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Résumeé

La découverte des régles d’association est ['un des principauz probléemes de l’extraction
de connaissances dans les bases de données. De nombreux algorithmes efficaces ont été
proposés, dont les plus remarquables sont Apriori, l'algorithme de Mannila, Partition,
Sampling et DIC. Ces derniers sont tous basés sur la méthode de recherche de Apriori:
lélagage du treillis des parties (treillis des itemsets). Dans cet article, nous proposons
un algorithme efficace basé sur une nouvelle méthode de recherche: ’élagage du treillis
des fermés (treillis des itemsets fermés). Ce treillis qui est un sous-ordre du treillis des
parties est étroitement li€ au treillis de concepts de Wille dans son analyse formelle
de concepts. Nous avons comparé expérimentalement Close a une version optimisée
de Apriori et les résultats obtenus montrent la grande efficacité de Close dans le
traitement des données denses et/ou corrélées telles que les données de rescensement
(cas difficile). Nous avons également pu observer que Close donne des temps de
réponse corrects dans le traitement des bases de données de ventes.

Mots-Clef: extraction de connaissances; régles d’association; treillis; algorithmes.

Abstract

Discovering association rules is one of the most important task in data mining and
many efficient algorithms have been proposed in the literature. The most noticeable
are Apriori, Mannila’s algorithm, Partition, Sampling and DIC, that are all based on
the Apriori mining method: pruning of the subset lattice (itemset lattice). In this
paper we propose an efficient algorithm, called Close, based on a new mining method:
pruning of the closed set lattice (closed itemset lattice). This lattice, which is a
sub-order of the subset lattice, is closely related to Wille’s concept lattice in formal
concept analysis. Experiments comparing Close to an optimized version of Apriori
showed that Close is very efficient for mining dense and/or correlated data such as
census data, and performs reasonably well for market basket style data.

Keywords: data mining; knowledge discovery; association rules; lattices; algorithms.



1 Introduction

One of the most important task in data mining is the discovery of association rules first introduced
in [1]. The aim of the association rule discovery is to identify relationships between items in very
large databases. For example, given a market basket database, it would be interesting for decision
support to know the fact that 80% of customers who bought cereals and sugar also bought milk.
In a census database, we should discover that 60% of persons who worked last year earned less
than the average income, or in a medical database, that 70% of patients who have stiffnesses and
fever also have headaches.

Agrawal’s statement, of the problem of discovering association rules in market basket databases is
the following [1, 2]. Let Z = {i1,42,...,im} be a set of m literals called items. Let the database
D = {t1,t2,...,tn} be a set of n transactions, each one consisting of a set of items I from Z and
associated with a unique identifier called its TID. I is called a k-itemset, where k is the size of
I. A transaction ¢t € D is said to contain an itemset I if I C t. The support of an itemset [ is
the percentage of transactions in D containing I: support(l) = {t e D | I Ct} / {t € D}. An
association rule is a conditional implication among itemsets, I = I’, where itemsets I,I' C 7 and
INI' = (. The confidence of an association rule r : I = I’ is the conditional probability that a
transaction contains I', given that it contains I: confidence(r) = support(I UI') | support(I).
The support of r is defined as: support(r) = support(IUI').

The problem of mining association rules in a database D is then traditionally defined as follows.
Given user defined thresholds for the permissible minimum support and confidence, find all the
association rules that hold with more than the given minsupport and minconfidence. This problem
can be broken into two subproblems [1]:

1. Finding all frequent itemsets in D, i.e. itemsets with support greater or equal to minsupport.
Frequent itemsets are also called large itemsets.

2. For each frequent itemset I; found, generating all association rules I = I} —I, | I C I,
with confidence greater or equal to minconfidence.

The second subproblem can be solved in main memory in a straightforward manner once all frequent
itemsets and their support are known. Hence, the problem of mining association rules is reduced
to the problem of finding frequent itemsets. Many algorithms have been proposed in the literature
2, 3,9, 8, 11, 12, 13]. Although they are very different from each other, they are all based on the
Apriori mining method [2]: pruning of the subset lattice for finding frequent itemsets. This relies
on the basic properties that all subsets of a frequent itemset are frequent and that all supersets
of an infrequent itemset are infrequent. Algorithms based on this approach perform very well for
weakly correlated data such as market basket data. However perfomances drastically decrease for
correlated data such as census data.

In this paper, we propose a new efficient algorithm called Close for mining association rules in very
large databases. Close is based on the pruning of the closed itemset lattice which is a sub-order
of the subset lattice, thus much smaller. Such a structure is closely related to Wille’s concept
lattice in formal concept analysis [5, 14, 15]. We show that this structure can be used as a formal
framework for discovering association rules given the basic properties that all sub-closed itemsets of
a frequent closed itemset are frequent, that all sup-closed itemsets of an infrequent closed itemset
are infrequent and that the set of mazimal frequent itemsets is identical to the set of mazimal
frequent closed itemsets. Empirical evaluations comparing Close to an optimized version of Apriori
showed that Close performs reasonably well for weakly correlated data and performs very well for
correlated data.

The rest of the paper is organized as follows. Section 2 reviews related work and exhibits the
contribution of the paper. In Section 3, we define the semantics of association rules based on
the Galois connection operators. In Section 4, we describe the Close algorithm. Section 5 gives
experimental results on synthetic data! and census data using the PUMS file for Kansas USA?
and Section 6 concludes the paper.

lhttp://www.almaden.ibm.com/cs/quest/syndata.html
2ftp://£tp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks . zip



TID Items
1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E

Figure 1: The transaction database D

2 Related Work and Contribution

In this section, we first present the subset lattice based approach for mining association rules.
Then, we introduce the use of the closed itemset lattice as a formal framework in data mining and
we briefly describe the Close mining method.

