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Pruning Closed Itemset Lattices forAssociation RulesNicolas Pasquier, Yves Bastide, Ra�k Taouil, Lot� Lakhal{pasquier,bastide,taouil}@libd1.univ-bpclermont.frlakhal@ucfma.univ-bpclermont.frLaboratoire d'Informatique (LIMOS)Université Blaise Pascal - Clermont-Ferrand IIComplexe Scienti�que des Cézeaux24, av. des Landais, 63177 Aubière Cedex FranceRésuméLa découverte des règles d'association est l'un des principaux problèmes de l'extractionde connaissances dans les bases de données. De nombreux algorithmes e�caces ont étéproposés, dont les plus remarquables sont Apriori, l'algorithme de Mannila, Partition,Sampling et DIC. Ces derniers sont tous basés sur la méthode de recherche de Apriori:l'élagage du treillis des parties (treillis des itemsets). Dans cet article, nous proposonsun algorithme e�cace basé sur une nouvelle méthode de recherche: l'élagage du treillisdes fermés (treillis des itemsets fermés). Ce treillis qui est un sous-ordre du treillis desparties est étroitement lié au treillis de concepts de Wille dans son analyse formellede concepts. Nous avons comparé expérimentalement Close à une version optimiséede Apriori et les résultats obtenus montrent la grande e�cacité de Close dans letraitement des données denses et/ou corrélées telles que les données de rescensement(cas di�cile). Nous avons également pu observer que Close donne des temps deréponse corrects dans le traitement des bases de données de ventes.Mots-Clef: extraction de connaissances; règles d'association; treillis; algorithmes.AbstractDiscovering association rules is one of the most important task in data mining andmany e�cient algorithms have been proposed in the literature. The most noticeableare Apriori, Mannila's algorithm, Partition, Sampling and DIC, that are all based onthe Apriori mining method: pruning of the subset lattice (itemset lattice). In thispaper we propose an e�cient algorithm, called Close, based on a new mining method:pruning of the closed set lattice (closed itemset lattice). This lattice, which is asub-order of the subset lattice, is closely related to Wille's concept lattice in formalconcept analysis. Experiments comparing Close to an optimized version of Apriorishowed that Close is very e�cient for mining dense and/or correlated data such ascensus data, and performs reasonably well for market basket style data.Keywords: data mining; knowledge discovery; association rules; lattices; algorithms.



1 IntroductionOne of the most important task in data mining is the discovery of association rules �rst introducedin [1]. The aim of the association rule discovery is to identify relationships between items in verylarge databases. For example, given a market basket database, it would be interesting for decisionsupport to know the fact that 80% of customers who bought cereals and sugar also bought milk.In a census database, we should discover that 60% of persons who worked last year earned lessthan the average income, or in a medical database, that 70% of patients who have sti�nesses andfever also have headaches.Agrawal's statement of the problem of discovering association rules in market basket databases isthe following [1, 2]. Let I = {i1; i2; : : : ; im} be a set of m literals called items. Let the databaseD = {t1; t2; : : : ; tn} be a set of n transactions, each one consisting of a set of items I from I andassociated with a unique identi�er called its TID. I is called a k-itemset, where k is the size ofI . A transaction t 2 D is said to contain an itemset I if I � t. The support of an itemset I isthe percentage of transactions in D containing I : support(I) = ft 2 D j I � tg = ft 2 Dg. Anassociation rule is a conditional implication among itemsets, I ) I 0, where itemsets I; I 0 � I andI \ I 0 = ;. The con�dence of an association rule r : I ) I 0 is the conditional probability that atransaction contains I 0, given that it contains I : confidence(r) = support(I [ I 0) = support(I).The support of r is de�ned as: support(r) = support(I [ I 0).The problem of mining association rules in a database D is then traditionally de�ned as follows.Given user de�ned thresholds for the permissible minimum support and con�dence, �nd all theassociation rules that hold with more than the given minsupport and mincon�dence. This problemcan be broken into two subproblems [1]:1. Finding all frequent itemsets in D, i.e. itemsets with support greater or equal to minsupport.Frequent itemsets are also called large itemsets.2. For each frequent itemset I1 found, generating all association rules I2 ) I1�I2 | I2 � I1,with con�dence greater or equal to mincon�dence.The second subproblem can be solved in main memory in a straightforwardmanner once all frequentitemsets and their support are known. Hence, the problem of mining association rules is reducedto the problem of �nding frequent itemsets. Many algorithms have been proposed in the literature[2, 3, 9, 8, 11, 12, 13]. Although they are very di�erent from each other, they are all based on theApriori mining method [2]: pruning of the subset lattice for �nding frequent itemsets. This relieson the basic properties that all subsets of a frequent itemset are frequent and that all supersetsof an infrequent itemset are infrequent. Algorithms based on this approach perform very well forweakly correlated data such as market basket data. However perfomances drastically decrease forcorrelated data such as census data.In this paper, we propose a new e�cient algorithm called Close for mining association rules in verylarge databases. Close is based on the pruning of the closed itemset lattice which is a sub-orderof the subset lattice, thus much smaller. Such a structure is closely related to Wille's conceptlattice in formal concept analysis [5, 14, 15]. We show that this structure can be used as a formalframework for discovering association rules given the basic properties that all sub-closed itemsets ofa frequent closed itemset are frequent, that all sup-closed itemsets of an infrequent closed itemsetare infrequent and that the set of maximal frequent itemsets is identical to the set of maximalfrequent closed itemsets. Empirical evaluations comparing Close to an optimized version of Apriorishowed that Close performs reasonably well for weakly correlated data and performs very well forcorrelated data.The rest of the paper is organized as follows. Section 2 reviews related work and exhibits thecontribution of the paper. In Section 3, we de�ne the semantics of association rules based onthe Galois connection operators. In Section 4, we describe the Close algorithm. Section 5 givesexperimental results on synthetic data1 and census data using the PUMS �le for Kansas USA2and Section 6 concludes the paper.1http://www.almaden.ibm.com/cs/quest/syndata.html2ftp://ftp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks.zip2



TID Items1 A C D2 B C E3 A B C E4 B E5 A B C EFigure 1: The transaction database D2 Related Work and ContributionIn this section, we �rst present the subset lattice based approach for mining association rules.Then, we introduce the use of the closed itemset lattice as a formal framework in data mining andwe brie�y describe the Close mining method.2.1 A Common Approach for Mining Association RulesFinding all frequent itemsets is a nontrivial problem because the number of possible frequentitemsets is exponential in the size of the set of items I of the database. Given kIk = m, thereare possibly 2m frequent itemsets, which form a lattice of subsets over I with height equal to m.Consider the example transaction database D given in Figure 1. The lattice of subsets associatedwith D is represented in Figure 2. This lattice contains 32 itemsets and its height is 6. However,depending on the data and the minsupport value, only a small fraction of the whole lattice space isfrequent. For instance, assuming that minsupport is 2 (40%), only 15 itemsets of D are frequent.A naive approach consists of testing the support of every itemset in the lattice, which can be donein a single pass over the database. Clearly, this approach is impractical for large values of m. Inthe following, we describe the Apriori mining method used by all existing algorithms for �ndingfrequent itemsets. The notation is given in Table 1.
