Nicolas Pasquier

Yves Bastide
email: bastide@libd1.univ-bpclermont.fr

Lot Lakhal {pasquier Ra K Taouil
email: taouil@libd1.univ-bpclermont.fr

Pruning Closed Itemset Lattices for Association Rules

Keywords: extraction de connaissances, r gles d'association, treillis, algorithmes data mining, knowledge discovery, association rules, lattices, algorithms

R sum

La d couverte des r gles d'association est l'un des principaux probl mes de l'extraction de connaissances dans les bases de donn es. De nombreux algorithmes e caces ont t propos s, dont les plus remarquables sont Apriori, l'algorithme de Mannila, Partition, Sampling et DIC. Ces derniers sont tous bas s sur la m thode de recherche de Apriori: l' lagage du treillis des parties (treillis des itemsets). Dans cet article, nous proposons un algorithme e cace bas sur une nouvelle m thode de recherche: l' lagage du treillis des ferm s (treillis des itemsets ferm s). Ce treillis qui est un sous-ordre du treillis des parties est troitement li au treillis de concepts de Wille dans son analyse formelle de concepts. Nous avons compar exp rimentalement Close une version optimis e de Apriori et les r sultats obtenus montrent la grande e cacit de Close dans le traitement des donn es denses et/ou corr l es telles que les donn es de rescensement (cas di cile). Nous avons galement pu observer que Close donne des temps de r ponse corrects dans le traitement des bases de donn es de ventes.

Introduction

One of the most important task in data mining is the discovery of association rules rst introduced in 1]. The aim of the association rule discovery is to identify relationships between items in very large databases. For example, given a market basket database, it would be interesting for decision support to know the fact that 80% of customers who bought cereals and sugar also bought milk. In a census database, we should discover that 60% of persons who worked last year earned less than the average income, or in a medical database, that 70% of patients who have sti nesses and fever also have headaches. Agrawal's statement of the problem of discovering association rules in market basket databases is the following 1, 2]. Let I = {i 1 ; i 2 ; : : : ; i m } be a set of m literals called items. Let the database D = {t 1 ; t 2 ; : : : ; t n } be a set of n transactions, each one consisting of a set of items I from I and associated with a unique identi er called its TID. I is called a k-itemset, where k is the size of I. A transaction t 2 D is said to contain an itemset I if I t. The support of an itemset I is the percentage of transactions in D containing I: support(I) = ft 2 D j I tg = ft 2 Dg. An association rule is a conditional implication among itemsets, I) I 0 , where itemsets I; I 0 I and I \ I 0 = ;. The con dence of an association rule r : I) I 0 is the conditional probability that a transaction contains I 0 , given that it contains I: confidence(r) = support(I I 0) = support(I). The support of r is de ned as: support(r) = support(I I 0).

The problem of mining association rules in a database D is then traditionally de ned as follows.

Given user de ned thresholds for the permissible minimum support and con dence, nd all the association rules that hold with more than the given minsupport and mincon dence. This problem can be broken into two subproblems 1]:

1. Finding all frequent itemsets in D, i.e. itemsets with support greater or equal to minsupport.

Frequent itemsets are also called large itemsets.

2. For each frequent itemset I 1 found, generating all association rules I 2) I 1 I 2 | I 2 I 1 , with con dence greater or equal to mincon dence. The second subproblem can be solved in main memory in a straightforward manner once all frequent itemsets and their support are known. Hence, the problem of mining association rules is reduced to the problem of nding frequent itemsets. Many algorithms have been proposed in the literature 2, [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF][START_REF] Mannila | Methods and problems in data mining[END_REF][START_REF] Godin | Incremental concept formation algorithms based on Galois (concept) lattices[END_REF][START_REF] Mueller | Fast sequential and parallel algorithms for association rules mining: A comparison[END_REF]12,[START_REF] Savasere | An e cient algorithm for mining association rules in larges databases[END_REF]. Although they are very di erent from each other, they are all based on the Apriori mining method 2]: pruning of the subset lattice for nding frequent itemsets. This relies on the basic properties that all subsets of a frequent itemset are frequent and that all supersets of an infrequent itemset are infrequent. Algorithms based on this approach perform very well for weakly correlated data such as market basket data. However perfomances drastically decrease for correlated data such as census data. In this paper, we propose a new e cient algorithm called Close for mining association rules in very large databases. Close is based on the pruning of the closed itemset lattice which is a sub-order of the subset lattice, thus much smaller. Such a structure is closely related to Wille's concept lattice in formal concept analysis [START_REF] Chen | Data mining: An overview from a database perspective[END_REF][START_REF] Toivonen | Sampling large databases for association rules[END_REF][START_REF] Wille | Restructuring lattices theory: an approach based on hierarchies of concepts[END_REF]. We show that this structure can be used as a formal framework for discovering association rules given the basic properties that all sub-closed itemsets of a frequent closed itemset are frequent, that all sup-closed itemsets of an infrequent closed itemset are infrequent and that the set of maximal frequent itemsets is identical to the set of maximal frequent closed itemsets. Empirical evaluations comparing Close to an optimized version of Apriori showed that Close performs reasonably well for weakly correlated data and performs very well for correlated data. The rest of the paper is organized as follows. Section 2 reviews related work and exhibits the contribution of the paper. In Section 3, we de ne the semantics of association rules based on the Galois connection operators. In Section 4, we describe the Close algorithm. Section 5 gives experimental results on synthetic data1 and census data using the PUMS le for Kansas USA2 and Section 6 concludes the paper. In this section, we rst present the subset lattice based approach for mining association rules. Then, we introduce the use of the closed itemset lattice as a formal framework in data mining and we brie y describe the Close mining method.

