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ROBUST A POSTERIORI ERROR CONTROL AND ADAPTIVITY

FOR MULTISCALE, MULTINUMERICS, AND MORTAR COUPLING∗

GERGINA V. PENCHEVA† , MARTIN VOHRALÍK‡ , MARY F. WHEELER† , AND TIM

WILDEY†

Abstract. We consider discretizations of a model elliptic problem by means of different numer-
ical methods applied separately in different subdomains of the computational domain and coupled
using the mortar technique. The subdomain grids need not match along the interfaces. We are
also interested in the multiscale setting, where the subdomains are partitioned by a mesh of size h,
whereas the interfaces are partitioned by a mesh of much coarser size H, and where lower-order poly-
nomials are used in the subdomains and higher-order polynomials are used on the mortar interface
mesh. We derive several fully computable a posteriori error estimates which deliver a guaranteed
upper bound on the error measured in the energy norm. Our estimates are also locally efficient and
one of them is robust with respect to the ratio H/h under an assumption of sufficient regularity. The
present approach allows to bound separately and to compare mutually the subdomain and interface
errors. A subdomain/interface adaptive refinement strategy is proposed and numerically tested.

Key words. multiscale, multinumerics, mortar coupling, nonmatching grids, a posteriori error
estimate, guaranteed upper bound, robustness, balancing error components

AMS subject classifications. 65N15, 65N30, 76S05

1. Introduction. We consider in this paper the model problem

−∇·(K∇p) = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where Ω ⊂ Rd, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and
connected set), K is a symmetric, bounded, and uniformly positive definite tensor,
and f ∈ L2(Ω). Let Ω be divided into several subdomains. We are interested in
discretizations by different numerical methods in the different subdomains. The cou-
pling of these different methods is achieved by the mortar technique. We allow for the
cases where the grids of the individual subdomains do not match along the interfaces
and where the subdomain grid elements are a mixture of simplices and of rectangular
parallelepipeds. We also investigate the case where the size of the subdomain grids,
say h, is much smaller than the size of the interface grid, say H . More precisely,
we suppose that H = O(hβ) with β < 1; then lower-order polynomials are used in
the subdomain grids and higher-order polynomials are used on the mortar interface
mesh. Particular examples of such discretizations are the multiscale mortar mixed
finite element method proposed in [6] or the multiscale mortar coupled mixed finite
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element–discontinuous Galerkin method of [19]. Note that multiscale mortar tech-
niques are especially appealing as the discretization can be reduced to a problem only
involving higher-order polynomials on the interface mortar mesh (see [6]). In addi-
tion, this immediately leads to a parallel implementation following [20]. A multiscale
mortar basis can be constructed following [18] and multiscale preconditioners can be
used following [34]. This leads to their extremely high computational efficiency.

The purpose of this paper is to derive a general framework for optimal a posteriori
error estimation in the multiscale, multinumerics, and mortar coupling setting. We
derive fully and locally computable estimates providing a guaranteed upper bound
on the energy error. We propose several estimators, with increasing complexity of
evaluation but with increasing precision. All these estimators are also locally efficient;
that is, they also give local lower bounds on the energy error. Importantly, this
property holds independently of the use of different discretization schemes in different
parts of the domain, of the use of the mortar coupling, and, to a reasonable degree,
of the non-alignment of the subdomain meshes at the interfaces. Our estimates are
thus robust with respect to the multinumerics and mortar coupling. Moreover, the
last of our estimators gives estimates robust with respect to the ratio H/h and is
thus robust with respect to the multiscale. We take here up the analysis of [35, 6]
while using tools from [30, 33, 17]. For recent results on a posteriori error estimation
in multiscale discretizations, we refer to [26, 1, 23] and to the references therein.
A posteriori estimates for discretizations with mortar coupling have previously been
analyzed in, e.g., [36, 8, 7, 13, 9, 10] and a posteriori estimates for multinumerics in,
e.g., [10, 14].

In Section 2, we set up the notation, define the admissible grids, finite-dimensional
spaces, and describe the continuous setting. Our a posteriori error estimates are stated
in Section 3. We do so in a general setting, not mentioning any particular (combination
of) numerical methods employed. We only suppose that we are given an approximate
flux uh which is H(div,Ωi)-conforming inside each subdomain Ωi, locally conservative
inside each subdomain Ωi, and whose normal trace is weakly continuous across the
interface; see Assumption 3.1. As mentioned earlier, we derive several estimators.
Some of them only use the given (nonmatching) grid Th and some of them require a

construction of a matching grid T̂h and of a globallyH(div,Ω)-conforming flux th. The
flux th can be constructed by directly prescribing its degrees of freedom, by solution of
low-order-polynomial-degree h-size local Neumann problems, or by solution of high-
order-polynomial-degreeH-size local Neumann problems by means of the mixed finite
element method. All these approaches are described in detail in Section 3.