2.1 A Common Approach for Mining Association Rules

Finding all frequent itemsets is a nontrivial problem because the number of possible frequent
itemsets is exponential in the size of the set of items 7 of the database. Given ||Z|| = m, there
are possibly 2™ frequent itemsets, which form a lattice of subsets over 7 with height equal to m.
Consider the example transaction database D given in Figure 1. The lattice of subsets associated
with D is represented in Figure 2. This lattice contains 32 itemsets and its height is 6. However,
depending on the data and the minsupport value, only a small fraction of the whole lattice space is
frequent. For instance, assuming that minsupport is 2 (40%), only 15 itemsets of D are frequent.
A naive approach consists of testing the support of every itemset in the lattice, which can be done
in a single pass over the database. Clearly, this approach is impractical for large values of m. In
the following, we describe the Apriori mining method used by all existing algorithms for finding
frequent itemsets. The notation is given in Table 1.

AB AC AD AE BC BD BE CD CE DE

D Frequent itemset (minsupport=2)

2 |:| Infrequent itemset

Figure 2: Ttemset lattice of D




Cr  Set of candidate k-itemsets (potentially frequent itemsets).

Each element of this set has two fields: i) itemset and ii) support count.
Ly Set of frequent k-itemsets (itemsets with minimum support).

Each element of this set has two fields: i) itemset and ii) support count.

Table 1: Notation

Algorithm Apriori

In the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code of the Apriori
frequent itemset discovery is given in Algorithm 1. Frequent itemsets are computed iteratively,
in the ascending order of their size. The process takes k iterations, where k is the size of the
largest frequent itemsets. For each iteration i < k, the database is scanned once and all frequent
itemsets of size 7 are computed. The first iteration computes the set Lq of frequent 1-itemsets. A
subsequent iteration i consists of two phases. First, a set C; of candidate i-itemsets is created by
joining the frequent (i — 1)-itemsets in L;_; found in the previous iteration. This phase is realized
by the Apriori-Gen function described below. Next, the database is scanned for determining the
support of the candidates in C; and the frequent i-itemsets are extracted from the candidates.
This process is repeated until no more candidate can be generated.

1) L; = {Large 1-itemsets};

2) for ( k=2; Lj—1 # 0; k++ ) do begin

3) Cr = Apriori-Gen(Lj_1); // Generates candidates k-itemsets
4) forall transactions ¢t € D do begin

5) C; = Subset(C,t); // Candidates contained in t
6) forall candidates ¢ € C; do

7) c.count++;

8) end

9) Ly = { c€ Cy | c.count > minsupport }

10) end

11) Answer = J, Ls;

Algorithm 1: Apriori frequent itemset discovery

Apriori-Gen Candidate Generation The function takes as argument the set L; 1 of frequent
(i — 1)-itemsets. It returns the set C; of candidate i-itemsets, which is a superset of the set of all
frequent i-itemsets. Two frequent itemsets of size ¢ — 1 with the same first i — 2 items are joined,
generating a new candidate itemset of size i:

insert into C;

select p.itemy, p.items, ..., p.item; 1, g.item; 1
from L;_y p,L;i—1 q
where p.item; = ¢.item; , ... , p.item;_o = g.item;_» , p.item;_; < g.item;_;

Then, the candidate set C; produced is pruned by removing every candidate i-itemset ¢ such that
some (i — 1)-subset of ¢ is not in L; i:

forall candidate itemsets ¢ € C; do begin
forall (i — 1)-subsets s of ¢ do begin
if (s ¢ L;_1) then
delete ¢ from Cj;

Example Figure 3 shows the execution of Apriori for a minimum support of 2 (40%) on the
database D. This process takes four iterations, computing four sets of candidates and frequent
itemsets and performing four database passes. The frequent itemsets found are outlined in the
itemset lattice given in Figure 2.
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Figure 3: Discovering frequent itemsets with Apriori for minsupport = 2(40%)

The algorithms based on this approach take k database passes to generate all frequent itemsets,
where k is strongly linked to the height of the itemset lattice (generaly the size of the maximal
frequent itemsets). Recent algorithms like Partition, Sampling and DIC have attempted to im-
prove the search efficiency by reducing the number of database passes. However, the efficiency of
algorithms does not rely only on the I/O cost they incur (number of database passes), but the
CPU overhead they involve can affect their performances.

2.2 Closed Itemset Lattices

In this section, we define data mining context, Galois connection, closed itemset and closed itemset
lattice. Interested readers should consult [5] for further details on the order and lattice theory.

Data Mining Context A data mining context (a database) is a triple D = (0,Z,R). O and
are finite sets of objects and database items respectively. R C O x T is a binary relation between
objects and items. Each couple (0,i) € R denotes the fact that the object 0 € O has the item
i € Z. Data mining context can be a relation, a class, or the result of an SQL/OQL query.

Galois Connection Let D = (O,Z,R) be a data mining context. For O C O and I C Z, we
define:

f(O) : P(O) — P(T) g(I) : P(T) = P(O)
f(O)={ieI|VoeO,(o,i) € R} g(I) ={o€e O |Viel, (oi)eR}

f(0) associates with O all items common to all objects o € O and g(I) associates with I all objects
containing all items ¢ € I. The couple of applications (f,g) is a Galois connection between the
power set of O (i.e. 29) and the power set of 7 (i.e. 27). The operators gof in 7 and fog in O?

3Here, we use the following notation: gof(I) = f(g(I)) and fog(0) = g(f(0)).



are Galois closure operators. Given the Galois connection (f, g), the following properties hold for
all I, I, I, CZ and O,0,,0, C O [5, 15]:

(1) L €I, = g(l) 2 g(I2) (1) O1 C 02 = f(O1) 2 f(O2)
(2) T C gof(I) (2) O C fog(0)
(3) gof (gof (1)) = gof (I) (3") fog(feg(O)) = fog(O)
(4) I € Iy => gof (I1) C gof (I2) (4) O1 € Oy = fog(Oy) C fog(O2)
(5) 09( (1)) = g(I) (57) gof (f(0)) = f(O)
(6) O Cg(I) <= IC f(O)

Closed Itemset Let C' C 7 be a set of items from D. C is a closed itemset iff gof (C') = C. The
smallest (minimal) closed itemset containing an itemset I is obtained by applying gof to I.