TID

Items 1 A C D 2 B C E 3 A B C E 4 B E 5 A B C E

A Common Approach for Mining Association Rules

Finding all frequent itemsets is a nontrivial problem because the number of possible frequent itemsets is exponential in the size of the set of items I of the database. Given kIk = m, there are possibly 2 m frequent itemsets, which form a lattice of subsets over I with height equal to m. Consider the example transaction database D given in Figure 1. The lattice of subsets associated with D is represented in Figure 2. This lattice contains 32 itemsets and its height is 6. However, depending on the data and the minsupport value, only a small fraction of the whole lattice space is frequent. For instance, assuming that minsupport is 2 (40%), only 15 itemsets of D are frequent.

A naive approach consists of testing the support of every itemset in the lattice, which can be done in a single pass over the database. Clearly, this approach is impractical for large values of m. In the following, we describe the Apriori mining method used by all existing algorithms for nding frequent itemsets. The notation is given in Table 1. Each element of this set has two elds: i) itemset and ii) support count.

L k Set of frequent k-itemsets (itemsets with minimum support).

Each element of this set has two elds: i) itemset and ii) support count.

Algorithm Apriori

In the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code of the Apriori frequent itemset discovery is given in Algorithm 1. Frequent itemsets are computed iteratively, in the ascending order of their size. The process takes k iterations, where k is the size of the largest frequent itemsets. For each iteration i k, the database is scanned once and all frequent itemsets of size i are computed. The rst iteration computes the set L 1 of frequent 1-itemsets. A subsequent iteration i consists of two phases. First, a set C i of candidate i-itemsets is created by joining the frequent (i 1)-itemsets in L i 1 found in the previous iteration. This phase is realized by the Apriori-Gen function described below. Next, the database is scanned for determining the support of the candidates in C i and the frequent i-itemsets are extracted from the candidates.

This process is repeated until no more candidate can be generated.

1) L 1 = {Large 1-itemsets};

2) for (k=2; L k 1 6 = ;; k++) do begin

3) C k = Apriori-Gen(L k 1); // Generates candidates k-itemsets 4)
forall transactions t 2 D do begin Apriori-Gen Candidate Generation The function takes as argument the set L i 1 of frequent (i 1)-itemsets. It returns the set C i of candidate i-itemsets, which is a superset of the set of all frequent i-itemsets. Two frequent itemsets of size i 1 with the same rst i 2 items are joined, generating a new candidate itemset of size i: insert into C i select p.item 1 , p.item 2 , : : :, p.item i 1 , q.item i 1 from L i 1 p; L i 1 q where p.item 1 = q.item 1 , : : : , p.item i 2 = q.item i 2 , p.item i 1 < q.item i 1 ; Then, the candidate set C i produced is pruned by removing every candidate i-itemset c such that some (i 1)-subset of c is not in L i 1 : forall candidate itemsets c 2 C i do begin forall (i 1)-subsets s of c do begin if (s = 2 L i 1) then delete c from C i ; Example Figure 3 shows the execution of Apriori for a minimum support of 2 (40%) on the database D. This process takes four iterations, computing four sets of candidates and frequent itemsets and performing four database passes. The frequent itemsets found are outlined in the itemset lattice given in Figure 2 The algorithms based on this approach take k database passes to generate all frequent itemsets, where k is strongly linked to the height of the itemset lattice (generaly the size of the maximal frequent itemsets). Recent algorithms like Partition, Sampling and DIC have attempted to improve the search e ciency by reducing the number of database passes. However, the e ciency of algorithms does not rely only on the I/O cost they incur (number of database passes), but the CPU overhead they involve can a ect their performances.

Closed Itemset Lattices

In this section, we de ne data mining context, Galois connection, closed itemset and closed itemset lattice. Interested readers should consult 5] for further details on the order and lattice theory. (1) I 1 I 2 =) g(I 1) g(

I 2) (1') O 1 O 2 =) f(O 1) f(O 2) (2) I g f(I) (2') O f g(O) (3) g f(g f(I)) = g f(I) (3') f g(f g(O)) = f g(O) (4) I 1 I 2 =) g f(I 1) g f(I 2) (4') O 1 O 2 =) f g(O 1) f g(O 2) (5) f g(g(I)) = g(I) (5') g f(f(O)) = f(O) (6)
O g(I) () I f(O) Closed Itemset Let C I be a set of items from D. C is a closed itemset i g f(C) = C. The smallest (minimal) closed itemset containing an itemset I is obtained by applying g f to I.

