
HAL Id: hal-00467747
https://hal.science/hal-00467747

Submitted on 26 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering frequent closed itemsets for association rules
Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal

To cite this version:
Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal. Discovering frequent closed itemsets for
association rules. ICDT’1999 International Conference on Database Theory, Jan 1999, Jerusalem,
Israel. pp.398-416. �hal-00467747�

https://hal.science/hal-00467747
https://hal.archives-ouvertes.fr

Discovering Frequent Closed Itemsetsfor Association RulesNicolas Pasquier, Yves Bastide, Ra�k Taouil, and Lot� LakhalLaboratoire d'Informatique (LIMOS)Universit�e Blaise Pascal - Clermont-Ferrand IIComplexe Scienti�que des C�ezeaux24, av. des Landais, 63177 Aubi�ere Cedex Francefpasquier,bastide,taouil,lakhalg@libd1.univ-bpclermont.frAbstract. In this paper, we address the problem of �nding frequentitemsets in a database. Using the closed itemset lattice framework, weshow that this problem can be reduced to the problem of �nding frequentclosed itemsets. Based on this statement, we can construct e�cient datamining algorithms by limiting the search space to the closed itemsetlattice rather than the subset lattice. Moreover, we show that the set of allfrequent closed itemsets su�ces to determine a reduced set of associationrules, thus addressing another important data mining problem: limitingthe number of rules produced without information loss. We propose a newalgorithm, called A-Close, using a closure mechanism to �nd frequentclosed itemsets. We realized experiments to compare our approach tothe commonly used frequent itemset search approach. Those experimentsshowed that our approach is very valuable for dense and/or correlateddata that represent an important part of existing databases.1 IntroductionThe discovery of association rules was �rst introduced in [1]. This task con-sists in determining relationships between sets of items in very large databases.Agrawal's statement of this problem is the following [1, 2]. Let I = fi1; i2; : : : ; imgbe a set of m items. Let the database D = ft1; t2; : : : ; tng be a set of n trans-actions, each one identi�ed by its unique TID. Each transaction t consists of aset of items I from I. If kIk = k, then I is called a k-itemset. An itemset I iscontained in a transaction t 2 D if I � t. The support of an itemset I is thepercentage of transactions in D containing I . Association rules are of the formr : I1 c�! I2, with I1; I2 � I and I1 \ I2 = ;. Each association rule r has asupport de�ned as support(r) = support(I1 [I2) and a con�dence c de�ned asconfidence(r) = support(I1[I2) = support(I1). Given the user de�ned minimumsupport minsup and minimum con�dence minconf thresholds, the problem ofmining association rules can be divided into two sub-problems [1]:1. Find all frequent itemsets in D, i.e. itemsets with support greater or equalto minsup.

2. For each frequent itemset I1 found, generate all association rules I2 c�! I1�I2where I2 � I1, with con�dence c greater or equal to minconf.Once all frequent itemsets and their support are known, the association rulegeneration is straightforward. Hence, the problem of mining association rules isreduced to the problem of determining frequent itemsets and their support.Recent works demonstrated that the frequent itemset discovery is also the keystage in the search for episodes from sequences and in �nding keys or inclusion aswell as functional dependencies from a relation [12]. All existing algorithms useone of the two following approach: a levelwise [12] bottom-up search [2, 5, 13, 16,17] or a simultaneous bottom-up and top-down search [3, 10, 20]. Although theyare dissimilar, all those algorithms explore the subset lattice (itemset lattice) for�nding frequent itemsets: they all use the basic properties that all subsets of afrequent itemset are frequent and that all supersets of an infrequent itemset areinfrequent in order to prune elements of the itemset lattice.In this paper, we propose a new e�cient algorithm, called A-Close, for �nd-ing frequent closed itemsets and their support in a database. Using a closuremechanism based on the Galois connection, we de�ne the closed itemset latticewhich is a sub-order of the itemset lattice, thus often much smaller. This lat-tice is closely related to the Galois lattice [4, 7] also called concept lattice [19].The closed itemset lattice can be used as a formal framework for discoveringfrequent itemsets given the basic properties that the support of an itemset I isequal to the support of its closure and that the set of maximal frequent itemsetsis identical to the set of maximal frequent closed itemsets. Then, once A-Closehas discovered all frequent closed itemsets and their support, we can directlydetermine the frequent itemsets and their support. Hence, we reduce the prob-lem of mining association rules to the problem of determining frequent closeditemsets and their support.Using the set of frequent closed itemsets, we can also directly generate areduced set of association rules without having to determine all frequent item-sets, thus lowering the algorithm computation cost. Moreover, since there canbe thousands of association rules holding in a database, reducing the numberof rules produced without information loss is an important problem for the un-derstandability of the result [18]. Empirical evaluations comparing A-Close toan optimized version of Apriori showed that they give nearly always equivalentresults for weakly correlated data (such as synthetic data) and that A-Closeclearly outperforms Apriori for correlated data (such as statistical or text data).The rest of the paper is organized as follows. In Section 2, we present theclosed itemset lattice. In Section 3, we propose a new model for association rulesbased on the Galois connection and we characterize a reduced set of associationrules. In Section 4, we describe the A-Close algorithm. Section 5 gives experimen-tal results on synthetic data1 and census data using the PUMS �le for KansasUSA2 and Section 6 concludes the paper.1 http://www.almaden.ibm.com/cs/quest/syndata.html2 ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip