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Ck Set of candidate k-itemsets (potentially frequent itemsets).Each element of this set has two �elds: i) itemset and ii) support count.Lk Set of frequent k-itemsets (itemsets with minimum support).Each element of this set has two �elds: i) itemset and ii) support count.Table 1: NotationAlgorithm AprioriIn the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code of the Apriorifrequent itemset discovery is given in Algorithm 1. Frequent itemsets are computed iteratively,in the ascending order of their size. The process takes k iterations, where k is the size of thelargest frequent itemsets. For each iteration i � k, the database is scanned once and all frequentitemsets of size i are computed. The �rst iteration computes the set L1 of frequent 1-itemsets. Asubsequent iteration i consists of two phases. First, a set Ci of candidate i-itemsets is created byjoining the frequent (i� 1)-itemsets in Li�1 found in the previous iteration. This phase is realizedby the Apriori-Gen function described below. Next, the database is scanned for determining thesupport of the candidates in Ci and the frequent i-itemsets are extracted from the candidates.This process is repeated until no more candidate can be generated.1) L1 = {Large 1-itemsets};2) for ( k=2; Lk�1 6= ;; k++ ) do begin3) Ck = Apriori-Gen(Lk�1); // Generates candidates k-itemsets4) forall transactions t 2 D do begin5) Ct = Subset(Ck ,t); // Candidates contained in t6) forall candidates c 2 Ct do7) c.count++;8) end9) Lk = { c 2 Ck | c.count � minsupport }10) end11) Answer = Sk Lk; Algorithm 1: Apriori frequent itemset discoveryApriori-Gen Candidate Generation The function takes as argument the set Li�1 of frequent(i� 1)-itemsets. It returns the set Ci of candidate i-itemsets, which is a superset of the set of allfrequent i-itemsets. Two frequent itemsets of size i� 1 with the same �rst i� 2 items are joined,generating a new candidate itemset of size i:insert into Ciselect p.item1, p.item2, : : :, p.itemi�1, q.itemi�1from Li�1 p; Li�1 qwhere p.item1 = q.item1 , : : : , p.itemi�2 = q.itemi�2 , p.itemi�1 < q.itemi�1;Then, the candidate set Ci produced is pruned by removing every candidate i-itemset c such thatsome (i� 1)-subset of c is not in Li�1:forall candidate itemsets c 2 Ci do beginforall (i� 1)-subsets s of c do beginif (s =2 Li�1) thendelete c from Ci;Example Figure 3 shows the execution of Apriori for a minimum support of 2 (40%) on thedatabase D. This process takes four iterations, computing four sets of candidates and frequentitemsets and performing four database passes. The frequent itemsets found are outlined in theitemset lattice given in Figure 2. 4



Scan D�! C1Itemset Support{A} 3{B} 4{C} 4{D} 1{E} 4 Pruning ofInfrequent itemsets�! L1Itemset Support{A} 3{B} 4{C} 4{E} 4
Scan D�! C2Itemset Support{AB} 2{AC} 3{AE} 2{BC} 3{BE} 4{CE} 3 Pruning ofInfrequent itemsets�! L2Itemset Support{AB} 2{AC} 3{AE} 2{BC} 3{BE} 4{CE} 3Scan D�! C3Itemset Support{ABC} 2{ABE} 2{ACE} 2{BCE} 3 Pruning ofInfrequent itemsets�! L3Itemset Support{ABC} 2{ABE} 2{ACE} 2{BCE} 3Scan D�! C4Itemset Support{ABCE} 2 Pruning ofInfrequent itemsets�! L4Itemset Support{ABCE} 2Figure 3: Discovering frequent itemsets with Apriori for minsupport = 2(40%)The algorithms based on this approach take k database passes to generate all frequent itemsets,where k is strongly linked to the height of the itemset lattice (generaly the size of the maximalfrequent itemsets). Recent algorithms like Partition, Sampling and DIC have attempted to im-prove the search e�ciency by reducing the number of database passes. However, the e�ciency ofalgorithms does not rely only on the I/O cost they incur (number of database passes), but theCPU overhead they involve can a�ect their performances.2.2 Closed Itemset LatticesIn this section, we de�ne data mining context, Galois connection, closed itemset and closed itemsetlattice. Interested readers should consult [5] for further details on the order and lattice theory.Data Mining Context A data mining context (a database) is a triple D = (O; I;R). O and Iare �nite sets of objects and database items respectively. R � O � I is a binary relation betweenobjects and items. Each couple (o; i) 2 R denotes the fact that the object o 2 O has the itemi 2 I. Data mining context can be a relation, a class, or the result of an SQL/OQL query.Galois Connection Let D = (O; I;R) be a data mining context. For O � O and I � I, wede�ne:f(O) : P (O)! P (I) g(I) : P (I)! P (O)f(O) = fi 2 I j 8o 2 O; (o; i) 2 Rg g(I) = fo 2 O j 8i 2 I; (o; i) 2 Rgf(O) associates with O all items common to all objects o 2 O and g(I) associates with I all objectscontaining all items i 2 I . The couple of applications (f; g) is a Galois connection between thepower set of O (i.e. 2O) and the power set of I (i.e. 2I). The operators g�f in I and f�g in O33Here, we use the following notation: g�f(I) = f(g(I)) and f�g(O) = g(f(O)).5