Closed Itemset Lattice Let C be the set of closed itemsets derived from D using the Galois
connection. The pair Lo = (C, <) is a complete lattice called closed itemset lattice. Having a
lattice structure implies two properties:

i) A partial order on the lattice elements such that, for every elements C1,Cs € L¢,Cy < Co, iff
Ci C Cyt.

ii) All subsets of L have one upper bound, the Join element, and one lower bound, the Meet
element.

Below, we give the definitions of the Join and Meet elements extracted from Wille’s basic theorem
on concept lattices [5, 14]. For all S C L¢:

Join (S) = gof(|J ©),  Meet (S)= ) C
ceSs CeS

2.3 The Close Mining Method

The Close algorithm is fundamentally different from existing algorithms, since it is based on the
pruning of the closed itemset lattice for finding frequent itemsets. A closed itemset is a maximal
set of items common to a set of objects. For example, in the database D, the itemset {B,C, E}
is a closed itemset since it is the maximal set of items common to the objects {2,3,4}. {B,C, E}
is called a frequent closed itemset for minsupport = 2 as support({B,C, E}) = ||{2,3,4}]| = 3 >
minsupport. In a basket database, this means that 60% of customers (3 customers on a total of
5) purchase at most the items B,C, E. The itemset {B,C} is not a closed itemset since it is
not a maximal grouping of items common to some objects: all customers purchasing the items B
and C also purchase the item E. The closed itemset lattice of a finite relation (the database) is
isomorphic to the concept lattice [14, 15], also called Galois lattice [7]. Figure 1 gives the closed
itemset lattice of D with frequent closed itemsets for minsupport = 2 outlined.

I:I Frequent closed itemset (minsupport=2)
|:| Infrequent closed itemset

Figure 4: Closed itemset lattice of D

4 is a sub-closed itemset of Cy and Cs is a sup-closed itemset of C



Using the closed itemset lattice, which is a sub-order of the subset lattice, for finding frequent
itemsets can improve the efficiency of the association rule discovery. Indeed, the proportion of
itemsets that are closed and frequent is much smaller than the proportion of frequent itemsets.
By minimizing the search space, we reduce both the number of database passes and the CPU
overhead incurred by the generation of frequent itemsets. Indeed, the size of the itemset lattice
is exponential in the size of the set of items, ||[Cs|| = 2/7I. Although in the worst case, the
closed itemset lattice may grow exponentially, the growth is linear with respect to ||D|| when it
exists an upper bound K on the object size (||o||). Then, the size of the closed itemset lattice is
1Ll < 25| D||. Moreover, experimental applications and theoretical results based on a uniform
distribution hypothesis showed that the average growth factor is far less than the 2% bound.
Actually, we can observe that ||Lc|| < u||D||, where p is the mean value for ||o|| [7]. Using the
closed itemset lattice framework we can deduce the following properties (see Section 3):

i)  All subsets of a frequent itemset are frequent.

i)  All supersets of an infrequent itemset are infrequent.

iii) All sub-closed itemsets® of a frequent closed itemset are frequent.

iv)  All sup-closed itemsets® of an infrequent closed itemset are infrequent.

v)  The set of maximal frequent itemsets is identical to the set of maximal frequent closed
itemsets.

vi) The support of a frequent itemset I which is not closed is equal to the support of the smallest
frequent closed itemset containing I.

Based on these properties, Close generates all association rules from a database D through three
successive phases:

1. Discovering all frequent closed itemsets in D, i.e. itemsets that are closed and have
support greater or equal to minsupport.

2. Deriving all frequent itemsets from the frequent closed itemsets found in phase 1. This
phase consists in generating all subsets of the maximal frequent closed itemsets and
deriving their support from the frequent closed itemset supports .

3. For each frequent itemset I found in phase 2, generating all association rules that can be
derived from I and have confidence greater or equal to minconfidence.

The first phase is the more computationally intensive part of the algorithm. After this phase, no
more database access is necessary and the second and third phases can be solved easily in main
memory in a straightforward manner. Indeed, the first phase has given us all information needed
for the next two, particularly the support of the frequent closed itemsets used to determinate the
support of the frequent itemsets without any database access.

3 Semantics of Association Rules

In this section, we propose new semantics for association rules using the Galois connection (f, g).
We first define frequent itemsets, frequent closed itemsets and their properties, in a data mining
context D = (O, Z,R). Then, we define association rules and valid association rules using frequent
closed itemsets.

3.1 Frequent Itemsets

Itemset Support Let I C 7 be a set of items from D. The support count of the itemset I in

D is: :
support(I) = ”ﬁéﬁlll

5Closed subsets of a closed itemset.
6Closed supersets of a closed itemset.



Frequent Itemsets The itemset [ is said to be frequent if the support of I in D is at least
minsupport. We define the set L of frequent itemsets in D as:

L ={I CT| support(I) > minsupport}

Maximal Frequent Itemsets Let L be the set of frequent itemsets. We define the set M of
maximal frequent itemsets as:

M={leL|}'eL, ICI}

Property 1: All subsets of a frequent itemset are frequent (intuitive in [2]).

Proof: Let I,I' CZ, 1€ L and I' C I. According to Property (1) of the Galois connection:
I' CI = g(I') D g(I) = support(I") > support(I) > minsupport. So, we get: I' € L.

Property 2: All supersets of an infrequent itemset are infrequent (intuitive in [2]).

Proof: Let I,I' CZ,I' ¢ L and I' C I. According to Property (1) of the Galois connection:
ID I = g(I) C g(I') = support(l) < support(I’) < minsupport. So, we get: I ¢ L.