2 Closed Itemset LatticesIn this section, we de�ne data mining context, Galois connection, Galois closureoperators, closed itemsets and closed itemset lattice. Interested readers shouldread [4, 7, 19] for further details on order and lattice theory.De�nition 1 (Data mining context). A data mining context3 is a triple D =(O; I;R). O and I are �nite sets of objects and items respectively. R � O � Iis a binary relation between objects and items. Each couple (o; i) 2 R denotesthe fact that the object o 2 O is related to the item i 2 I.De�nition 2 (Galois connection). Let D = (O; I;R) be a data mining con-text. For O � O and I � I, we de�ne:f(O) : 2O ! 2I g(I) : 2I ! 2Of(O)=fi 2 I j 8o 2 O; (o; i) 2 Rg g(I)=fo 2 O j 8i 2 I; (o; i) 2 Rgf(O) associates with O the items common to all objects o 2 O and g(I) associateswith I the objects related to all items i 2 I. The couple of applications (f; g) isa Galois connection between the power set of O (i.e. 2O) and the power set of I(i.e. 2I). The following properties hold for all I; I1; I2 � I and O;O1; O2 � O:(1) I1 � I2) g(I1) � g(I2) (1') O1 � O2) f(O1) � f(O2)(2) O � g(I)() I � f(O)De�nition 3 (Galois closure operators). The operators h = f�g in 2I andh0 = g�f in 2O are Galois closure operators4. Given the Galois connection (f; g),the following properties hold for all I; I1; I2 � I and O;O1; O2 � O [4, 7, 19]:Extension : (3) I � h(I) (3') O � h0(O)Idempotency : (4) h(h(I)) = h(I) (4') h0(h0(O)) = h0(O)Monotonicity : (5) I1 � I2) h(I1) � h(I2) (5') O1 � O2) h0(O1) � h0(O2)De�nition 4 (Closed itemsets). An itemset C � I from D is a closed itemseti� h(C) = C. The smallest (minimal) closed itemset containing an itemset I isobtained by applying h to I. We call h(I) the closure of I.De�nition 5 (Closed itemset lattice). Let C be the set of closed itemsetsderived from D using the Galois closure operator h. The pair LC = (C;�) isa complete lattice called closed itemset lattice. The lattice structure implies twoproperties:i) There exists a partial order on the lattice elements such that, for every ele-ments C1; C2 2 LC, C1 � C2, i� C1 � C25.ii) All subsets of LC have one greatest lower bound, the Join element, and onelowest upper bound, the Meet element.3 By extension, we call database a data mining context afterwards.4 Here, we use the following notation: f�g(I) = f(g(I)) and g�f(O) = g(f(O)).5 C1 is a sub-closed itemset of C2 and C2 is a sup-closed itemset of C1.

Below, we give the de�nitions of the Join and Meet elements extracted from thebasic theorem on Galois (concept) lattices [4, 7, 19]. For all S � LC:Join (S) = h([C2SC); Meet (S) = \C2SC
OID Items1 A C D2 B C E3 A B C E4 B E5 A B C E

A B C D E

A B C E

A C

B EC

A C D

B C E

ØFig. 1. The data mining context D and its associated closed itemset lattice.3 Association Rule ModelIn this section, we de�ne frequent and maximal frequent itemsets and closeditemsets using the Galois connection. We then de�ne association rules and validassociation rules, and we characterise a reduced set of valid association rules ina data mining context D.3.1 Frequent ItemsetsDe�nition 6 (Itemset support). Let I � I be a set of items from D. Thesupport count of the itemset I in D is:support(I) = kg(I)kkOkDe�nition 7 (Frequent itemsets). The itemset I is said to be frequent if thesupport of I in D is at least minsup. The set L of frequent itemsets in D is:L = fI � I j support(I) � minsupgDe�nition 8 (Maximal frequent itemsets). Let L be the set of frequentitemsets. We de�ne the set M of maximal frequent itemsets in D as:M = fI 2 L j 6 9I 0 2 L; I � I 0g

Property 1. All subsets of a frequent itemset are frequent (intuitive in [2]).Proof. Let I; I 0 � I, I 2 L and I 0 � I . According to Property (1) of the Galoisconnection: I 0 � I =) g(I 0) � g(I) =) support(I 0) � support(I) � minsup.So, we get: I 0 2 L.Property 2. All supersets of an infrequent itemset are infrequent (intuitive in[2]).Proof. Let I; I 0 � I, I 0 =2 L and I 0 � I . According to Property (1) of the Galoisconnection: I � I 0 =) g(I) � g(I 0) =) support(I) � support(I 0) � minsup.So, we get: I =2 L.3.2 Frequent Closed ItemsetsDe�nition 9 (Frequent closed itemsets). The closed itemset C is said tobe frequent if the support of C in D is at least minsup. We de�ne the set FC offrequent closed itemsets in D as:FC = fC � I j C = h(C) ^ support(C) � minsupgDe�nition 10 (Maximal frequent closed itemsets). Let FC be the set offrequent closed itemsets. We de�ne the set MC of maximal frequent closed item-sets in D as: MC = fC 2 FC j 6 9C 0 2 FC; C � C 0gProperty 3. The support of an itemset I is equal to the support of its closure:support(I) = support(h(I)).Proof. Let I � I be an itemset. The support of I inD is: support(I) = kg(I)kkOkNow, we consider h(I), the closure of I . Let's show that h0(g(I)) = g(I). Wehave g(I) � h(g(I)) (extension property of the Galois closure) and I � h(I))g(h(I)) � g(I) (Property (1) of the Galois connection). We deduce that h0(g(I))=g(I), and therefore we have:support(h(I)) = kg(h(I))kkOk = kh0(g(I))kkOk = kg(I)kkOk = support(I)Property 4. The set of maximal frequent itemsets M is identical to the set ofmaximal frequent closed itemsets MC.Proof. It su�ces to demonstrate that 8I 2 M , I is closed, i.e. I = h(I). LetI 2 M be a maximal frequent itemset. According to Property (3) of the Galoisconnection I � h(I) and, since I is maximal and support(h(I)) = support(I) �minsup, we conclude that I = h(I). I is a maximal frequent closed itemset.Since all maximal frequent itemsets are also maximal frequent closed itemsets,we get: M =MC.