are Galois closure operators. Given the Galois connection (f; g), the following properties hold forall I; I1; I2 � I and O;O1; O2 � O [5, 15]:(1) I1 � I2 =) g(I1) � g(I2) (1') O1 � O2 =) f(O1) � f(O2)(2) I � g�f(I) (2') O � f�g(O)(3) g�f(g�f(I)) = g�f(I) (3') f�g(f�g(O)) = f�g(O)(4) I1 � I2 =) g�f(I1) � g�f(I2) (4') O1 � O2 =) f�g(O1) � f�g(O2)(5) f�g(g(I)) = g(I) (5') g�f(f(O)) = f(O)(6) O � g(I)() I � f(O)Closed Itemset Let C � I be a set of items from D. C is a closed itemset i� g�f(C) = C. Thesmallest (minimal) closed itemset containing an itemset I is obtained by applying g�f to I .Closed Itemset Lattice Let C be the set of closed itemsets derived from D using the Galoisconnection. The pair LC = (C;�) is a complete lattice called closed itemset lattice. Having alattice structure implies two properties:i) A partial order on the lattice elements such that, for every elements C1; C2 2 LC ; C1 � C2, i�C1 � C24.ii) All subsets of LC have one upper bound, the Join element, and one lower bound, the Meetelement.Below, we give the de�nitions of the Join and Meet elements extracted from Wille's basic theoremon concept lattices [5, 14]. For all S � LC :Join (S) = g�f([C2SC); Meet (S) = \C2SC2.3 The Close Mining MethodThe Close algorithm is fundamentally di�erent from existing algorithms, since it is based on thepruning of the closed itemset lattice for �nding frequent itemsets. A closed itemset is a maximalset of items common to a set of objects. For example, in the database D, the itemset fB;C;Egis a closed itemset since it is the maximal set of items common to the objects f2; 3; 4g. fB;C;Egis called a frequent closed itemset for minsupport = 2 as support(fB;C;Eg) = kf2; 3; 4gk = 3 �minsupport. In a basket database, this means that 60% of customers (3 customers on a total of5) purchase at most the items B;C;E. The itemset fB;Cg is not a closed itemset since it isnot a maximal grouping of items common to some objects: all customers purchasing the items Band C also purchase the item E. The closed itemset lattice of a �nite relation (the database) isisomorphic to the concept lattice [14, 15], also called Galois lattice [7]. Figure 1 gives the closeditemset lattice of D with frequent closed itemsets for minsupport = 2 outlined.
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Using the closed itemset lattice, which is a sub-order of the subset lattice, for �nding frequentitemsets can improve the e�ciency of the association rule discovery. Indeed, the proportion ofitemsets that are closed and frequent is much smaller than the proportion of frequent itemsets.By minimizing the search space, we reduce both the number of database passes and the CPUoverhead incurred by the generation of frequent itemsets. Indeed, the size of the itemset latticeis exponential in the size of the set of items, kLSk = 2kIk. Although in the worst case, theclosed itemset lattice may grow exponentially, the growth is linear with respect to kDk when itexists an upper bound K on the object size (kok). Then, the size of the closed itemset lattice iskLCk � 2KkDk. Moreover, experimental applications and theoretical results based on a uniformdistribution hypothesis showed that the average growth factor is far less than the 2K bound.Actually, we can observe that kLCk � �kDk, where � is the mean value for kok [7]. Using theclosed itemset lattice framework we can deduce the following properties (see Section 3):i) All subsets of a frequent itemset are frequent.ii) All supersets of an infrequent itemset are infrequent.iii) All sub-closed itemsets5 of a frequent closed itemset are frequent.iv) All sup-closed itemsets6 of an infrequent closed itemset are infrequent.v) The set of maximal frequent itemsets is identical to the set of maximal frequent closeditemsets.vi) The support of a frequent itemset I which is not closed is equal to the support of the smallestfrequent closed itemset containing I .Based on these properties, Close generates all association rules from a database D through threesuccessive phases:1. Discovering all frequent closed itemsets in D, i.e. itemsets that are closed and havesupport greater or equal to minsupport.2. Deriving all frequent itemsets from the frequent closed itemsets found in phase 1. Thisphase consists in generating all subsets of the maximal frequent closed itemsets andderiving their support from the frequent closed itemset supports .3. For each frequent itemset I found in phase 2, generating all association rules that can bederived from I and have con�dence greater or equal to mincon�dence.The �rst phase is the more computationally intensive part of the algorithm. After this phase, nomore database access is necessary and the second and third phases can be solved easily in mainmemory in a straightforward manner. Indeed, the �rst phase has given us all information neededfor the next two, particularly the support of the frequent closed itemsets used to determinate thesupport of the frequent itemsets without any database access.3 Semantics of Association RulesIn this section, we propose new semantics for association rules using the Galois connection (f; g).We �rst de�ne frequent itemsets, frequent closed itemsets and their properties, in a data miningcontext D = (O; I;R). Then, we de�ne association rules and valid association rules using frequentclosed itemsets.3.1 Frequent ItemsetsItemset Support Let I � I be a set of items from D. The support count of the itemset I inD is: support(I) = kg(I)kkOk5Closed subsets of a closed itemset.6Closed supersets of a closed itemset. 7