Closed Itemset Lattice Let C be the set of closed itemsets derived from D using the Galois connection. The pair L C = (C;) is a complete lattice called closed itemset lattice. Having a lattice structure implies two properties: i) A partial order on the lattice elements such that, for every elements C

1 ; C 2 2 L C ; C 1 C 2 , i C 1 C 2 4 .
ii) All subsets of L C have one upper bound, the Join element, and one lower bound, the Meet element. Below, we give the de nitions of the Join and Meet elements extracted from Wille's basic theorem on concept lattices 5, 14]. For all S L C :

Join (S) = g f(C2S C); Meet (S) = \ C2S C

The Close Mining Method

The Close algorithm is fundamentally di erent from existing algorithms, since it is based on the pruning of the closed itemset lattice for nding frequent itemsets. A closed itemset is a maximal set of items common to a set of objects. For example, in the database D, the itemset fB; C; Eg is a closed itemset since it is the maximal set of items common to the objects f2; 3; 4g. fB; C; Eg is called a frequent closed itemset for minsupport = 2 as support(fB; C; Eg) = kf2; 3; 4gk = 3 minsupport. In a basket database, this means that 60% of customers (3 customers on a total of 5) purchase at most the items B; C; E. The itemset fB; Cg is not a closed itemset since it is not a maximal grouping of items common to some objects: all customers purchasing the items B and C also purchase the item E. The closed itemset lattice of a nite relation (the database) is isomorphic to the concept lattice 14, 15], also called Galois lattice 7]. Figure 1 Using the closed itemset lattice, which is a sub-order of the subset lattice, for nding frequent itemsets can improve the e ciency of the association rule discovery. Indeed, the proportion of itemsets that are closed and frequent is much smaller than the proportion of frequent itemsets. By minimizing the search space, we reduce both the number of database passes and the CPU overhead incurred by the generation of frequent itemsets. Indeed, the size of the itemset lattice is exponential in the size of the set of items, kL S k = 2 kIk . Although in the worst case, the closed itemset lattice may grow exponentially, the growth is linear with respect to kDk when it exists an upper bound K on the object size (kok). Then, the size of the closed itemset lattice is kL C k 2 K kDk. Moreover, experimental applications and theoretical results based on a uniform distribution hypothesis showed that the average growth factor is far less than the 2 K bound.

Actually, we can observe that kL C k kDk, where is the mean value for kok 7]. Using the closed itemset lattice framework we can deduce the following properties (see Section 3): i) All subsets of a frequent itemset are frequent. ii) All supersets of an infrequent itemset are infrequent. iii) All sub-closed itemsets5 of a frequent closed itemset are frequent. iv) All sup-closed itemsets 6 of an infrequent closed itemset are infrequent. v) The set of maximal frequent itemsets is identical to the set of maximal frequent closed itemsets.

vi) The support of a frequent itemset I which is not closed is equal to the support of the smallest frequent closed itemset containing I. Based on these properties, Close generates all association rules from a database D through three successive phases:

1. Discovering all frequent closed itemsets in D, i.e. itemsets that are closed and have support greater or equal to minsupport.

2. Deriving all frequent itemsets from the frequent closed itemsets found in phase 1. This phase consists in generating all subsets of the maximal frequent closed itemsets and deriving their support from the frequent closed itemset supports .

3. For each frequent itemset I found in phase 2, generating all association rules that can be derived from I and have con dence greater or equal to mincon dence.

The rst phase is the more computationally intensive part of the algorithm. After this phase, no more database access is necessary and the second and third phases can be solved easily in main memory in a straightforward manner. Indeed, the rst phase has given us all information needed for the next two, particularly the support of the frequent closed itemsets used to determinate the support of the frequent itemsets without any database access.

Semantics of Association Rules

In this section, we propose new semantics for association rules using the Galois connection (f; g).

We rst de ne frequent itemsets, frequent closed itemsets and their properties, in a data mining context D = (O; I; R). Then, we de ne association rules and valid association rules using frequent closed itemsets.

Frequent Itemsets

Itemset Support Let I I be a set of items from D. The support count of the itemset I in D is: support(I) = kg(I)k kOk

Frequent Itemsets The itemset I is said to be frequent if the support of I in D is at least minsupport. We de ne the set L of frequent itemsets in D as: L = fI I j support(I) minsupportg

Maximal Frequent Itemsets Let L be the set of frequent itemsets. We de ne the set M of maximal frequent itemsets as: M = fI 2 L j @I 0 2 L; I I 0 g Property 1: All subsets of a frequent itemset are frequent (intuitive in 2]). Proof: Let I; I 0 I, I 2 L and I 0 I. According to Property (1) of the Galois connection: I 0 I =) g(I 0) g(I) =) support(I 0) support(I) minsupport. So, we get: I 0 2 L. Property 2: All supersets of an infrequent itemset are infrequent (intuitive in 2]). Proof: Let I; I 0 I, I 0 = 2 L and I 0 I. According to Property (1) of the Galois connection:

I I 0 =) g(I) g(I 0) =) support(I) support(I 0) minsupport. So, we get: I = 2 L.

Frequent Closed Itemsets

Frequent Closed Itemsets The closed itemset C is said to be frequent if the support of C in D is at least minsupport. We de ne the set FC of all frequent closed itemsets in D as: FC = fC I j C = g f(C) and support(C) minsupportg Maximal Frequent Closed Itemsets Let FC be the set of all frequent closed itemsets. We Proof: It su ces to demonstrate that 8I 2 M, I is closed, i.e. I = g f(I). Let I 2 M be a maximal frequent itemset. By de nition, 8I 0 I, I 0 is not frequent, i.e. I 0 = 2 M.