3.2 Frequent Closed Itemsets

Frequent Closed Itemsets The closed itemset C is said to be frequent if the support of C in
D is at least minsupport. We define the set FC of all frequent closed itemsets in D as:

FC={C CZT|C =gof(C) and support(C) > minsupport}

Maximal Frequent Closed Itemsets Let FC be the set of all frequent closed itemsets. We
define the set MC of maximal frequent closed itemsets as:

MC={CeFC|}C' eFC, CcC'}
Property 3: All sub-closed itemsets of a frequent closed itemset are frequent.
Proof: Derived from Property 1.
Property 4: All sup-closed itemsets of an infrequent closed itemset are infrequent.

Proof: Derived from Property 2.

Property 5: The support of an itemset I is equal to the support of the smallest closed itemset
containing I.

lg(D)]l

10]]
Now, we consider gof (I), the closure of I. Since g([I) is closed and by consequence fog(g(I))=
g(I) (according to Property (5) of the Galois connection), we have:

support(gof (1)) — ||g<g||og|<|r>>|| _ IIfOﬂ((gﬁl))ll _ ||ﬁg|>|||  sumport(l)

Proof: Let I C 7 be an itemset. The support of I in D is:

support(I) =

Property 6: The set of maximal frequent itemsets M is identical to the set of maximal frequent
closed itemsets MC.

Proof: It suffices to demonstrate that VI € M, I is closed, i.e. I = gof(I). Let I € M
be a maximal frequent itemset. By definition, VI’ D I, I' is not frequent, i.e. I' ¢ M.
According to Property (2) of the Galois connection I C gof(I) and, since I is maximal and
support(gof(I)) = support(I) > minsupport, we can conclude I = gof(I). I is a maximal
frequent closed itemset. Since all maximal frequent itemsets are also a maximal frequent
closed itemsets, we get: M = MC.



3.3 Association Rules

Association Rules An association rule is an implication between itemsets of the form I = I’
where I,I' C 7 and INI' = (). The itemset I is called the antecedent of the rule, and the itemset
I' is called the consequent. Below, we define the support and confidence of an association rule
using the Galois connection applications f and g. The support and confidence of an association
rule r: I = I' are:

Iur
support(r) = M, confidence(r) =

101l

support(1UT") _ [lg(1u )]
support(1) gD

Valid Association Rules The task of mining association rules consists in generating all valid
association rules, i.e. association rules with support and confidence greater or equal to the minsup-
port and minconfidence thresholds. Let AR be the set of valid association rules in D. We define
AR using the set MC' of maximal frequent closed itemsets as:

AR(D, minsupport,minconfidence) ={r: I =1, —I, , Ll |1 € L= U 2¢ and
ceMC
con fidence(r) > mincon fidence}

4 Algorithm Close

In Section 4.1 we describe our discovery of the frequent closed itemsets. In Section 4.2 we give our
method for deriving frequent itemsets from the frequent closed itemsets. In Section 4.3 we present
an efficient algorithm for finding valid association rules using frequent itemsets. This algorithm is
adapted from the one described in [2].

4.1 Discovering Frequent Closed Itemsets

As in the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code for discov-
ering frequent closed itemsets is given in Algorithm 2. For each iteration, the algorithm constructs
a set of candidate frequent closed itemsets, determines the frequent closed itemsets using the min-
support threshold and then computes the generator itemsets that will be used during the next
iteration for constructing the set of candidate frequent closed itemsets. In each iteration, one
pass over the database is necessary, for constructing the set of candidate frequent closed itemsets
(closures of generators).

Set Field Contains
FCC; generator A generator itemset of size i.
closure  Candidate closed itemset produced by the closure of generator:
closure = gof (generator).
support  Support count of the closed itemset: support = count(closure).
FC; generator Generator of the frequent closed itemset.
closure Frequent closed itemset (closed itemset with support greater or
equal to minsupport).
support  Support of the frequent closed itemset: support = count(closure).

Table 2: Notation

The first operation of the algorithm (step 1) initializes the set of generator itemsets in FC'Cy with
the items present in the data mining context, i.e. elements of the set Z, needing no database pass.
Each of the following iterations consists of three phases. First, the closure function is applied to
each generator in F'CC;, determining the candidate frequent closed itemsets and their support.
The closure function Gen-Closure used for this purpose is described in Section 4.1.1. Next, the
set of candidate closed itemsets obtained is pruned: the closed itemsets with sufficient support



1) generators in FCCy = {1-itemsets};

2) for (i=1; FCC;.generator# 0); i++ ) do begin

3) closures in FCC; = 0

4) supports in FCC; = 0;

5) FCC; = Gen-Closure(FCC;); // Produces closures of generators (see Section 4.1.1)
6) forall candidate closed itemsets ¢ € FFCC; do begin

7) if ( c.support > minsupport ) then // Pruning infrequent closures
8) FC; = FC;Ucg; // Insert ¢ in FC;

9) end

10) FCCiy1 = Gen-Generator(FC;); // Creates generators of iteration i1
11) end (see Section 4.1.2)

12) Answer F'C = U;Z_l (F'Cj.closure,F'C}j.support);

Algorithm 2: Algorithm Close

value are inserted in the set of frequent closed itemsets F'C;. Finally, the generators of the set
FCC;4, are determined by applying the function Gen-Generator (described in Section 4.1.2) to
the generators of the frequent closed itemsets in F'C;. This process takes place until FCCjyq is
empty. Then, all frequent closed itemsets have been produced and their supports are known.

4.1.1 Gen-Closure Function

The closure function Gen-Closure takes as argument the set of generator itemsets in FCC;. It
updates F'CC; with, for each generator p, the closed itemset p.closure and its support count
p.support obtained by applying the closure operator gof to p. Algorithm 3 gives the pseudo-code
of the function. The method used for computing closed itemsets is based on Proposition 1.

Proposition 1: The closed itemset gof(I) corresponding to the closure by gof of the itemset I
is the intersection of all objects in the database that contain I:

gof(I) = ({f{o}) |1 I C f({o})}

0€0

Proof: We define H = [ g f({0}) where S = {o € O | I C f({o})}. We have gof(I) =

flg(1) = Noey(ry FH0}) = Nyes f({o}) where S = {o € O | 0 € g(I)}. Let’s show that
S'=S:

I ¢ f({o}) == o0eg(l)
o € g(I)<=1Cc f(yg(I)) C f({o})

We can conclude that S =S’ thus gof(I) = H.