3.3 Association Rule SemanticsDe�nition 11 (Association rules). An association rule is an implication be-tween itemsets of the form I1 c�!I2 where I1; I2 � I and I1 \ I2 = ;. Below, wede�ne the support and con�dence c of an association rule r : I1 c�! I2 using theGalois connection:support(r) = kg(I1 [I2)kkOk ; confidence(r) = support(I1 [I2)support(I1) = kg(I1 [I2)kkg(I1)kDe�nition 12 (Valid association rules). A valid association rules is an as-sociation rules with support and con�dence greater or equal to the minsup andminconf thresholds respectively. We de�ne the set AR of valid association rulesin D using the set MC of maximal frequent closed itemsets as:AR(D;minsup, minconf) = fr : I2 c�! I1 � I2; I2 � I1 j I1 2 L = [C2MC 2C andconfidence(r) � minconfg3.4 Reduced Set of Association RulesLet I1; I2 � I and I1 \ I2 = ;. An association rule r : I1 c�! I2 is an exactassociation rule if c = 1. Then, r is noted r : I1) I2. An association ruler : I1 c�! I2 where c < 1 is called an approximate association rule. Let D be adata mining context.De�nition 13 (Pseudo-closed itemsets). An itemset I � I from D is apseudo-closed itemset i� h(I) 6= I and 8I 0 � I such as I 0 is a pseudo-closeditemset, we have h(I 0) � I.Theorem 1 (Exact association rules basis [8]). Let P be the set of pseudo-closed itemsets and R the set of exact association rules in D. The set E = fr :I1)h(I1)� I1 j I1 2 Pg is a basis for all exact association rules. 8r0 2 R wherecon�dence(r0) = 1 � minconf we have E j= r0.Corollary 1 (Exact valid association rules basis). Let FP be the set of fre-quent pseudo-closed itemsets in D. The set BE = fr : I1)h(I1)� I1 j I1 2 FPgis a basis for all exact valid association rules. 8r0 2 AR where con�dence(r0) =1 we have BE j= r0.Theorem 2 (Reduced set of approximate association rules [11]). Let Cbe the set of closed itemsets and R the set of approximate association rules inD. The set A = fr : I1 c�! I2 � I1 j I2 � I1 ^ I1; I2 2 Cg is a correct reduced setfor all approximate association rules. 8r0 2 R where minconf � con�dence(r0)< 1 we have A j= r0.Corollary 2 (Reduced set of approximate valid association rules). LetFC be the set of frequent closed itemsets in D. The set BA = fr : I1 c�! I2 �I1 j I2 � I1 ^ I1; I2 2 FCg is a correct reduced set for all approximate validassocition rules. 8r0 2 AR where con�dence(r0) � 1 we have BA j= r0.

4 A-Close AlgorithmIn this section, we present our algorithm for �nding frequent closed itemsets andtheir supports in a database. Section 4.1 describes its principle. In Section 4.2to 4.5, we give the pseudo-close of the algorithm and the sub-functions it uses.Section 4.6 provides an example and the proof of the algorithm correctness.4.1 A-Close PrincipleA closed itemset is a maximal set of items common to a set of objects. Forexample, in the database D in Figure 1, the itemset BCE is a closed itemsetsince it is the maximal set of items common to the objects f2; 3; 5g.BCE is calleda frequent closed itemset for minsup = 2 as support(BCE) = kf2; 3; 5gk = 3 �minsup. In a basket database, this means that 60% of customers (3 customerson a total of 5) purchase at most the items B;C and E. The itemset BC isnot a closed itemset since it is not a maximal group of items common to someobjects: all customers purchasing the items B and C also purchase the item E.The closed itemset lattice of a �nite relation (the database) is dually isomorphicto the Galois lattice [4, 7], also called concept lattice [19].Based on the closed itemset lattice properties (Section 2 and 3), using theresult of A-Close we can generate all frequent itemsets from a databaseD throughthe two following phases:1. Discover all frequent closed itemsets in D, i.e. itemsets that are closed andhave support greater or equal to minsup.2. Derive all frequent itemsets from the frequent closed itemsets found in phase 1.That is generate all subsets of the maximal frequent closed itemsets and de-rive their support from the frequent closed itemset supports.A di�erent algorithm for �nding frequent closed itemsets and algorithms forderiving frequent itemsets and generating valid association rules are presentedin [15].Using the result of A-Close, we can directly generate the reduced set ofvalid association rules de�ned in Section 3.4 instead of determining all frequentitemsets. The procedure is the following:1. Discover all frequent closed itemsets in D.2. Determine the exact valid association rule basis: determine the pseudo-closeditemsets in D and then generate all rules r : I1) I2 � I1 j I1 � I2 where I2is a frequent closed itemset and I1 is a frequent pseudo-closed itemset.3. Construct the reduced set of approximate valid association rules: generateall rules of the form: r : I1 c�! I2 � I1 j I1 � I2 where I1 and I2 are frequentclosed itemsets.In the two cases, the �rst phase is the most computationally intensive part.After this phase, no more database pass is necessary and the later phases canbe solved easily in a straightforward manner. Indeed, the �rst phase has givenus all information needed by the next ones.