Frequent Itemsets The itemset I is said to be frequent if the support of I in D is at leastminsupport. We de�ne the set L of frequent itemsets in D as:L = fI � I j support(I) � minsupportgMaximal Frequent Itemsets Let L be the set of frequent itemsets. We de�ne the set M ofmaximal frequent itemsets as: M = fI 2 L j @I 0 2 L; I � I 0gProperty 1: All subsets of a frequent itemset are frequent (intuitive in [2]).Proof: Let I; I 0 � I, I 2 L and I 0 � I . According to Property (1) of the Galois connection:I 0 � I =) g(I 0) � g(I) =) support(I 0) � support(I) � minsupport. So, we get: I 0 2 L.Property 2: All supersets of an infrequent itemset are infrequent (intuitive in [2]).Proof: Let I; I 0 � I, I 0 =2 L and I 0 � I . According to Property (1) of the Galois connection:I � I 0 =) g(I) � g(I 0) =) support(I) � support(I 0) � minsupport. So, we get: I =2 L.3.2 Frequent Closed ItemsetsFrequent Closed Itemsets The closed itemset C is said to be frequent if the support of C inD is at least minsupport. We de�ne the set FC of all frequent closed itemsets in D as:FC = fC � I j C = g�f(C) and support(C) � minsupportgMaximal Frequent Closed Itemsets Let FC be the set of all frequent closed itemsets. Wede�ne the set MC of maximal frequent closed itemsets as:MC = fC 2 FC j @C 0 2 FC; C � C 0gProperty 3: All sub-closed itemsets of a frequent closed itemset are frequent.Proof: Derived from Property 1.Property 4: All sup-closed itemsets of an infrequent closed itemset are infrequent.Proof: Derived from Property 2.Property 5: The support of an itemset I is equal to the support of the smallest closed itemsetcontaining I .Proof: Let I � I be an itemset. The support of I in D is: support(I) = kg(I)kkOkNow, we consider g�f(I), the closure of I . Since g(I) is closed and by consequence f�g(g(I))=g(I) (according to Property (5) of the Galois connection), we have:support(g�f(I)) = kg(g�f(I))kkOk = kf�g(g(I))kkOk = kg(I)kkOk = support(I)Property 6: The set of maximal frequent itemsets M is identical to the set of maximal frequentclosed itemsets MC.Proof: It su�ces to demonstrate that 8I 2 M , I is closed, i.e. I = g �f(I). Let I 2 Mbe a maximal frequent itemset. By de�nition, 8I 0 � I , I 0 is not frequent, i.e. I 0 =2 M .According to Property (2) of the Galois connection I � g�f(I) and, since I is maximal andsupport(g�f(I)) = support(I) � minsupport, we can conclude I = g�f(I). I is a maximalfrequent closed itemset. Since all maximal frequent itemsets are also a maximal frequentclosed itemsets, we get: M =MC. 8



3.3 Association RulesAssociation Rules An association rule is an implication between itemsets of the form I) I 0where I; I 0 � I and I \ I 0 = ;. The itemset I is called the antecedent of the rule, and the itemsetI 0 is called the consequent. Below, we de�ne the support and con�dence of an association ruleusing the Galois connection applications f and g. The support and con�dence of an associationrule r : I ) I 0 are:support(r) = kg(I [ I 0)kkOk ; confidence(r) = support(I [ I 0)support(I) = kg(I [ I 0)kkg(I)kValid Association Rules The task of mining association rules consists in generating all validassociation rules, i.e. association rules with support and con�dence greater or equal to the minsup-port and mincon�dence thresholds. Let AR be the set of valid association rules in D. We de�neAR using the set MC of maximal frequent closed itemsets as:AR(D;minsupport;minconfidence) = fr : I2 ) I1 � I2 ; I2 � I1 j I1 2 L = [C2MC 2C andconfidence(r) � minconfidenceg4 Algorithm CloseIn Section 4.1 we describe our discovery of the frequent closed itemsets. In Section 4.2 we give ourmethod for deriving frequent itemsets from the frequent closed itemsets. In Section 4.3 we presentan e�cient algorithm for �nding valid association rules using frequent itemsets. This algorithm isadapted from the one described in [2].4.1 Discovering Frequent Closed ItemsetsAs in the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code for discov-ering frequent closed itemsets is given in Algorithm 2. For each iteration, the algorithm constructsa set of candidate frequent closed itemsets, determines the frequent closed itemsets using the min-support threshold and then computes the generator itemsets that will be used during the nextiteration for constructing the set of candidate frequent closed itemsets. In each iteration, onepass over the database is necessary, for constructing the set of candidate frequent closed itemsets(closures of generators).Set Field ContainsFCCi generator A generator itemset of size i.closure Candidate closed itemset produced by the closure of generator:closure = g�f(generator).support Support count of the closed itemset: support = count(closure).FCi generator Generator of the frequent closed itemset.closure Frequent closed itemset (closed itemset with support greater orequal to minsupport).support Support of the frequent closed itemset: support = count(closure).Table 2: NotationThe �rst operation of the algorithm (step 1) initializes the set of generator itemsets in FCC1 withthe items present in the data mining context, i.e. elements of the set I, needing no database pass.Each of the following iterations consists of three phases. First, the closure function is applied toeach generator in FCCi, determining the candidate frequent closed itemsets and their support.The closure function Gen-Closure used for this purpose is described in Section 4.1.1. Next, theset of candidate closed itemsets obtained is pruned: the closed itemsets with su�cient support9



