattie theory) and illustrated byexperiments, ahieved from real-life datasets.Integrating redution methods Templates, as de�ned in [3, 16℄, an diretly be used for extratingfrom the bases all assoiation rules mathing some user spei�ed patterns. Information in taxonomiesassoiated with the dataset an also be integrated in the proess as proposed in [14, 28℄ for extratingbases for generalized (multi-level) assoiation rules. Integrating item onstraints and statistial measures,suh as desribed in [5, 22, 29℄ and [7, 25℄ respetively, in the generation of bases requires further work.Funtional and approximate dependenies Algorithms presented in this paper an be adaptedto generate bases for funtional and approximate dependenies. In [15, 20℄, suh bases and algorithmsfor generating them were proposed. However, the Duquenne-Guigues basis is smaller than the basis forfuntional dependenies onstituted of minimal non-trivial funtional dependenies. Hene, the numberof rules in the Duquenne-Guigues basis is minimal; moreover these rules have minimal anteedent and
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