A-Close discovers the frequent closed itemsets as follows. Based on the closeditemset properties, it determines a set of generators that will give us all frequentclosed itemsets by application of the Galois closure operator h. An itemset p is agenerator of a closed itemset c if it is one of the smallest itemsets (there can bemore than one) that will determine c using the Galois closure operator: h(p) = c.For instance, in the database D (Figure 1), BC and CE are generators of theclosed itemset BCE. The itemsets B, C and E are not generators of BCE sinceh(C) = C and h(B) = h(E) = BE. The itemset BCE is not a generator of itselfsince it includes BC and CE: BCE is not one of the smallest itemsets for whichclosure is BCE.The algorithm constructs the set of generators in a levelwise manner: (i+1)-generators6 are created using i-generators in Gi. Then, their support is countedand the useless generators are pruned. According to their supports and the sup-ports of their i-subsets in Gi, infrequent generators and generators that havethe same closure as one of their subsets are deleted from Gi+1. In the previ-ous example, the support of the generator BCE is the same as the support ofgenerators BC and CE since they have the same closure (Property 3).Once all frequent useful generators are found, their closures are determined,giving us the set of all frequent closed itemsets. For reducing the cost of theclosure computation when possible, we introduce the following optimization. Wedetermine the �rst iteration of the algorithm for which a (i+1)-generator waspruned because it had the same closure as one of its i-subsets. In all iterationspreceding the ith one, the generators created are closed and their closure com-putation is useless. Hence, we can limit the closure computation to generators ofsize greater or equal to i. For this purpose, the level variable indicates the �rstiteration for which a generator was pruned by this pruning strategy.4.2 Discovering Frequent Closed ItemsetsAs in the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code for discovering frequent closed itemsets is given in Algorithm 1. The nota-tion is given in Table 1. In each of the iterations that construct the candidategenerators, one pass over the database is necessary in order to count the supportof the candidate generators. At the end of the algorithm, one more pass is neededfor determining the closures of generators that are not closed. If all generatorsare closed, this pass is not made.First, the algorithm determines the set G1 of frequent 1-generators and theirsupport (step 1 to 5). Then, the level variable is set to 0 (step 6). In each ofthe following iterations (step 7 to 9), the AC-Generator function (Section 4.4) isapplied to the set of generators Gi, determining the candidate (i+1)-generatorsand their support in Gi+1 (step 8). This process takes place until Gi is empty.Finally, closures of all generators produced are determined (step 10 to 14). Usingthe level variable, we construct two sets of generators. The set G which containsgenerators p for which size is less than level�1, and so that are closed (p = h(p)).6 A generator of size i is called an i-generator.

Set Field ContainsGi generator A generator of size i.support Support count of the generator: support = count(generator)G;G0 generator A generator of size i.closure Closure of the generator: closure = h(generator).support Support count of the generator and its closure:support = count(closure) = count(generator) (Property 3).FC closure Frequent closed itemset (closed itemset with support � minsup).support Support count of the frequent closed itemset.Table 1. NotationThe set G0 which contains generators for which size is at least level� 1, amongwhich some are not closed, and so for which closure computation is necessary.The closures of generators in G0 are determined by applying the AC-Generatorfunction (Section 4.4) to G0 (step 15). Then, all frequent closed itemsets havebeen produced and their support is known (see Theorem 3).Algorithm 1 A-Close algorithm1) generators in G1 f1-itemsetsg;2) G1 Support-Count(G1);3) forall generators p 2 G1 do begin4) if (support(p) < minsup) then delete p from G1; // Pruning infrequent5) end6) level 0;7) for (i 1; Gi.generator 6= ;; i++) do begin8) Gi+1 AC-Generator(Gi); // Creates (i+1)-generators9) end10) if (level > 2) then begin11) G SfGj j j < level-1g; // Those generators are all closed12) forall generators p 2 G do begin13) p.closure p.generator;14) end15) end16) if (level 6= 0) then begin17) G0 SfGj j j � level-1g; // Some of those generators are not closed18) G0 AC-Closure(G0);19) end20) Answer FC fc.closure,c.supportjc 2 G [G0g;4.3 Support-Count FunctionThe function takes the set Gi of frequent i-generators as argument. It returnsthe set Gi with, for each generator p 2 Gi, its support count: support(p) = kfo 2O j p � f(fog)k. The pseudo-code of the function is given in Algorithm 2.