Using Proposition 1, only one database pass is necessary for computing the closures of the genera-
tors of an iteration 4, and their support. The function works as follows. For each object o in D, we
create the set G, containing all generators in F'C'C; that are subsets of the object itemset f({o})
(step 2). Then, for each generator p in G,, we update the associated closed itemset p.closure (step
3 to 7). If the object o is the first one containing the generator, p.closure is empty and we assign to
it the object itemset (step 4). Otherwise, the intersection between p.closure and the object itemset
gives us the new p.closure (step 5). Then, we increment the closed itemset support p.support
(step 6). At the end of the function, we have for each generator p in FCC;, the closed itemset
p.closure corresponding to the intersection of all objects containing p and its associated support
count p.support corresponding to the number of objects containing p.closure (support count of the
generator and its closure are equal according to Property 5).

4.1.2 Gen-Generator Function

The function Gen-Generator takes as argument the set of frequent closed itemsets F'C;. Based
on Proposition 2, it returns the set F'C'C;;1 containing all generator (i + 1)-itemsets that will be
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1) forall objects 0o € O do begin

2) G, = Subset(FCC;.generator, f({0})); // Generators subsets of f({o}) (Section 4.1.3)
3) forall generators p € GG, do begin

4) if ( p.closure = 0 ) then p.closure = f({o});

5) else p.closure = p.closure Nf({o});

6) p.support-+-+;

7) end

8) end

9) Answer =|J { c€ FCC; | c.closure # 0 };

Algorithm 3: Function Gen-Closure

used during iteration i + 1 for constructing the set of candidate frequent closed itemsets. The
function first generates all potential generator (i + 1)-itemsets using generator i-itemsets in F'C;.
Then, based on Proposition 3, the potential generators produced that will lead to useless computing
(infrequent closed itemsets) or redundancies (frequent closed itemsets already produced) are deleted
from FCCit1.

Proposition 2: Let I;, > be two generator itemsets. We have:
gof (It U Iz) = gof (gof (I1) U gof (I2))

Proof: Let I; and I> be two itemsets. According to Property (2) of the Galois connection:
Iy Cgof(lh) and I, C gof (I) = T UIy C gof(I1)Ugof(lr)
= gof(liU ) C gof(gof (I) U gof (L)) (1)

Obviously, Iy € I; Ul and I, C I; UI>. So gof (I1) C gof (11 UI>) and gof (I2) C gof (I UI3).
According to Property (3) of the Galois connection:

gof(gof (I1) U gof(I2)) C gof (gof (11 U I)) = gof (gof (I1) U gof (I2)) C gof (LU )  (2)
From (1) and (2), we can conclude gof (I; U Iz) = gof(gof (I1) U gof (I2)).

Proposition 3: Let I be a generator i-itemset and S = {s1,s2,...,s;} a set of (i — 1)-subsets
of I where J,cgs=1. If 35, € S such as I C gof(s,), then gof(I) = gof(sa).

Proof: Let I be an i-itemset and s, € S, an (i — 1)-subset of 1.
I'Cgof(sa) = gof(I) C gof(gof(sa)) = gof(I) C gof(sa) (1)
54 €S = s5,C1 = gof(sa) Cgof(I) (2)

From (1) and (2), we deduce gof (I) = gof(sg)-

The function Gen-Generator works as follows. We first apply the combinatorial phase of Apriori-
Gen [2] to the set of generators in F'C; giving us a set of new potential generators: two generators
of size ¢ in F'C; with the same first i — 1 items are joined, producing a new potential generator of
size 1 + 1.

1) insert into F'C'C;;.generator

2) select p.item;, p.items, ..., p.item;, g.item;

3) from FC;.generator p, FC;.generator q

4) where p.item; = g.item; , ..., p.item;_; = ¢.item;—; , p.item; < g.item;;

Then, we prune the resulting set using two strategies. First, like in Apriori-Gen, for all potential
generator p created we test the presence of all its i-subsets in F'C;.generator. Indeed, if one of
them is absent from F'C; and according to Property 2 we deduce that p is not frequent and we can
remove it from FCCjtq.

Let’s take an example. Suppose that the set of candidate frequent closed itemsets F'Cy contains the
generator itemsets AB, AC' with respective closures ABC, AC'D all frequent. The Gen-Generator
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5) forall generators p € F'CC;1.generator do begin
6) forall i-subsets s of p do begin

7) if (s ¢ FC;.generator ) then

8) delete p from FCC;;,.generator;
9) end

10) end

function will create ABC = AB U AC as a new potential generator in FFCC3. The first pruning
strategy will remove ABC' from FCCj5 since BC ¢ F(Cy.generator as it is infrequent.

The second pruning strategy is as follows. For each potential generator p in FCCiyq1, we test if
the closure of one of its i-subsets s is a superset of p. In that case, the closure of p will be equal
to the closure of s (see Proposition 3), so we can remove p from FCCjy;.

11) forall generators p € FCC;y1.generator do begin

12) Sp = Subset(FCC;.generator,p); // Subsets of p that are existing generators in FCC;
13) forall s € S, do begin

14) if ( p C s.closure ) then

15) delete p from FCC;;1.generator;

16) end

17) end

Let’s give another example. Suppose that the set of frequent closed itemsets F'Cy contains gener-
ators AB, AC, BC' with respective closures AB, ABC, BC all frequent. The Gen-Generator func-
tion will create ABC' = AB U AC as a new potential generator in FFCC3. The second prune
step will remove ABC from FCCj since ABC C closure(AC). Indeed, we can deduce that
closure(ABC) = closure(AC) and the computation of the closure of ABC is useless.