1) generators in FCC1 = {1-itemsets};2) for ( i=1; FCCi.generator6= ;; i++ ) do begin3) closures in FCCi = ;;4) supports in FCCi = 0;5) FCCi = Gen-Closure(FCCi); // Produces closures of generators (see Section 4.1.1)6) forall candidate closed itemsets c 2 FCCi do begin7) if ( c.support � minsupport ) then // Pruning infrequent closures8) FCi = FCi [ c; // Insert c in FCi9) end10) FCCi+1 = Gen-Generator(FCi); // Creates generators of iteration i+111) end (see Section 4.1.2)12) Answer FC = Sj=i�1j=1 (FCj .closure,FCj .support);Algorithm 2: Algorithm Closevalue are inserted in the set of frequent closed itemsets FCi. Finally, the generators of the setFCCi+1 are determined by applying the function Gen-Generator (described in Section 4.1.2) tothe generators of the frequent closed itemsets in FCi. This process takes place until FCCi+1 isempty. Then, all frequent closed itemsets have been produced and their supports are known.4.1.1 Gen-Closure FunctionThe closure function Gen-Closure takes as argument the set of generator itemsets in FCCi. Itupdates FCCi with, for each generator p, the closed itemset p.closure and its support countp.support obtained by applying the closure operator g�f to p. Algorithm 3 gives the pseudo-codeof the function. The method used for computing closed itemsets is based on Proposition 1.Proposition 1: The closed itemset g�f(I) corresponding to the closure by g�f of the itemset Iis the intersection of all objects in the database that contain I :g�f(I) = \o2Off(fog) j I � f(fog)gProof: We de�ne H = To2S f(fog) where S = fo 2 O j I � f(fog)g. We have g �f(I) =f(g(I)) = To2g(I) f(fog) = To2S0 f(fog) where S0 = fo 2 O j o 2 g(I)g. Let's show thatS0 = S: I � f(fog)() o 2 g(I)o 2 g(I)() I � f(g(I)) � f(fog)We can conclude that S = S0, thus g�f(I) = H .Using Proposition 1, only one database pass is necessary for computing the closures of the genera-tors of an iteration i, and their support. The function works as follows. For each object o in D, wecreate the set Go containing all generators in FCCi that are subsets of the object itemset f(fog)(step 2). Then, for each generator p in Go, we update the associated closed itemset p.closure (step3 to 7). If the object o is the �rst one containing the generator, p.closure is empty and we assign toit the object itemset (step 4). Otherwise, the intersection between p.closure and the object itemsetgives us the new p.closure (step 5). Then, we increment the closed itemset support p.support(step 6). At the end of the function, we have for each generator p in FCCi, the closed itemsetp.closure corresponding to the intersection of all objects containing p and its associated supportcount p.support corresponding to the number of objects containing p.closure (support count of thegenerator and its closure are equal according to Property 5).4.1.2 Gen-Generator FunctionThe function Gen-Generator takes as argument the set of frequent closed itemsets FCi. Basedon Proposition 2, it returns the set FCCi+1 containing all generator (i + 1)-itemsets that will be10



1) forall objects o 2 O do begin2) Go = Subset(FCCi.generator,f(fog)); // Generators subsets of f({o}) (Section 4.1.3)3) forall generators p 2 Go do begin4) if ( p.closure = ; ) then p.closure = f(fog);5) else p.closure = p.closure \f(fog);6) p.support++;7) end8) end9) Answer = S { c 2 FCCi | c.closure 6= ; };Algorithm 3: Function Gen-Closureused during iteration i + 1 for constructing the set of candidate frequent closed itemsets. Thefunction �rst generates all potential generator (i+ 1)-itemsets using generator i-itemsets in FCi.Then, based on Proposition 3, the potential generators produced that will lead to useless computing(infrequent closed itemsets) or redundancies (frequent closed itemsets already produced) are deletedfrom FCCi+1.Proposition 2: Let I1; I2 be two generator itemsets. We have:g�f(I1 [ I2) = g�f(g�f(I1) [ g�f(I2))Proof: Let I1 and I2 be two itemsets. According to Property (2) of the Galois connection:I1 � g�f(I1) and I2 � g�f(I2) =) I1 [ I2 � g�f(I1) [ g�f(I2)=) g�f(I1 [ I2) � g�f(g�f(I1) [ g�f(I2)) (1)Obviously, I1 � I1 [ I2 and I2 � I1 [ I2. So g�f(I1) � g�f(I1[ I2) and g�f(I2) � g�f(I1[ I2).According to Property (3) of the Galois connection:g�f(g�f(I1) [ g�f(I2)) � g�f(g�f(I1 [ I2)) =) g�f(g�f(I1) [ g�f(I2)) � g�f(I1 [ I2) (2)From (1) and (2), we can conclude g�f(I1 [ I2) = g�f(g�f(I1) [ g�f(I2)).Proposition 3: Let I be a generator i-itemset and S = fs1; s2; : : : ; sjg a set of (i � 1)-subsetsof I where Ss2S s = I . If 9sa 2 S such as I � g�f(sa), then g�f(I) = g�f(sa).Proof: Let I be an i-itemset and sa 2 S, an (i� 1)-subset of I .I � g�f(sa) =) g�f(I) � g�f(g�f(sa)) =) g�f(I) � g�f(sa) (1)sa 2 S =) sa � I =) g�f(sa) � g�f(I) (2)From (1) and (2), we deduce g�f(I) = g�f(sa).The function Gen-Generator works as follows. We �rst apply the combinatorial phase of Apriori-Gen [2] to the set of generators in FCi giving us a set of new potential generators: two generatorsof size i in FCi with the same �rst i� 1 items are joined, producing a new potential generator ofsize i+ 1.1) insert into FCCi+1.generator2) select p.item1, p.item2, : : :, p.itemi, q.itemi3) from FCi.generator p, FCi.generator q4) where p.item1 = q.item1 , : : : , p.itemi�1 = q.itemi�1 , p.itemi < q.itemi;Then, we prune the resulting set using two strategies. First, like in Apriori-Gen, for all potentialgenerator p created we test the presence of all its i-subsets in FCi.generator. Indeed, if one ofthem is absent from FCi and according to Property 2 we deduce that p is not frequent and we canremove it from FCCi+1.Let's take an example. Suppose that the set of candidate frequent closed itemsets FC2 contains thegenerator itemsets AB;AC with respective closures ABC;ACD all frequent. The Gen-Generator11