Algorithm 2 Support-Count function1) forall objects o 2 O do begin2) Go Subset(Gi.generator,f(fog)); // Generators that are subsets of f(fog)3) forall generators p 2 Go do begin4) p.support++;5) end6) endThe Subset function quickly determines which generators are contained in anobject7, i.e. generators that are subsets of f(fog). For this purpose, generatorsare stored in a pre�x-tree structure derived from the one proposed in [14].4.4 AC-Generator FunctionThe function takes the set Gi of frequent i-generators as argument. Based onLemma 1 and 2, it returns the setGi+1 of frequent (i+1)-generators. The pseudo-code of the function is given in Algorithm 3.Lemma 1. Let I1; I2 be two itemsets. We have:h(I1 [I2) = h(h(I1) [h(I2))Proof. Let I1 and I2 be two itemsets. According to the extension property ofthe Galois closure operators:I1 � h(I1) and I2 � h(I2) =) I1 [I2 � h(I1) [h(I2)=) h(I1 [I2) � h(h(I1) [h(I2)) (1)Obviously, I1 � I1 [I2 and I2 � I1 [I2. So h(I1) � h(I1 [I2) and h(I2) �h(I1[I2). According to the idempotency property of the Galois closure operators:h(h(I1)[h(I2)) � h(h(I1[I2)) =) h(h(I1)[h(I2)) � h(I1[I2) (2)From (1) and (2), we conclude that h(I1 [I2) = h(h(I1) [h(I2)).Lemma 2. Let I1 be an itemset and I2 a subset of I1 where support(I1) =support(I2). Then we have h(I1) = h(I2) and 8I3 � I, h(I1 [I3) = h(I2 [I3).Proof. Let I1; I2 be two itemsets where I2 � I1 and support(I1) = support(I2).Then, we have that kg(I1)k = kg(I2)k and we deduce that g(I1) = g(I2). Fromthis, we conclude f(g(I1)) = f(g(I2)) =) h(I1) = h(I2). Let I3 � I be anitemset. Then according to Lemma 1:h(I1 [I3) = h(h(I1) [h(I3)) = h(h(I2) [h(I3)) = h(I2 [I3)7 We say that an itemset I is contained in object o if o is related to all items i 2 I.

Corollary 3. Let I be an i-generator and S = fs1; s2; : : : ; sjg a set of (i� 1)-subsets of I where Ss2S s = I. If 9s 2 S such as support(s) = support(I), thenh(I) = h(s).Proof. Derived from Lemma 2.The AC-Generator function works as follows. We �rst apply the combinato-rial phase of Apriori-Gen [2] to the set of generators Gi in order to obtain a setof candidate (i+1)-generators: two generators of size i in Gi with the same �rsti� 1 items are joined, producing a new potential generator of size i+ 1 (step 1to 4). Then, the potential generators produced that will lead to useless com-putations (infrequent closed itemsets) or redundancies (frequent closed itemsetsalready produced) are pruned from Gi+1 as follows.First, like in Apriori-Gen, Gi+1 is pruned by removing every candidate (i+1)-generator c such that some i-subset of c is not in Gi (step 8 and 9). Using thisstrategy, we prune two kinds of itemsets: �rst, all supersets of infrequent gener-ators (that are also infrequent according to Property 2); second, all generatorsthat have the same support as one of their subset and therefore have the sameclosure (see Theorem 3). Let's take an example. Suppose that the set of frequentclosed itemsets G2 contains the generators AB;AC. The AC-Generator functionwill create ABC = AB [AC as a new potential generator in G3 and the �rstpruning will remove ABC since BC =2 G2.Next, the supports of the remaining candidate generators in Gi+1 are de-termined and, based on Property 2, those with support less than minsup aredeleted from Gi+1 (step 7).The third pruning strategy works as follows. For each candidate generatorc in Gi+1, we test if the support of one of its i-subsets s is equal to the sup-port of c. In that case, the closure of c will be equal to the closure of s (seeCorollary 3), so we remove c from Gi+1 (step 10 to 13). Let's give anotherexample. Suppose that the �nal set of generators G2 contains frequent gen-erators AB;AC;BC and their respective supports 3; 2; 3. The AC-Generatorfunction will create ABC = AB [AC as a new potential generator in G3and suppose it determines its support is 2. The third prune step will removeABC from G3 since support(ABC) = support(AC). Indeed, we deduce thatclosure(ABC) = closure(AC) and the computation of the closure of ABC is use-less. For the optimization of the generator closure computation in Algorithm 1,we determine the iteration at which the second prune suppressed a generator(variable level).4.5 AC-Closure FunctionThe AC-Closure function takes the set of frequent generators G, for which clo-sures must be determined, as argument. It updates G with, for each generatorp 2 G, the closed itemset p.closure obtained by applying the closure operatorh to p. Algorithm 4 gives the pseudo-code of the function. The method used tocompute closures is based on Proposition 1.