4.1.3 Subset Function

Candidate frequent closed itemsets are stored in a prefiz-tree structure to quickly find all generators
associated with an object. Our structure is derived from the one proposed in [10]. Figure 5 shows
the Prefix-tree structure for the set F'C'C> given in Figure 6 Each edge in the tree is labeled with
an item. A generator itemset is represented as a path in the tree, starting from the root node.
The closure of a generator is stored in the leaf (terminal node) of the path representing it. Each
node contains a pointer to a sibling node, a hash-table towards the children of the node and, if the
node is a leaf, a pointer to the closure of the generator represented. For a node representing an
i-itemset ¢, a sibling node represents another i-itemset with the same first ¢ — 1 items and a hash
collision on the i*" item. For performance reasons, if the size of such a linked list exceeds a given
threshold, instead of adding a new sibling node, the size of the hash-table of the parent node is
doubled and the it* nodes are rebalanced.

Item Pointer to closure Support  Closure

——= Pointer to sibling
-
Hash-table

72 422

Figure 5: Prefix-tree of the set FCCs in Figure 6
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The subset function takes as arguments a set of generators G and an itemset c. It determines
which generators p € G are subsets of the itemset ¢. The function starts from the root node and
hashes successively on each item of the itemset ¢ down through the tree. Having reached a node
by hashing on item ¢, we hash on each item that comes after 7 in ¢ and recursively apply this
procedure to the node in the corresponding bucket of the hash-table. At the root node, we hash
on every item in ¢. When we are at a leaf, we add the reference to the generator to the answer set.

4.1.4 Example and Correctness

Figure 6 shows the execution of the algorithm on the data mining context D given in Figure 1. We
assume that minsupport is 2 (40%). Step 1 initializes the set of generators in FC'CY with the list of
items in D. Calling Gen-Closure at step 3 gives for every generator p the candidate closed itemset
p.closure and its support count p.support. In step 4 through 7 we generate F'C; by pruning FCC}
according to minsupport. In step 9 we produce the generators in FFC'Cy by applying the function
Gen-Generator to F'Cy. As we can see in Figure 6, calling Gen-Generator with F'Cy produces two
new generators: AB and BC. Generators A and C in F'Cy do not give a new generator AC' since
the closure of A is AC and the closure of C is C. Obviously C C AC, so the generator AU C is
deleted by the second pruning step of the function Gen-Generator.

Calling Gen-Closure with F'C'C produces the closures of the generators in FC'Cs and their support.
After the pruning of the candidate closed itemsets, FFCCy and F'Cs are identical since all candidate
closed itemsets in F'*C'Cy are frequent. The set of generators in F'C'Cs constructed by calling Gen-
Generator with F'C5 is empty as no generator in F'Cy have the same first item, and the algorithm
terminates. We can observe that the number of database passes is reduced by half compared to
the execution of Apriori on the same example.

FCCy
FCy
Generator | Closure | Support Generator | Closure | Support
{A} {AC} 3 Pruning of T i p?f)
Scan D {B} {BE} 4 infrequent {A} {AC}
— {C} {C} 4 closed itemsets }g{ {FCE])»} j
{D} {ACD} 1 — (B} (BE} 4
{E} {BE} 4
FCCy FC»
Generator | Closure | Support Pruni Generator | Closure | Support
runing of
Scan D {AB} {ABCE} 2 infrequent {AB} {ABCE} 2
— {BC} {BCE} 3 closed itemsets {BC} {BCE} 3
{AE} {ABCE} 2 N {AE} {ABCE} 2
{CE} {BCE} 3 {CE} {BCE} 3
Answer : FC
Closure | Support
{AC} 3
{BE} 4
{C} 4
{ABCE} 2
{BCE} 3

Figure 6: Discovering frequent closed itemsets with Close for minsupport = 2 (40%)

Correctness We must ensure that all frequent closed itemsets have been produced. Starting
with the set of items in the data mining context and making successive closures of the unions
of closed itemsets found in the previous iteration gives the complete closed itemset lattice, based
on the Join operator of Wille’s basic theorem on concept lattices (see section 2.2). According
to Proposition 2, working on generator itemsets is identical to working on their closures. The
method we use for creating the generators (similar to the one in Apriori-Gen) is an efficient union
method. This method yields all possible unions, avoiding redundancies, given the lexicographic
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order among items. The two pruning steps of the set of generators avoid useless computations by
removing infrequent generators and generators which closure was already found (Proposition 3).

4.2 Deriving Frequent Itemsets

The pseudo-code for deriving frequent itemsets is given in Algorithm 4. It uses as its input the
set of frequent closed itemsets FC' = |J, FC; and gives the set of frequent itemsets L = |J, Ly
as the output. In step 1 through 5, we put each frequent closed itemset ¢ from FC in the set of
frequent itemset L. corresponding to the size of ¢, and we determine the size k of the largest
frequent itemsets. Then, during step 6 to 15 we construct all sets L;, starting from L, down to
L,. In each iteration, we complete the set L;_; using the itemsets in L;. For each i-itemset c in
L;, we generate all (i — 1)-subsets of c¢. All subsets that are not present in L;_; are added to the
end of L;_; with support value equal to the support of ¢. This process takes place until L; has
been completed.

1) k=0;

2) forall frequent closed itemsets ¢ € FC' do begin

3) Lyje = Lyje) U {c}; // Splitting frequent closed itemsets
9 Hf (k< ldl) then k — el

5) end

6) for (i=k;i>1;i——) do begin

7) forall itemsets ¢ € L; do begin

8) forall (i — 1)-subsets s of ¢ do begin

9) if (s¢ L;_; ) then begin

10) s.support = c.support;

11) Li—l = Li—l U {S}, // Put s at the end of Li—l
12) end

13) end

14) end

15) end

16) Answer = J'ZF L;;

Algorithm 4: Deriving frequent itemsets

Example Figure 7 shows the execution of the algorithm using as input the sets F'C'y and FCs
given in Figure 6. The first phase of the algorithm simply splits frequent closed itemsets of F'C}
and F'Cy in sets Ly to Ly according to their size, and determines that k& = 4. During the first
iteration of the loop (step 6 to 15), the closed itemset ABCE in L, is examined and generates
ABC, ABE and ACE in L3 with the same support value as ABCE. The closed itemset BCE is
not generated since it is already present in L3. During the second iteration, we first examine the
closed itemset BC'E, generating BC' in Ls with support = 3. If we had first examined the itemset
ABC, we would have generated BC in Lo with support = 2 which is incorrect. At the end of the
second iteration, L, is complete. The third iteration generates L; and ends the algorithm.