According to Property (2) of the Galois connection I g f(I) and, since I is maximal and support(g f(I)) = support(I) minsupport, we can conclude I = g f(I). I is a maximal frequent closed itemset. Since all maximal frequent itemsets are also a maximal frequent closed itemsets, we get: M = MC.

Association Rules

Association Rules An association rule is an implication between itemsets of the form I) I 0 where I; I 0 I and I \ I 0 = ;. The itemset I is called the antecedent of the rule, and the itemset I 0 is called the consequent. Below, we de ne the support and con dence of an association rule using the Galois connection applications f and g. The support and con dence of an association rule r : I) I 0 are: support(r) = kg(I I 0)k kOk ; confidence(r) = support(I I 0) support(I) = kg(I I 0)k kg(I)k

Valid Association Rules The task of mining association rules consists in generating all valid association rules, i.e. association rules with support and con dence greater or equal to the minsupport and mincon dence thresholds. Let AR be the set of valid association rules in D. We de ne AR using the set MC of maximal frequent closed itemsets as: AR(D; minsupport; minconfidence) = fr : I 2) I 1 I 2 ; I 2 I 1 j I 1 2 L = C2MC 2 C and confidence(r) minconfidenceg

Algorithm Close

In Section 4.1 we describe our discovery of the frequent closed itemsets. In Section 4.2 we give our method for deriving frequent itemsets from the frequent closed itemsets. In Section 4.3 we present an e cient algorithm for nding valid association rules using frequent itemsets. This algorithm is adapted from the one described in 2].

Discovering Frequent Closed Itemsets

As in the Apriori algorithm, items are sorted in lexicographic order. The pseudo-code for discovering frequent closed itemsets is given in Algorithm 2. For each iteration, the algorithm constructs a set of candidate frequent closed itemsets, determines the frequent closed itemsets using the minsupport threshold and then computes the generator itemsets that will be used during the next iteration for constructing the set of candidate frequent closed itemsets. In each iteration, one pass over the database is necessary, for constructing the set of candidate frequent closed itemsets (closures of generators). support Support of the frequent closed itemset: support = count(closure). The rst operation of the algorithm (step 1) initializes the set of generator itemsets in FCC 1 with the items present in the data mining context, i.e. elements of the set I, needing no database pass.

Set

Each of the following iterations consists of three phases. First, the closure function is applied to each generator in FCC i , determining the candidate frequent closed itemsets and their support.

The closure function Gen-Closure used for this purpose is described in Section 4.1.1. Next, the set of candidate closed itemsets obtained is pruned: the closed itemsets with su cient support 1) generators in FCC 1 = {1-itemsets};

2) for (i=1; FCC i .generator6 = ;; i++) do begin We can conclude that S = S 0 , thus g f(I) = H.

Using Proposition 1, only one database pass is necessary for computing the closures of the generators of an iteration i, and their support. The function works as follows. For each object o in D, we create the set G o containing all generators in FCC i that are subsets of the object itemset f(fog) (step 2). Then, for each generator p in G o , we update the associated closed itemset p.closure (step 3 to 7). If the object o is the rst one containing the generator, p.closure is empty and we assign to it the object itemset (step 4). Otherwise, the intersection between p.closure and the object itemset gives us the new p.closure (step 5). Then, we increment the closed itemset support p.support (step 6). At the end of the function, we have for each generator p in FCC i , the closed itemset p.closure corresponding to the intersection of all objects containing p and its associated support count p.support corresponding to the number of objects containing p.closure (support count of the generator and its closure are equal according to Property 5).

Gen-Generator Function

The function Gen-Generator takes as argument the set of frequent closed itemsets FC i . Based on Proposition 2, it returns the set FCC i+1 containing all generator (i + 1)-itemsets that will be The function rst generates all potential generator (i + 1)-itemsets using generator i-itemsets in FC i .

Then, based on Proposition 3, the potential generators produced that will lead to useless computing (infrequent closed itemsets) or redundancies (frequent closed itemsets already produced) are deleted from FCC i+1 .

Proposition 2: Let I 1 ; I 2 be two generator itemsets. We have: g f(I 1 I 2) = g f(g f(I 1) g f(I 2))

Proof: Let I 1 and I 2 be two itemsets. According to Property (2) of the Galois connection: I 1 g f(I 1) and I 2 g f(I 2) =) I 1 I 2 g f(I 1) g f(I 2) =) g f(I 1 I 2) g f(g f(I 1) g f(I 2))

(1)

Obviously, I 1 I 1 I 2 and I 2 I 1 I 2 . So g f(I 1) g f(I 1 I 2) and g f(I 2) g f(I 1 I 2).

According to Property (3) of the Galois connection:

g f(g f(I 1) g f(I 2)) g f(g f(I 1 I 2)) =) g f(g f(I 1) g f(I 2)) g f(I 1 I 2) (2) From (1) and (2), we can conclude g f(I 1 I 2) = g f(g f(I 1) g f(I 2)).

Proposition 3: Let I be a generator i-itemset and S = fs 1 ; s 2 ; : : : ; s j g a set of (i 1)-subsets of I where S s2S s = I. If 9s a 2 S such as I g f(s a), then g f(I) = g f(s a). Proof: Let I be an i-itemset and s a 2 S, an (i 1)-subset of I.