Algorithm 3 AC-Generator function1) insert into Gi+12) select p.item1, p.item2, : : : , p.itemi, q.itemi3) from Gi p, Gi q4) where p.item1 = q.item1, : : : , p.itemi�1 = q.itemi�1, p.itemi < q.itemi;5) forall candidate generators c 2 Gi+1 do begin6) forall i-subsets s of c do begin7) if (s =2 Gi) then delete c from Gi+1;8) end9) end10) Gi+1 Support-Count(Gi+1);11) forall candidate generators c 2 Gi+1 do begin12) if (support(c) < minsup) then delete c from Gi+1; // Pruning infrequent13) else do begin14) forall i-subsets s of c do begin15) if (support(s) = support(c)) then begin16) delete c from Gi+1;17) if (level = 0) then level i; // Iteration number of the �rst prune18) endif29) end20) end21) end22) Answer S fc 2 Gi+1g;Proposition 1. The closed itemset h(I) corresponding to the closure by h ofthe itemset I is the intersection of all objects in the database that contain I:h(I) = \o2Off(fog) j I � f(fog)gProof. We de�ne H = To2S f(fog) where S = fo 2 O j I � f(fog)g. We haveh(I) = f(g(I)) = To2g(I) f(fog) = To2S0 f(fog) where S0 = fo 2 O j o 2 g(I)g.Let's show that S0 = S:I � f(fog)() o 2 g(I)o 2 g(I)() I � f(g(I)) � f(fog)We conclude that S = S0, thus h(I) = H .Using Proposition 1, only one database pass is necessary to compute the closuresof the generators. The function works as follows. For each object o in D, theset Go is created (step 2). Go contains all generators in G that are subsetsof the object itemset f(fog). Then, for each generator p in Go, the associatedclosed itemset p.closure is updated (step 3 to 6). If the object o is the �rst onecontaining the generator, p.closure is empty and the object itemset f(fog) isassigned to it (step 4). Otherwise, the intersection between p.closure and theobject itemset gives the new p.closure (step 5). At the end, the function returns

Algorithm 4 AC-Closure function1) forall objects o 2 O do begin2) Go Subset(G.generator,f(fog)); // Generators that are subsets of f(fog)3) forall generators p 2 Go do begin4) if (p.closure = ;) then p.closure f(fog);5) else p.closure p.closure \ f(fog);6) end7) end8) Answer S fp 2 G j 6 9p0 2 G; closure(p0)=closure(p)g;for each generator p in G, the closed itemset p.closure corresponding to theintersection of all objects containing p.4.6 Example and CorrectnessFigure 2 gives the execution of A-Close for a minimum support of 2 (40%) on thedata mining context D given in Figure 1. First, the algorithm determines the setG1 of 1-generators and their support (step 1 and 2), and the infrequent generatorD is deleted form G1 (step 3 to 5). Then, generators in G2 are determined byapplying the AC-Generator function to G1 (step 8): the 2-generators are createdby union of generators in G1, their support is determined and the three pruningstrategies are applied. Generators AC and BE are pruned since support(AC) =support(A) and support(BE) = support(B), and the level variable is set to 2.Calling AC-Generator with G2 produces 3-generators in G3. The only gen-erator created in G3 is ABE since only AB and AE have the same �rst item.The three pruning strategies are applied and the second one removes ABE formG3 as BE =2 G2. Then, G3 is empty and the iterative construction of sets Giterminates (the loop in step 7 to 9 stops).The sets G and G0 are constructed using the level variable (step 10 and 11): Gis empty and G0 contains generators from G1 and G2. The closure function AC-Closure is applied to G0 and the closures of all generators in G0 are determined(step 15). Finally, duplicates closures are removed from G0 by AC-Closure andthe result is returned to the set FC which therefore contains AC,BE,C,ABCEand BCE, that are all frequent closed itemsets in D.Lemma 3. For p � I such as kpk > 1, if p =2 Gkpk and support(p) � minsupthen 9s1; s2 � I, s1 � s2 � p and ks1k = ks2k � 1 such as h(s1) = h(s2) ands1 2 Gks1k.Proof. We show this using a recurrence. For kpk = 2, we have p = s2 and9s1 2 G1 j s1 � s2 and support(s1) = support(s2) =) h(s1) = h(s2) (Lemma 3is obvious). Then, supposing that Lemma 3 is true for kpk = i, let's show thatit is true for kpk = i + 1. Let p � I j kpk = i+ 1 and p =2 Gkpk. There are twopossible cases:(1) 9p0 � p j kp0k = i and p0 =2 Gkp0k(2) 9p0 � p j kp0k = i and p0 2 Gkp0k and support(p) = support(p0) =) h(p) =

Support-Count�! G1Generator SupportfAg 3fBg 4fCg 4fDg 1fEg 4 Pruninginfrequentgenerators�! G1Generator SupportfAg 3fBg 4fCg 4fEg 4
AC-Generator�! G2Generator SupportfABg 2fACg 3fAEg 2fBCg 3fBEg 4fCEg 3 Pruning�! G2Generator SupportfABg 2fAEg 2fBCg 3fCEg 3
AC-Closure�! G0Generator Closure SupportfAg fACg 3fBg fBEg 4fCg fCg 4fEg fBEg 4fABg fABCEg 2fAEg fABCEg 2fBCg fBCEg 3fCEg fBCEg 3 Pruning�! Answer : FCClosure SupportfACg 3fBEg 4fCg 4fABCEg 2fBCEg 3Fig. 2. A-Close frequent closed itemset discovery for minsup = 2 (40%)h(p0) (Lemma 2)If (1) then according to the recurrence hypothesis, 9s1 � s2 � p0 � p such ash(s1) = h(s2) and s1 2 Gks1k. If (2) then we identify s1 to p0 and s2 to p.Theorem 3. The A-Close algorithm generates all frequent closed itemsets.Proof. Using a recurrence, we show that 8p � I j support(p) � minsup we haveh(p) 2 FC. We �rst demonstrate the property for the 1-itemsets: 8p � I wherekpk = 1, if support(p) � minsup then p 2 G1) h(p) 2 FC. Let's supposethat 8p � I such as kpk = i we have h(p) 2 FC. We then demonstrate that8p � I where kpk = i + 1 we have h(p) 2 FC. If p 2 Gkpk then h(p) 2 FC.Else, if p =2 Gkpk and according to Lemma 3, we have: 9s1 � s2 � p j s1 2Gks1k and h(s1) = h(s2). Now h(p) = h(s2 [p � s2) = h(s1 [p � s2) andks1 [p � s2k = i, therefore in conformity with the recurrence hypothesis weconclude that h(s1 [p� s2) 2 FC and so h(p) 2 FC.