Correctness The correctness of the algorithm for deriving frequent itemsets relies on Proper-
ties 5 and 6, and on the fact that we first examine closed i-itemsets in L; during the (i — 1)-subset
generation. For an iteration i, let ¢ be a frequent closed i-itemset in L; and s an (i — 1)-subset of c.
If s is a closed itemset then it has already been inserted in L;_; during the first phase of the algo-
rithm (step 1 to 5). If s is not a closed itemset, then according to Property 5 it is correct to insert
s in L;—; with the same support value as ¢. Now, consider that s is not a closed (i — 1)-itemset
and we are completing L; . The support of s is equal to the support of ¢ which is the smallest
closed itemset containing s. Let s’ be a (i —2)-subset of s. If s’ is not a closed itemset and has not
already been generated in L; o, then, given Proposition 3, its support is equal to the support of
the smallest closed itemset containing s’ which is ¢. Hence it is correct to insert s’ in L;_o with the
support value of s. Since the set of maximal frequent itemsets is the same as the set of maximal
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FC Lo

Ly
Closure | Support Itemset | Support
{AC} 3 Splitting frequent It?rg;et Sup4port {AC} 3
{BE} 4 closed itemsets {BE} 4
{C} 4 — L3 Ly
{ABCE} 2 Itemset | Support Ttemset | Support
{BCE} 3 {BCE} 3 {ABCE} 2
L;
L, Deriving I{tlgrél]s;}:u Sup?f) ort
Itemset | Support frequent itemsets
[ABCE} | 2 — {aBCh | 2
{ABE} 2
{ACE} 2
Lo
Itemset | Support Ly
Deriving }gg% Z Deriving Itirgiet Supfort
frequent itemsets frequent itemsets
N {BC} 3 N {A} 3
{CE} 3 {B} 4
{AB} 2 {E} 4
{AE} 2

Figure 7: Deriving frequent itemsets for minsupport = 2 (40%)

frequent closed itemsets (see Property 6), the set Ly is complete, where k is the size of the largest
frequent itemsets (obviously all maximal frequent itemsets). Given the properties that all subsets
of a frequent itemset are frequent and all supersets of an infrequent itemset are infrequent, by
generating all subsets of the maximal frequent closed itemsets we generate all frequent itemsets,
and the result is correct.

4.3 Generating Valid Association Rules

The problem of generating valid association rules can be solved in a straightforward manner once
all frequent itemsets and their support are known. In this section, we describe an adapted version
of Apriori rule generation algorithm [2] (implemented for our experiments). For every frequent
itemset I we derive all subsets Iy of I; and we compute the ratio support(Iy)/support(Is). If
the result is at least minconfidence, then the rule Iy = (I} — I2) is generated. The support of any
subset I3 of I being greater or equal to the support of I, the confidence of the rule Is = (I; — I3)
is necessarily less than the confidence of the rule Is = (I; — I5). Hence, if the rule Iy = (I} — I»)
does not hold, neither will the rule I3 = (I; — I3). Conversely, if the rule (I; — Is)=- I, holds, then
all rules of the form (I} — I3) = I3 also hold. For example, if the rule A= BC holds, then the rules
AB=-C and AC = B also hold.

Using this property for efficiently generating valid association rules, the algorithm works as follows.
For every frequent itemset Iy, all rules with one item in the consequent that have a confidence at
least equal to minconfidence are generated. We then create all consequents with 2 items that are
possible in a rule generated from I;. This generation is performed by applying the Apriori-Gen
function given in Section 2.1 to the set of one item consequents found in the first step. Next the
set of rules with 2 items in the consequent generated is pruned with respect to minconfidence. The
2 items consequents of the rules that hold are used for generating consequents with 3 items, etc.
The pseudo-code is given in Algorithm 5.

Example Figure 8 gives the result of the frequent itemset discovery for the data mining context
D, assuming that minsupport is 3 (60%). In Figure 9 we show the valid association rule generation
for minconfidence = 0.5 (50%) using the previous result.
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1) forall frequent k-itemsets I € Ly | k > 2 do begin

2) H, = { itemsets of size 1 that are subsets of [}, };

3) forall h, € H; do begin

4) confidence = support(l;)/support(ly — h1); // Confidence of r : (Ix-h1)=hy
5) if ( confidence > minconfidence ) then

6) AR = AR U{r: (Ix — h1)=>h1 };

7) else Hy = Hy — {h} // Hy = {1l-item consequents of valid
8) end rules from I, }
9) call GenRules(l, Hy);

10) end

11) Procedure GenRules(l: frequent k-itemset, H,,: set of m-item consequents)

12) if (k>m+1) then do begin

13) Hp41 = Apriori-Gen(H,y,);

14) forall h,, 11 € H,;,+1 do begin

15) confidence = support(ly)/support(ly — hm+1); // Confidence of

16) if ( confidence > minconfidence ) then 7 (lg-hmt1) = hmtt
17) AR = AR U {r : (It — himt1) = At };

18) else

19) delete hy, 11 from Hy,iq;

20) end

21) call GenRules(ly,, Hpt1);

22) end

23) end

Algorithm 5: Generating valid association rules

L2 Ll
Ls Itemset | Support Itemset | Support
Itemset | Support {AC} 3 {A} 3
RO 5 {BC} 3 {B} 4
{BE} 4 {C} 4
{CE} 3 {E} 4

Figure 8: Frequent itemsets extracted from D for minsupport = 3 (60%)

5 Experimental Results

We implemented the Apriori and Close algorithms in C++ on several Unix platforms, to assess
their relative performances. Both used the same data structure (as described in Section 4.1.3)
that improves Apriori efficiency. Our experiments were realized on a 43P240 bi-processor IBM
Power-PC running AIX 4.1.5 with a CPU clock rate of 166 MHz, 1GB of main memory and a 9GB
disk. Only one processor was used since the application was single-threaded. The test program was
allowed a maximum of 128 MB. We did not implement swapping; also, the system buffers were not
flushed between each database pass of the algorithms. In Section 1, we describe the datasets used
for the experiments. We then compare relative performances of the two algorithms in Section 2.