I g f(s a) =) g f(I) g f(g f(s a)) =) g f(I) g f(s a) (1) s a 2 S =) s a I =) g f(s a) g f(I) (2)
From (1) and (2), we deduce g f(I) = g f(s a).

The function Gen-Generator works as follows. We rst apply the combinatorial phase of Apriori-Gen 2] to the set of generators in FC i giving us a set of new potential generators: two generators of size i in FC i with the same rst i 1 items are joined, producing a new potential generator of size i + 1.

1) insert into FCC i+1 .generator 2) select p.item 1 , p.item 2 , : : :, p.item i , q.item i 3) from FC i .generator p, FC i .generator q 4) where p.item 1 = q.item 1 , : : : , p.item i 1 = q.item i 1 , p.item i < q.item i ; Then, we prune the resulting set using two strategies. First, like in Apriori-Gen, for all potential generator p created we test the presence of all its i-subsets in FC i .generator. Indeed, if one of them is absent from FC i and according to Property 2 we deduce that p is not frequent and we can remove it from FCC i+1 . Let's take an example. Suppose that the set of candidate frequent closed itemsets FC 2 contains the generator itemsets AB; AC with respective closures ABC; ACD all frequent. The Gen-Generator 5) forall generators p 2 FCC i+1 .generator do begin [START_REF] Davey | Introduction to Lattices and Order[END_REF] forall i-subsets s of p do begin [START_REF] Ganter | Finding all closed sets: A general approach[END_REF] if (s = 2 FC i .generator) then 8)

delete p from FCC i+1 .generator; 9) end 10) end function will create ABC = AB AC as a new potential generator in FCC 3 . The rst pruning strategy will remove ABC from FCC 3 since BC = 2 FC 2 .generator as it is infrequent.

The second pruning strategy is as follows. For each potential generator p in FCC i+1 , we test if the closure of one of its i-subsets s is a superset of p. In that case, the closure of p will be equal to the closure of s (see Proposition 3), so we can remove p from FCC i+1 . Let's give another example. Suppose that the set of frequent closed itemsets FC 2 contains generators AB; AC; BC with respective closures AB; ABC; BC all frequent. The Gen-Generator function will create ABC = AB AC as a new potential generator in FCC 3 . The second prune step will remove ABC from FCC 3 since ABC closure(AC). Indeed, we can deduce that closure(ABC) = closure(AC) and the computation of the closure of ABC is useless.

Subset Function

Candidate frequent closed itemsets are stored in a pre x-tree structure to quickly nd all generators associated with an object. Our structure is derived from the one proposed in 10]. Figure 5 shows the Pre x-tree structure for the set FCC 2 given in Figure 6 Each edge in the tree is labeled with an item. A generator itemset is represented as a path in the tree, starting from the root node. The closure of a generator is stored in the leaf (terminal node) of the path representing it. Each node contains a pointer to a sibling node, a hash-table towards the children of the node and, if the node is a leaf, a pointer to the closure of the generator represented. For a node representing an i-itemset c, a sibling node represents another i-itemset with the same rst i 1 items and a hash collision on the i th item. For performance reasons, if the size of such a linked list exceeds a given threshold, instead of adding a new sibling node, the size of the hash-table of the parent node is doubled and the i th nodes are rebalanced. 0 1 0 0 1 1 0 10 1 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

B C 3 {B,C,E} 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 10 1 A B 2 {A,B,C,E}
Pointer to sibling

Hash-table

Pointer to closure Closure Support Item Figure 5: Pre x-tree of the set FCC 2 in Figure 6 The subset function takes as arguments a set of generators G and an itemset c. It determines which generators p 2 G are subsets of the itemset c. The function starts from the root node and hashes successively on each item of the itemset c down through the tree. Having reached a node by hashing on item i, we hash on each item that comes after i in c and recursively apply this procedure to the node in the corresponding bucket of the hash-table. At the root node, we hash on every item in c. When we are at a leaf, we add the reference to the generator to the answer set.

Example and Correctness

Figure 6 shows the execution of the algorithm on the data mining context D given in Figure 1. We assume that minsupport is 2 (40%). Step 1 initializes the set of generators in FCC 1 with the list of items in D. Calling Gen-Closure at step 3 gives for every generator p the candidate closed itemset p.closure and its support count p.support. In step 4 through 7 we generate FC 1 by pruning FCC 1 according to minsupport. In step 9 we produce the generators in FCC 2 by applying the function Gen-Generator to FC 1 . As we can see in Figure 6, calling Gen-Generator with FC 1 produces two new generators: AB and BC. Generators A and C in FC 1 do not give a new generator AC since the closure of A is AC and the closure of C is C. Obviously C AC, so the generator A C is deleted by the second pruning step of the function Gen-Generator.