5 Experimental ResultsWe implemented the Apriori and A-Close algorithms in C++, both using thesame pre�x-tree structure that improves Apriori e�ciency. Experiments wererealized on a 43P240 bi-processor IBM Power-PC running AIX 4.1.5 with a CPUclock rate of 166 MHz, 1GB of main memory and a 9GB disk. Each executionuses only one processor (the application was single-threaded) and was allowed amaximum of 128MB.Test Data We used two kinds of datasets: synthetic data, that simulate marketbasket data, and census data, that are typical statistical data. The syntheticdatasets were generated using the program described in [2]. The census data wereextracted from the Kansas 1990 PUMS �le (Public Use Microdata Samples),in the same way as [5] for the PUMS �le of Washington (unavailable throughInternet at the time of the experiments). Unlike in [5] though, we did not put anupper bound on the support, as this distorts each algorithm results in di�erentways. We therefore took smaller datasets containing the �rst 10,000 persons.Parameter T10I4D100K T20I6D100K C20D10K C73D10KAverage size of the objects 10 20 20 73Total number of items 1000 1000 386 2178Number of objects 100K 100K 10K 10KAverage size of the maximal poten- 4 6 - --tially frequent itemsets Table 2. NotationResults on Synthetic Data Figure 3 shows the execution times of Aprioriand A-Close on the datasets T10I4D100K and T20I6D100K. We can observethat both algorithms always give similar results except for executions with min-sup = 0.5% and 0.33% on T20I6D100. This similitude comes from the fact thatdata are weakly correlated and sparse in such datasets. Hence, the sets of gener-ators in A-Close and frequent itemsets in Apriori are identical, and the closuremechanism does not help in jumping iterations. In the two cases where Apriorioutperforms A-Close, there was in the 4th iteration a generator that has beenpruned because it had the same support as one of its subsets. As a consequence,A-Close determined closures of all generators with size greater or equal than 3.Results on Census Data Experiments were conducted on the two censusdatasets using di�erent minsup ranges to get meaningful response times andto accommodate with the memory space limit. Results for the C20D10K andC73D10K datasets are plotted on Figure 4 and 5 respectively. A-Close always sig-ni�cantly outperforms Apriori, for execution times as well as number of databasepasses. Here, contrarily to the experiments on synthetic data, the di�erences be-tween execution times can be measured in minutes for C20D10K and in hours for

0

5

10

15

20

25

30

35

40

2% 1.5% 1% 0.75% 0.5% 0.33%

T
im

e
(s

ec
on

ds
)

Minimum support

A-Close
Apriori

Execution times on T10I4D100K 0

100

200

300

400

500

600

700

800

0.33%0.5%0.75%1%1.5%2%

T
im

e
(s

ec
on

ds
)

Minimum support

A-Close
Apriori

Execution times on T20I6D100KFig. 3. Performance of Apriori and A-Close on synthetic dataC73D10K. It should furthermore be noted that Apriori could not be run for min-sup lower than 3% on C20D10K and lower than 70% on C73D10K as it exceedsthe memory limit. Census datasets are typical of statistical databases: highlycorrelated and dense data. Many items being extremely popular, this leads to ahuge number of frequent itemsets from which few are closed.Scale up Properties on Census Data We �nally examined how Apriori andA-Close behave as the object size is increased in census data. The number ofobjects was �xed to 10,000 and the minsup level was set to 10%. The object sizevaried from 10 (281 total items) up to 24 (408 total items). Apriori could not berun for higher object sizes. Results are shown in Figure 6. We can see here that,the scale up properties of A-Close are far better than those of Apriori.6 ConclusionWe presented a new algorithm, called A-Close, for discovering frequent closeditemsets in large databases. This algorithm is based on the pruning of the closeditemset lattice instead of the itemset lattice, which is the commonly used ap-proach. This lattice being a sub-order of the itemset lattice, for many datasets,the number of itemsets considered will be signi�cantly reduced. Given the setof frequent closed itemsets and their support, we showed that we can either de-duce all frequent itemsets, or construct a reduced set of valid association rulesneedless the search for frequent itemsets.We realized experiments in order to compare our approach to the itemsetlattice exploration approach. We implemented A-Close and an optimized ver-sion of Apriori using pre�x-trees. The choice of Apriori leads form the fact that,in practice, it remains one of the most general and powerful algorithms. Thoseexperiments showed that A-Close is very e�cient for mining dense and/or cor-related data (such as statistical data): on such datasets, the number of itemsetsconsidered and the number of database passes made are signi�cantly reduced