5) forall generators p 2 FCCi+1.generator do begin6) forall i-subsets s of p do begin7) if ( s =2 FCi.generator ) then8) delete p from FCCi+1.generator;9) end10) endfunction will create ABC = AB [ AC as a new potential generator in FCC3. The �rst pruningstrategy will remove ABC from FCC3 since BC =2 FC2.generator as it is infrequent.The second pruning strategy is as follows. For each potential generator p in FCCi+1, we test ifthe closure of one of its i-subsets s is a superset of p. In that case, the closure of p will be equalto the closure of s (see Proposition 3), so we can remove p from FCCi+1.11) forall generators p 2 FCCi+1.generator do begin12) Sp = Subset(FCCi.generator,p); // Subsets of p that are existing generators in FCCi13) forall s 2 Sp do begin14) if ( p � s.closure ) then15) delete p from FCCi+1.generator;16) end17) endLet's give another example. Suppose that the set of frequent closed itemsets FC2 contains gener-ators AB;AC;BC with respective closures AB;ABC;BC all frequent. The Gen-Generator func-tion will create ABC = AB [ AC as a new potential generator in FCC3. The second prunestep will remove ABC from FCC3 since ABC � closure(AC). Indeed, we can deduce thatclosure(ABC) = closure(AC) and the computation of the closure of ABC is useless.4.1.3 Subset FunctionCandidate frequent closed itemsets are stored in a pre�x-tree structure to quickly �nd all generatorsassociated with an object. Our structure is derived from the one proposed in [10]. Figure 5 showsthe Pre�x-tree structure for the set FCC2 given in Figure 6 Each edge in the tree is labeled withan item. A generator itemset is represented as a path in the tree, starting from the root node.The closure of a generator is stored in the leaf (terminal node) of the path representing it. Eachnode contains a pointer to a sibling node, a hash-table towards the children of the node and, if thenode is a leaf, a pointer to the closure of the generator represented. For a node representing ani-itemset c, a sibling node represents another i-itemset with the same �rst i� 1 items and a hashcollision on the ith item. For performance reasons, if the size of such a linked list exceeds a giventhreshold, instead of adding a new sibling node, the size of the hash-table of the parent node isdoubled and the ith nodes are rebalanced.
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The subset function takes as arguments a set of generators G and an itemset c. It determineswhich generators p 2 G are subsets of the itemset c. The function starts from the root node andhashes successively on each item of the itemset c down through the tree. Having reached a nodeby hashing on item i, we hash on each item that comes after i in c and recursively apply thisprocedure to the node in the corresponding bucket of the hash-table. At the root node, we hashon every item in c. When we are at a leaf, we add the reference to the generator to the answer set.4.1.4 Example and CorrectnessFigure 6 shows the execution of the algorithm on the data mining context D given in Figure 1. Weassume that minsupport is 2 (40%). Step 1 initializes the set of generators in FCC1 with the list ofitems in D. Calling Gen-Closure at step 3 gives for every generator p the candidate closed itemsetp.closure and its support count p.support. In step 4 through 7 we generate FC1 by pruning FCC1according to minsupport. In step 9 we produce the generators in FCC2 by applying the functionGen-Generator to FC1. As we can see in Figure 6, calling Gen-Generator with FC1 produces twonew generators: AB and BC. Generators A and C in FC1 do not give a new generator AC sincethe closure of A is AC and the closure of C is C. Obviously C � AC, so the generator A [ C isdeleted by the second pruning step of the function Gen-Generator.Calling Gen-Closure with FCC2 produces the closures of the generators in FCC2 and their support.After the pruning of the candidate closed itemsets, FCC2 and FC2 are identical since all candidateclosed itemsets in FCC2 are frequent. The set of generators in FCC3 constructed by calling Gen-Generator with FC2 is empty as no generator in FC2 have the same �rst item, and the algorithmterminates. We can observe that the number of database passes is reduced by half compared tothe execution of Apriori on the same example.Scan D�! FCC1Generator Closure Support{A} {AC} 3{B} {BE} 4{C} {C} 4{D} {ACD} 1{E} {BE} 4 Pruning ofinfrequentclosed itemsets�! FC1Generator Closure Support{A} {AC} 3{B} {BE} 4{C} {C} 4{E} {BE} 4Scan D�! FCC2Generator Closure Support{AB} {ABCE} 2{BC} {BCE} 3{AE} {ABCE} 2{CE} {BCE} 3 Pruning ofinfrequentclosed itemsets�! FC2Generator Closure Support{AB} {ABCE} 2{BC} {BCE} 3{AE} {ABCE} 2{CE} {BCE} 3Answer : FCClosure Support{AC} 3{BE} 4{C} 4{ABCE} 2{BCE} 3Figure 6: Discovering frequent closed itemsets with Close for minsupport = 2 (40%)Correctness We must ensure that all frequent closed itemsets have been produced. Startingwith the set of items in the data mining context and making successive closures of the unionsof closed itemsets found in the previous iteration gives the complete closed itemset lattice, basedon the Join operator of Wille's basic theorem on concept lattices (see section 2.2). Accordingto Proposition 2, working on generator itemsets is identical to working on their closures. Themethod we use for creating the generators (similar to the one in Apriori-Gen) is an e�cient unionmethod. This method yields all possible unions, avoiding redundancies, given the lexicographic13