Calling Gen-Closure with FCC 2 produces the closures of the generators in FCC 2 and their support. After the pruning of the candidate closed itemsets, FCC 2 and FC 2 are identical since all candidate closed itemsets in FCC 2 are frequent. The set of generators in FCC 3 constructed by calling Gen-Generator with FC 2 is empty as no generator in FC 2 have the same rst item, and the algorithm terminates. We can observe that the number of database passes is reduced by half compared to the execution of Apriori on the same example. Correctness We must ensure that all frequent closed itemsets have been produced. Starting with the set of items in the data mining context and making successive closures of the unions of closed itemsets found in the previous iteration gives the complete closed itemset lattice, based on the Join operator of Wille's basic theorem on concept lattices (see section 2.2). According to Proposition 2, working on generator itemsets is identical to working on their closures. The method we use for creating the generators (similar to the one in Apriori-Gen) is an e cient union method. This method yields all possible unions, avoiding redundancies, given the lexicographic order among items. The two pruning steps of the set of generators avoid useless computations by removing infrequent generators and generators which closure was already found (Proposition 3).

Scan

Deriving Frequent Itemsets

The pseudo-code for deriving frequent itemsets is given in Algorithm 4. It uses as its input the set of frequent closed itemsets FC = S i FC i and gives the set of frequent itemsets L = S k L k as the output. In step 1 through 5, we put each frequent closed itemset c from FC in the set of frequent itemset L kck corresponding to the size of c, and we determine the size k of the largest frequent itemsets. Then, during step 6 to 15 we construct all sets L i , starting from L k down to L 1 . In each iteration, we complete the set L i 1 using the itemsets in L i . For each i-itemset c in L i , we generate all (i 1)-subsets of c. All subsets that are not present in L i 1 are added to the end of L i 1 with support value equal to the support of c. This process takes place until L 1 has been completed.

1) k = 0;

2) forall frequent closed itemsets c 2 FC do begin forall (i 1)-subsets s of c do begin [START_REF] Mannila | Methods and problems in data mining[END_REF] if (s = 2 L i 1) then begin

L i 1 = L i 1 fsg; // Put s at the end of L i 1

end 15) end 16) Answer = S i=k i=1 L i ; Algorithm 4: Deriving frequent itemsets Example Figure 7 shows the execution of the algorithm using as input the sets FC 1 and FC 2 given in Figure 6. The rst phase of the algorithm simply splits frequent closed itemsets of FC 1 and FC 2 in sets L 1 to L 4 according to their size, and determines that k = 4. During the rst iteration of the loop (step 6 to 15), the closed itemset ABCE in L 4 is examined and generates ABC, ABE and ACE in L 3 with the same support value as ABCE. The closed itemset BCE is not generated since it is already present in L 3 . During the second iteration, we rst examine the closed itemset BCE, generating BC in L 2 with support = 3. If we had rst examined the itemset ABC, we would have generated BC in L 2 with support = 2 which is incorrect. At the end of the second iteration, L 2 is complete. The third iteration generates L 1 and ends the algorithm.

Correctness The correctness of the algorithm for deriving frequent itemsets relies on Properties 5 and 6, and on the fact that we rst examine closed i-itemsets in L i during the (i 1)-subset generation. For an iteration i, let c be a frequent closed i-itemset in L i and s an (i 1)-subset of c. If s is a closed itemset then it has already been inserted in L i 1 during the rst phase of the algorithm (step 1 to 5). If s is not a closed itemset, then according to Property 5 it is correct to insert s in L i 1 with the same support value as c. Now, consider that s is not a closed (i 1)-itemset and we are completing L i 2 . The support of s is equal to the support of c which is the smallest closed itemset containing s. Let s 0 be a (i 2)-subset of s. If s 0 is not a closed itemset and has not already been generated in L i 2 , then, given Proposition 3, its support is equal to the support of the smallest closed itemset containing s 0 which is c. Hence it is correct to insert s 0 in L i 2 with the support value of s. Since the set of maximal frequent itemsets is the same as the set of maximal frequent closed itemsets (see Property 6), the set L k is complete, where k is the size of the largest frequent itemsets (obviously all maximal frequent itemsets). Given the properties that all subsets of a frequent itemset are frequent and all supersets of an infrequent itemset are infrequent, by generating all subsets of the maximal frequent closed itemsets we generate all frequent itemsets, and the result is correct.

Generating Valid Association Rules

The problem of generating valid association rules can be solved in a straightforward manner once all frequent itemsets and their support are known. In this section, we describe an adapted version of Apriori rule generation algorithm 2] (implemented for our experiments). For every frequent itemset I 1 we derive all subsets I 2 of I 1 and we compute the ratio support(I 1)=support(I 2). If the result is at least mincon dence, then the rule I 2)(I 1 I 2) is generated. The support of any subset I 3 of I 2 being greater or equal to the support of I 2 , the con dence of the rule I 3)(I 1 I 3) is necessarily less than the con dence of the rule I 2)(I 1 I 2). Hence, if the rule I 2)(I 1 I 2) does not hold, neither will the rule I 3)(I 1 I 3). Conversely, if the rule (I 1 I 2))I 2 holds, then all rules of the form (I 1 I 3))I 3 also hold. For example, if the rule A)BC holds, then the rules AB)C and AC)B also hold.

Using this property for e ciently generating valid association rules, the algorithm works as follows.

For every frequent itemset I 1 , all rules with one item in the consequent that have a con dence at least equal to mincon dence are generated. We then create all consequents with 2 items that are possible in a rule generated from I 1 . This generation is performed by applying the Apriori-Gen function given in Section 2.1 to the set of one item consequents found in the rst step. Next the set of rules with 2 items in the consequent generated is pruned with respect to mincon dence. The 2 items consequents of the rules that hold are used for generating consequents with 3 items, etc. The pseudo-code is given in Algorithm 5.