0

500

1000

1500

2000

2500

3000

20% 15% 10% 7.5% 5% 4% 3%

T
im

e
(s

ec
on

ds
)

Minimum support

A-Close
Apriori

Execution times 10

11

12

13

14

15

16

3%4%5%7.5%10%15%20%

N
um

be
r

of
 p

as
se

s

Minimum support

A-Close
Apriori

Number of database passesFig. 4. Performance of Apriori and A-Close on census data C20D10K

0

10000

20000

30000

40000

50000

60000

70%75%80%85%90%

T
im

e
(s

ec
on

ds
)

Minimum support

A-Close
Apriori

Execution times 10

12

14

16

18

70%75%80%85%90%

N
um

be
r

of
 p

as
se

s

Minimum support

A-Close
Apriori

Number of database passesFig. 5. Performance of Apriori and A-Close on census data C73D10K

0

500

1000

1500

2000

2500

3000

3500

4000

10 12 14 16 18 20 22 24

T
im

e
(s

ec
on

ds
)

Number of items per transaction

A-Close
Apriori

Fig. 6. Scale-up properties of Apriori and A-Close on census data

compared to those Apriori needs. They also showed that A-Close leads to equiv-alent performances of the two algorithms for weakly correlated data (such assynthetic data) in which many generators are closed. This leads from the adap-tive characteristic of A-Close that consists in determining the �rst iteration forwhich it is necessary to compute closures of generators. Such a way, we avoidA-Close many useless closure computations.We think these results are very interesting since dense and/or correlated datarepresent an important part of all existing data, and since mining such data isconsidered as very di�cult. Statistical, text, biological and medical data areexamples of such correlated data. Supermarket data are weakly correlated andquite sparse, but experimental results showed that mining such data is consider-ably less di�cult than mining correlated data. In the �rst case, executions takesome minutes at most whereas in the second case, executions sometimes takeseveral hours.Moreover, A-Close gives an e�cient unsupervised classi�cation technic: theclosed itemset lattice of an order is dually isomorphic to the Dedekind-MacNeillecompletion of an order [7], which is the smallest lattice associated with an order.The closest work is Ganter's algorithm [9] which works only in main memory.This feature is very interesting since unsupervised classi�cation is another im-portant problem in data mining [6] and in machine learning.References1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets ofitems in large databases. Proceedings of the ACM SIGMOD Int'l Conference onManagement of Data, pages 207{216, May 1993.2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proceed-ings of the 20th Int'l Conference on Very Large Data Bases, pages 478{499, June1994. Expanded version in IBM Research Report RJ9839.3. R. J. Bayardo. E�ciently mining long patterns from databases. Proceedings of theACM SIGMOD Int'l Conference on Management of Data, pages 85{93, June 1998.4. G. Birkho�. Lattices theory. In Coll. Pub. XXV, volume 25. American Mathemat-ical Society, 1967. Third edition.5. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting andimplication rules for market basket data. Proceedings of the ACM SIGMOD Int'lConference on Management of Data, pages 255{264, May 1997.6. M.-S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a databaseperspective. IEEE Transactions on Knowledge and Data Engineering, 8(6):866{883, December 1996.7. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. CambridgeUniversity Press, 1994. Fourth edition.8. V. Duquenne and L.-L. Guigues. Famille minimale d'implication informativesr�esultant d'un tableau de donn�ees binaires. Math. Sci. Hum., 24(95):5{18, 1986.9. B. Ganter and K. Reuter. Finding all closed sets: A general approach. In Order,pages 283{290. Kluwer Academic Publishers, 1991.10. D. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering the max-imum frequent set. Proceedings of the 6th Int'l Conference on Extending DatabaseTechnology, pages 105{119, March 1998.

11. M. Luxenburger. Implications partielles dans un contexte. Math. Inf. Sci. Hum.,29(113):35{55, 1991.12. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledgediscovery. Data Mining and Knowledge Discovery, 1(3):241{258, 1997.13. H. Mannila, H. Toivonen, and A. I. Verkamo. E�cient algorithms for discoveringassociation rules. Proceedings of the AAAI Workshop on Knowledge Discovery inDatabases, pages 181{192, July 1994.14. A. M. Mueller. Fast sequential and parallel algorithms for association rules mining:A comparison. Technical report, Faculty of the Graduate School of The Universityof Maryland, 1995.15. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset latticesfor association rules. Proceedings of the BDA French Conference on AdvancedDatabases, October 1998. To appear.16. A. Savasere, E. Omiecinski, and S. Navathe. An e�cient algorithm for miningassociation rules in larges databases. Proceedings of the 21th Int'l Conference onVery Large Data Bases, pages 432{444, September 1995.17. H. Toivonen. Sampling large databases for association rules. Proceedings of the22nd Int'l Conference on Very Large Data Bases, pages 134{145, September 1996.18. H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Mannila. Pruningand grouping discovered association rules. ECML-95 Workshop on Statistics, Ma-chine Learning, and Knowledge Discovery in Databases, pages 47{52, April 1995.19. R. Wille. Concept lattices and conceptual knowledge systems. Computers andMathematics with Applications, 23:493{515, 1992.20. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fastdiscovery of association rules. Proceedings of the 3rd Int'l Conference on KnowledgeDiscovery in Databases, pages 283{286, August 1997.