order among items. The two pruning steps of the set of generators avoid useless computations byremoving infrequent generators and generators which closure was already found (Proposition 3).4.2 Deriving Frequent ItemsetsThe pseudo-code for deriving frequent itemsets is given in Algorithm 4. It uses as its input theset of frequent closed itemsets FC = Si FCi and gives the set of frequent itemsets L = Sk Lkas the output. In step 1 through 5, we put each frequent closed itemset c from FC in the set offrequent itemset Lkck corresponding to the size of c, and we determine the size k of the largestfrequent itemsets. Then, during step 6 to 15 we construct all sets Li, starting from Lk down toL1. In each iteration, we complete the set Li�1 using the itemsets in Li. For each i-itemset c inLi, we generate all (i� 1)-subsets of c. All subsets that are not present in Li�1 are added to theend of Li�1 with support value equal to the support of c. This process takes place until L1 hasbeen completed.1) k = 0;2) forall frequent closed itemsets c 2 FC do begin3) Lkck = Lkck [ fcg; // Splitting frequent closed itemsets4) if ( k < kck ) then k = kck;5) end6) for ( i=k; i>1; i��) do begin7) forall itemsets c 2 Li do begin8) forall (i� 1)-subsets s of c do begin9) if ( s =2 Li�1 ) then begin10) s.support = c.support;11) Li�1 = Li�1 [ fsg; // Put s at the end of Li�112) end13) end14) end15) end16) Answer = Si=ki=1 Li; Algorithm 4: Deriving frequent itemsetsExample Figure 7 shows the execution of the algorithm using as input the sets FC1 and FC2given in Figure 6. The �rst phase of the algorithm simply splits frequent closed itemsets of FC1and FC2 in sets L1 to L4 according to their size, and determines that k = 4. During the �rstiteration of the loop (step 6 to 15), the closed itemset ABCE in L4 is examined and generatesABC, ABE and ACE in L3 with the same support value as ABCE. The closed itemset BCE isnot generated since it is already present in L3. During the second iteration, we �rst examine theclosed itemset BCE, generating BC in L2 with support = 3. If we had �rst examined the itemsetABC, we would have generated BC in L2 with support = 2 which is incorrect. At the end of thesecond iteration, L2 is complete. The third iteration generates L1 and ends the algorithm.Correctness The correctness of the algorithm for deriving frequent itemsets relies on Proper-ties 5 and 6, and on the fact that we �rst examine closed i-itemsets in Li during the (i� 1)-subsetgeneration. For an iteration i, let c be a frequent closed i-itemset in Li and s an (i�1)-subset of c.If s is a closed itemset then it has already been inserted in Li�1 during the �rst phase of the algo-rithm (step 1 to 5). If s is not a closed itemset, then according to Property 5 it is correct to inserts in Li�1 with the same support value as c. Now, consider that s is not a closed (i � 1)-itemsetand we are completing Li�2. The support of s is equal to the support of c which is the smallestclosed itemset containing s. Let s0 be a (i� 2)-subset of s. If s0 is not a closed itemset and has notalready been generated in Li�2, then, given Proposition 3, its support is equal to the support ofthe smallest closed itemset containing s0 which is c. Hence it is correct to insert s0 in Li�2 with thesupport value of s. Since the set of maximal frequent itemsets is the same as the set of maximal14



FCClosure Support{AC} 3{BE} 4{C} 4{ABCE} 2{BCE} 3 Splitting frequentclosed itemsets�! L1Itemset Support{C} 4 L2Itemset Support{AC} 3{BE} 4L3Itemset Support{BCE} 3 L4Itemset Support{ABCE} 2L4Itemset Support{ABCE} 2 Derivingfrequent itemsets�! L3Itemset Support{BCE} 3{ABC} 2{ABE} 2{ACE} 2Derivingfrequent itemsets�! L2Itemset Support{AC} 3{BE} 4{BC} 3{CE} 3{AB} 2{AE} 2 Derivingfrequent itemsets�! L1Itemset Support{C} 4{A} 3{B} 4{E} 4Figure 7: Deriving frequent itemsets for minsupport = 2 (40%)frequent closed itemsets (see Property 6), the set Lk is complete, where k is the size of the largestfrequent itemsets (obviously all maximal frequent itemsets). Given the properties that all subsetsof a frequent itemset are frequent and all supersets of an infrequent itemset are infrequent, bygenerating all subsets of the maximal frequent closed itemsets we generate all frequent itemsets,and the result is correct.4.3 Generating Valid Association RulesThe problem of generating valid association rules can be solved in a straightforward manner onceall frequent itemsets and their support are known. In this section, we describe an adapted versionof Apriori rule generation algorithm [2] (implemented for our experiments). For every frequentitemset I1 we derive all subsets I2 of I1 and we compute the ratio support(I1)=support(I2). Ifthe result is at least mincon�dence, then the rule I2) (I1 � I2) is generated. The support of anysubset I3 of I2 being greater or equal to the support of I2, the con�dence of the rule I3)(I1 � I3)is necessarily less than the con�dence of the rule I2) (I1 � I2). Hence, if the rule I2) (I1 � I2)does not hold, neither will the rule I3)(I1 � I3). Conversely, if the rule (I1 � I2))I2 holds, thenall rules of the form (I1� I3))I3 also hold. For example, if the rule A)BC holds, then the rulesAB)C and AC)B also hold.Using this property for e�ciently generating valid association rules, the algorithm works as follows.For every frequent itemset I1, all rules with one item in the consequent that have a con�dence atleast equal to mincon�dence are generated. We then create all consequents with 2 items that arepossible in a rule generated from I1. This generation is performed by applying the Apriori-Genfunction given in Section 2.1 to the set of one item consequents found in the �rst step. Next theset of rules with 2 items in the consequent generated is pruned with respect to mincon�dence. The2 items consequents of the rules that hold are used for generating consequents with 3 items, etc.The pseudo-code is given in Algorithm 5.Example Figure 8 gives the result of the frequent itemset discovery for the data mining contextD, assuming that minsupport is 3 (60%). In Figure 9 we show the valid association rule generationfor mincon�dence = 0.5 (50%) using the previous result.15