Example Figure 8 gives the result of the frequent itemset discovery for the data mining context D, assuming that minsupport is 3 (60%). In Figure 9 we show the valid association rule generation for mincon dence = 0.5 (50%) using the previous result.

1) forall frequent k-itemsets l k 2 L k | k 2 do begin

2)

H 1 = { itemsets of size 1 that are subsets of l k };

3)

forall h 1 2 H 1 do begin 4)

con dence = support(l k)/support(l k h 1); // Con dence of r : (l k -h 1))h 1 5)

if (con dence mincon dence) then

Experimental Results

We implemented the Apriori and Close algorithms in C++ on several Unix platforms, to assess their relative performances. Both used the same data structure (as described in Section 4.1.3) that improves Apriori e ciency. Our experiments were realized on a 43P240 bi-processor IBM Power-PC running AIX 4.1.5 with a CPU clock rate of 166 MHz, 1GB of main memory and a 9GB disk. Only one processor was used since the application was single-threaded. The test program was allowed a maximum of 128MB. We did not implement swapping; also, the system bu ers were not ushed between each database pass of the algorithms. In Section 1, we describe the datasets used for the experiments. We then compare relative performances of the two algorithms in Section 2.

Test Data

The algorithms were tested on two types of datasets: synthetic data, which mimic market basket data, and census data, which belong to the domain of statistical databases. For generating the synthetic dataset, we used the program described in 2]. This dataset, called T10I4D100K, contains 100,000 objects for an average object size of 10 items and an average size of the maximal potentially frequent itemsets of 4. The census data were extracted from the Kansas 1990 PUMS le (Public Use Microdata Samples), in the same way as 3] for the PUMS le of Washington (unavailable through Internet at the time of the experiments). Unlike in 3] though, we did not put an upper bound on the support, as this distorts each algorithm's results in di erent ways. We therefore took smaller datasets containing the rst 10,000 persons. Dataset C20D10K contains 20 attributes (20 items per object and 386 total items), and C73D10K, 73 attributes (73 items per object and 2178 total items).

Relative Performance of Apriori and Close

Synthetic Data

We used the same values for minsupport as the ones used in 2], ranging from 2% to 0.25%. The gure beside shows the execution times of Apriori and Close on the dataset T10I4D100K. We can observe that Apriori performs better than Close on these data. The reason is that, in such datasets, data are weakly correlated and sparse; furthermore, nearly all frequent itemsets are closed. For an identical number of database passes, Close performs more operations to compute the closure of the generators. Response times remain however acceptable: two minutes and a half for the longest execution.

Census Data

Experiments were conducted on the two census datasets using di erent minsupport ranges to get meaningful response times and to accommodate with the memory space limit. Results for the C20D10K and C73D10K datasets are plotted on Figure 11 and Figure 12 respectively. Close always signi cantly outperforms Apriori, for execution times as well as number of database passes. Here, contrarily to the experiments on synthetic data, the di erences between the execution times can be counted in hours. It should furthermore be noted that Apriori could not be run for minsupport lower than 3% on C20D10K and lower than 70% on C73D10K as it exceeds the memory limit. Census datasets are typical of statistical databases: highly correlated and dense data. Many items being extremely popular, this leads to a huge number of frequent itemsets.

Scale up on Census Data

We nally examined how Apriori and Close behave as the object size is increased in census data. The number of objects was xed to 10,000 and the minsupport level was set to 10%. The object size varied from 10 (281 total items) up to 24 (408 total items). Apriori could not be run for higher object sizes. Results are shown in Figure 13. We can see here that, as expected, Close outperforms Apriori both in execution times and in memory space requirements.

Conclusion

We presented a new algorithm, called Close, for mining association rules in large databases. Close is based on the pruning of the closed itemset lattice, unlike existing algorithms that are all based on the pruning of the itemset lattice. As the number of itemsets and the height of the closed itemset lattice of a database are much smaller than those of the itemset lattice, Close can reduce both the number of database passes and the CPU overhead incurred by the frequent itemset search. We conducted performance evaluations to compare Close to an optimized version of Apriori using pre x-tree, which corresponds to the basic approach for nding association rules by pruning the itemset lattice. Experiments were carried out using two types of databases: synthetic data (often used as a benchmark for mining market basket data) and census data (a real-life statistical database application). Experimental results showed that Close is less e cient, but gives nonetheless acceptable response times, for mining synthetic data. On the contrary, Close clearly outperforms Apriori in the case of census data, in particular for large problems (that are more signi cant of real-life datasets). The number of database passes is reduced from a quarter to a half in comparison with the number of passes Apriori needs. Moreover, in all the cases, Close was able to discover association rules for low minsupport values that Apriori cannot treat because of its memory space requirements. Close is particularly well suited to statistical database applications that are considered as di cult problems.

In addition to the discovery of association rules, our algorithm has another important feature: Close gives an e cient computing of the Dedekind-MacNeille completion of an order 5], which is the smallest lattice associated with an order and is isomorphic to the closed itemset

Figure 1 :

 1 Figure 1: The transaction database D 2 Related Work and Contribution

Figure 2 :

 2 Figure 2: Itemset lattice of D

 gives the closed itemset lattice of D with frequent closed itemsets for minsupport = 2 outlined.