5.1 Test Data

The algorithms were tested on two types of datasets: synthetic data, which mimic market basket
data, and census data, which belong to the domain of statistical databases. For generating the
synthetic dataset, we used the program described in [2]. This dataset, called T10I4D100K, contains
100,000 objects for an average object size of 10 items and an average size of the maximal potentially
frequent itemsets of 4.

The census data were extracted from the Kansas 1990 PUMS file (Public Use Microdata Samples),
in the same way as [3] for the PUMS file of Washington (unavailable through Internet at the time
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1-item consequents

2-items consequents

L Generating Rule Confidence | Generating Rule Confidence
Itemset | Support rules BC = E 1 rules B = CE 0.75
{BCE} 3 — BE = C 0.75 — C = BE 0.75
CE=B 1 E = BC 0.75
I G " 1-item consequents
k enerating Rule Confidence
Itemset | Support rules Ao C T
{AC} 3 - C=A 0.75
R 1-item consequents
L Generating Rule Confidence
Itemset | Support rules B E 1
{BE} 4 - E=B 1
I G " 1-item consequents
k enerating Rule Confidence
Itemset | Support rules B = C 075
{BC} 3 - C=>B 0.75
I G " 1-item consequents
k enerating Rule Confidence
Itemset | Support rules Co 075
{CE} 3 - E=C 0.75

Figure 9: Generating valid association rules for minsupport=3 (60%) and minconfidence=0.5 (50%)

of the experiments). Unlike in [3] though, we did not put an upper bound on the support, as this
distorts each algorithm’s results in different ways. We therefore took smaller datasets containing
the first 10,000 persons. Dataset C20D10K contains 20 attributes (20 items per object and 386
total items), and C73D10K, 73 attributes (73 items per object and 2178 total items).

5.2 Relative Performance of Apriori and Close

5.2.1 Synthetic Data

We used the same values for minsupport as the ones used in [2], ranging from 2% to 0.25%. The
figure beside shows the execution times of Apriori and Close on the dataset T10I4D100K. We can
observe that Apriori performs better than Close on these data. The reason is that, in such datasets,
data are weakly correlated and sparse; furthermore, nearly all frequent itemsets are closed. For
an identical number of database passes, Close performs more operations to compute the closure of
the generators. Response times remain however acceptable: two minutes and a half for the longest
execution.

5.2.2 Census Data

Experiments were conducted on the two census datasets using different minsupport ranges to
get meaningful response times and to accommodate with the memory space limit. Results for the
C20D10K and C73D10K datasets are plotted on Figure 11 and Figure 12 respectively. Close always
significantly outperforms Apriori, for execution times as well as number of database passes. Here,
contrarily to the experiments on synthetic data, the differences between the execution times can
be counted in hours. It should furthermore be noted that Apriori could not be run for minsupport
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Figure 10: Performance of Apriori and Close on synthetic data

lower than 3% on C20D10K and lower than 70% on C73D10K as it exceeds the memory limit.
Census datasets are typical of statistical databases: highly correlated and dense data. Many items
being extremely popular, this leads to a huge number of frequent itemsets.

5.2.3 Scale up on Census Data

We finally examined how Apriori and Close behave as the object size is increased in census data.
The number of objects was fixed to 10,000 and the minsupport level was set to 10%. The object
size varied from 10 (281 total items) up to 24 (408 total items). Apriori could not be run for higher
object sizes. Results are shown in Figure 13. We can see here that, as expected, Close outperforms
Apriori both in execution times and in memory space requirements.

6 Conclusion

We presented a new algorithm, called Close, for mining association rules in large databases. Close
is based on the pruning of the closed itemset lattice, unlike existing algorithms that are all based on
the pruning of the itemset lattice. As the number of itemsets and the height of the closed itemset
lattice of a database are much smaller than those of the itemset lattice, Close can reduce both the
number of database passes and the CPU overhead incurred by the frequent itemset search.

We conducted performance evaluations to compare Close to an optimized version of Apriori us-
ing prefix-tree, which corresponds to the basic approach for finding association rules by pruning
the itemset lattice. Experiments were carried out using two types of databases: synthetic data
(often used as a benchmark for mining market basket data) and census data (a real-life statis-
tical database application). Experimental results showed that Close is less efficient, but gives
nonetheless acceptable response times, for mining synthetic data. On the contrary, Close clearly
outperforms Apriori in the case of census data, in particular for large problems (that are more
significant of real-life datasets). The number of database passes is reduced from a quarter to a
half in comparison with the number of passes Apriori needs. Moreover, in all the cases, Close was
able to discover association rules for low minsupport values that Apriori cannot treat because of its
memory space requirements. Close is particularly well suited to statistical database applications
that are considered as difficult problems.

In addition to the discovery of association rules, our algorithm has another important feature:
Close gives an efficient computing of the Dedekind-MacNeille completion of an order [5], which is
the smallest lattice associated with an order and is isomorphic to the closed itemset lattice [14].
The closest works are algorithms [6, 7] which work only in main memory. Using such a structure,
Close supplies an efficient data clustering technic (unsupervised classification), another important
task in data mining [4, 16] and in machine learning [7].
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Figure 13: Scale-up properties of Apriori and Close on census data
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