1) forall frequent k-itemsets lk 2 Lk | k � 2 do begin2) H1 = { itemsets of size 1 that are subsets of lk };3) forall h1 2 H1 do begin4) con�dence = support(lk)/support(lk � h1); // Con�dence of r : (lk-h1))h15) if ( con�dence � mincon�dence ) then6) AR = AR [ fr : (lk � h1))h1};7) else H1 = H1 � fh1g // H1 = {1-item consequents of valid8) end rules from lk}9) call GenRules(lk; H1);10) end11) Procedure GenRules(lk: frequent k-itemset, Hm: set of m-item consequents)12) if ( k > m+ 1 ) then do begin13) Hm+1 = Apriori-Gen(Hm);14) forall hm+1 2 Hm+1 do begin15) con�dence = support(lk)/support(lk � hm+1); // Con�dence of16) if ( con�dence � mincon�dence ) then r : (lk-hm+1))hm+117) AR = AR [ fr : (lk � hm+1))hm+1};18) else19) delete hm+1 from Hm+1;20) end21) call GenRules(lk; Hm+1);22) end23) end Algorithm 5: Generating valid association rulesL3Itemset Support{BCE} 3 L2Itemset Support{AC} 3{BC} 3{BE} 4{CE} 3 L1Itemset Support{A} 3{B} 4{C} 4{E} 4Figure 8: Frequent itemsets extracted from D for minsupport = 3 (60%)5 Experimental ResultsWe implemented the Apriori and Close algorithms in C++ on several Unix platforms, to assesstheir relative performances. Both used the same data structure (as described in Section 4.1.3)that improves Apriori e�ciency. Our experiments were realized on a 43P240 bi-processor IBMPower-PC running AIX 4.1.5 with a CPU clock rate of 166 MHz, 1GB of main memory and a 9GBdisk. Only one processor was used since the application was single-threaded. The test program wasallowed a maximum of 128MB. We did not implement swapping; also, the system bu�ers were not�ushed between each database pass of the algorithms. In Section 1, we describe the datasets usedfor the experiments. We then compare relative performances of the two algorithms in Section 2.5.1 Test DataThe algorithms were tested on two types of datasets: synthetic data, which mimic market basketdata, and census data, which belong to the domain of statistical databases. For generating thesynthetic dataset, we used the program described in [2]. This dataset, called T10I4D100K, contains100,000 objects for an average object size of 10 items and an average size of the maximal potentiallyfrequent itemsets of 4.The census data were extracted from the Kansas 1990 PUMS �le (Public Use Microdata Samples),in the same way as [3] for the PUMS �le of Washington (unavailable through Internet at the time16



lkItemset Support{BCE} 3 Generatingrules�! 1-item consequentsRule Con�denceBC ) E 1BE ) C 0.75CE ) B 1 Generatingrules�! 2-items consequentsRule Con�denceB ) CE 0.75C ) BE 0.75E ) BC 0.75lkItemset Support{AC} 3 Generatingrules�! 1-item consequentsRule Con�denceA ) C 1C ) A 0.75lkItemset Support{BE} 4 Generatingrules�! 1-item consequentsRule Con�denceB ) E 1E ) B 1lkItemset Support{BC} 3 Generatingrules�! 1-item consequentsRule Con�denceB ) C 0.75C ) B 0.75lkItemset Support{CE} 3 Generatingrules�! 1-item consequentsRule Con�denceC ) E 0.75E ) C 0.75Figure 9: Generating valid association rules forminsupport=3 (60%) andmincon�dence=0.5 (50%)of the experiments). Unlike in [3] though, we did not put an upper bound on the support, as thisdistorts each algorithm's results in di�erent ways. We therefore took smaller datasets containingthe �rst 10,000 persons. Dataset C20D10K contains 20 attributes (20 items per object and 386total items), and C73D10K, 73 attributes (73 items per object and 2178 total items).5.2 Relative Performance of Apriori and Close5.2.1 Synthetic DataWe used the same values for minsupport as the ones used in [2], ranging from 2% to 0.25%. The�gure beside shows the execution times of Apriori and Close on the dataset T10I4D100K. We canobserve that Apriori performs better than Close on these data. The reason is that, in such datasets,data are weakly correlated and sparse; furthermore, nearly all frequent itemsets are closed. Foran identical number of database passes, Close performs more operations to compute the closure ofthe generators. Response times remain however acceptable: two minutes and a half for the longestexecution.5.2.2 Census DataExperiments were conducted on the two census datasets using di�erent minsupport ranges toget meaningful response times and to accommodate with the memory space limit. Results for theC20D10K and C73D10K datasets are plotted on Figure 11 and Figure 12 respectively. Close alwayssigni�cantly outperforms Apriori, for execution times as well as number of database passes. Here,contrarily to the experiments on synthetic data, the di�erences between the execution times canbe counted in hours. It should furthermore be noted that Apriori could not be run for minsupport17
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