Figure 4 :

 4 Figure 4: Closed itemset lattice of D 4 C 1 is a sub-closed itemset of C 2 and C 2 is a sup-closed itemset of C 1

 de ne the set MC of maximal frequent closed itemsets as: MC = fC 2 FC j @C 0 2 FC; C C 0 g Property 3: All sub-closed itemsets of a frequent closed itemset are frequent. Proof: Derived from Property 1. Property 4: All sup-closed itemsets of an infrequent closed itemset are infrequent. Proof: Derived from Property 2. Property 5: The support of an itemset I is equal to the support of the smallest closed itemset containing I. Proof: Let I I be an itemset. The support of I in D is: support(I) = kg(I)k kOk Now, we consider g f(I), the closure of I. Since g(I) is closed and by consequence f g(g(I))= g(I) (according to Property (5) of the Galois connection), we have: support(g f(I)) = kg(g f(I))k kOk = kf g(g(I))k kOk = kg(I)k kOk = support(I) Property 6: The set of maximal frequent itemsets M is identical to the set of maximal frequent closed itemsets MC.

 Gen-Closure(F CC i); // Produces closures of generators (see Section 4.1FC = S j=i 1 j=1 (F C j .closure,F C j .support); Algorithm 2: Algorithm Close value are inserted in the set of frequent closed itemsets FC i . Finally, the generators of the set FCC i+1 are determined by applying the function Gen-Generator (described in Section 4.1.2) to the generators of the frequent closed itemsets in FC i . This process takes place until FCC i+1 is empty. Then, all frequent closed itemsets have been produced and their supports are known.4.1.1 Gen-Closure FunctionThe closure function Gen-Closure takes as argument the set of generator itemsets in FCC i . It updates FCC i with, for each generator p, the closed itemset p.closure and its support count p.support obtained by applying the closure operator g f to p. Algorithm 3 gives the pseudo-code of the function. The method used for computing closed itemsets is based on Proposition 1. Proposition 1: The closed itemset g f(I) corresponding to the closure by g f of the itemset I is the intersection of all objects in the database that contain I : g f(I) = \ o2O ff(fog) j I f(fog)g Proof: We de ne H = T o2S f(fog) where S = fo 2 O j I f(fog)g. We have g f(I) = f(g(I)) = T o2g(I) f(fog) = T o2S 0 f(fog) where S 0 = fo 2 O j o 2 g(I)g. Let's show that S 0 = S: I f(fog) () o 2 g(I) o 2 g(I) () I f(g(I)) f(fog)

 Subset(F CC i .generator,f(fog)); // Generators subsets of f({o}) (Section 4.1.closure = ;) then p.closure = f(fog); 5) else p.closure = p.closure \f(fog); = S { c 2 FCC i | c.closure 6 = ; }; Algorithm 3: Function Gen-Closure used during iteration i + 1 for constructing the set of candidate frequent closed itemsets.

Figure 7 :

 7 Figure 7: Deriving frequent itemsets for minsupport = 2 (40%)

Figure 9 :

 9 Figure 9: Generating valid association rules for minsupport=3 (60%) and mincon dence=0.5 (50%)

Figure 10 :

 10 Figure 10: Performance of Apriori and Close on synthetic data

Figure 11 :Figure 12 :Figure 13 :

 111213 Figure 13: Scale-up properties of Apriori and Close on census data

Table 1 :

 1 Notation

 .

	Scan D !	C1 Itemset Support {A} 3 {B} 4 {C} 4 {D} 1 {E} 4	Pruning of Infrequent itemsets !	L1 Itemset Support {A} 3 {B} 4 {C} 4 {E} 4
	Scan D !	C2 Itemset Support {AB} 2 {AC} 3 {AE} 2 {BC} 3 {BE} 4 {CE} 3	Pruning of Infrequent itemsets !	L2 Itemset Support {AB} 2 {AC} 3 {AE} 2 {BC} 3 {BE} 4 {CE} 3
	Scan D !	C3 Itemset Support {ABC} 2 {ABE} 2 {ACE} 2 {BCE} 3	Pruning of Infrequent itemsets !	L3 Itemset Support {ABC} 2 {ABE} 2 {ACE} 2 {BCE} 3
	Scan D !	C4 Itemset Support {ABCE} 2	Pruning of Infrequent itemsets !	L4 Itemset Support {ABCE} 2
	Figure 3: Discovering frequent itemsets with Apriori for minsupport = 2(40%)

 Field Contains FCC i generator A generator itemset of size i. closure Candidate closed itemset produced by the closure of generator: closure = g f(generator). support Support count of the closed itemset: support = count(closure). FC i generator Generator of the frequent closed itemset. closure Frequent closed itemset (closed itemset with support greater or equal to minsupport).

Table 2 :

 2 Notation

http://www.almaden.ibm.com/cs/quest/syndata.html

ftp://ftp2.cc.ukans.edu/pub/ippr/census/pums/pums90ks.zip

Here, we use the following notation: g f(I) = f(g(I)) and f g(O) = g(f(O)).

Closed subsets of a closed itemset.

Closed supersets of a closed itemset.