Section 4 investigates the local efficiency of the derived estimates. Once again,
this is done generally, without a specification of the underlying numerical scheme(s);
we only need Assumption 4.1 on the weak continuity of the approximate potential p̃h.
Section 5 then gives examples of multiscale, multinumerics, and mortar discretiza-
tions. We therein also verify Assumptions 3.1 and 4.1 for each example in question.
Sections 6 and 7 respectively collect the proofs of the a posteriori error estimates
and of their efficiency. Our estimates allow to distinguish and estimate separately
the error coming from the inside of the subdomains and that coming from the mor-
tar coupling; an adaptive algorithm keeping the two error contributions in balance
and numerical experiments illustrating the theoretical developments are given in Sec-
tion 8. (The present estimates can also be used to distinguish and estimate separately
the discretization and upscaling errors, cf. Remark 3.9 below.) Appendix A gives a
technical result necessary for the analysis on nonmatching grids.
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Fig. 2.1. Example of a domain Ω with subdomains Ωi and nonmatching mesh Th (left), interface
mesh GH (middle), and the corresponding interface mesh G∗

h
(right)

2. Preliminaries. We introduce in this section the partitions of Ω, notation,
continuous setting, and recall some useful inequalities.

2.1. Partitions of Ω and of Γ. We suppose that Ω is decomposed into nonover-
lapping polygonal (polyhedral) subdomains Ωi, i ∈ {1, . . . , n}. This partition can be
nonmatching in the sense that neighboring subdomains need not share complete sides
(edges if d = 2, faces if d = 3). We denote Γi,j := ∂Ωi ∩ ∂Ωj , Γ := ∪1≤i<j≤nΓi,j ,
and Γi := ∂Ωi ∩ Γ. Let Th,i be a matching finite element mesh of Ωi, i ∈ {1, . . . , n},
composed of simplices and rectangular parallelepipeds. A mixture of triangles and
rectangles is allowed for d = 2 but we only allow for either tetrahedra or rectangular
parallelepipeds for d = 3 (we would need to introduce other elements like prisms for
d = 3 in order to allow for mixture grids, which we prefer to avoid for the sake of sim-
plicity). We then set Th := ∪n

i=1Th,i and denote by h the maximal element diameter
in Th; note that Th can be nonmatching as neighboring meshes Th,i and Th,j need not
align on Γi,j . A generic element of the partition Th will be denoted by T ; hT stands
for the diameter of T . This setting is illustrated in Figure 2.1 (left).

We use E int
h,i to denote the interior sides of Th,i, i ∈ {1, . . . , n}, and set E int

h :=

∪n
i=1E int

h,i ; E int
h thus contains neither the subdomain interfaces nor the outer boundary

of Ω. We denote by Eh,i all the sides of Th,i and set Eh := ∪n
i=1Eh,i. We let EΓ

h,i,j be

the partition of Γi,j by the sides of Th,i and EΓ
h,i the partition of Γi by the sides of

Th,i. We denote by EΓ
h := ∪1≤i≤nEΓ

h,i all the sides of Th located at the interface Γ and

by Eext
h := Eh \ E int

h \ EΓ
h the faces of Th located at the boundary of Ω. We also set

E int,Γ
h := E int

h ∪ EΓ
h . The notation ET stands for all the sides of en element T ∈ Th. A

generic side of Eh will be denoted by e and its diameter by he.
Next, we let GH,i,j be the mortar interface finite element mesh of Γi,j . The

elements g ∈ GH,i,j are either line segments (if d = 2) or triangles or rectangles (if
d = 3). We do not require GH,i,j to be matching in the sense of a (d− 1)-dimensional
mesh of Γi,j . We set GH,i := ∪1≤j≤nGH,i,j and GH := ∪1≤i<j≤nGH,i,j , cf. Figure 2.1
(middle). Maximal element diameter in GH is denoted byH . In the multiscale setting,
h < H ≤ 1 and the ratio H/h can be unbounded, H = O(hβ) with β < 1. Note that
on an interface Γi,j , GH,i,j is a unique (d − 1)-dimensional surface mesh, whereas
there are two (different) meshes EΓ

h,i,j and EΓ
h,j,i from the two sides of the interface.

Also, the meshes EΓ
h,i,j and EΓ

h,j,i need in general not be refinements of GH,i,j ; we will,
however, need such a requirement at some occasions later. We also assume that the
intersection of the meshes EΓ

h,i,j and EΓ
h,j,i is a matching mesh of Γi,j consisting of

line segments (if d = 2) or triangles or rectangles (if d = 3), such that for any of its
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T̂h
TH TH

Fig. 2.2. Example of a matching refinement T̂h of Th (left), of a nonmatching and not shape-
regular mesh TH (middle), and of its modification avoiding nonconvex elements (right)

TH

TH

Fig. 2.3. Example of a shape-regular but nonmatching mesh TH (left) and of a matching and
shape-regular mesh TH (right)

element T , the ratio |T |/|T ′| for any element T ′ of EΓ
h,i,j or EΓ

h,j,i is bounded.
We will in the sequel also use the following partition of Γ. Let an interface Γi,j

be given. We define the mesh G∗
h,i,j as a set of (d − 1)-dimensional sides g, where

each g ∈ G∗
h,i,j is simultaneously a union of sides from EΓ

h,i,j and a union of sides from

EΓ
h,j,i. We choose the sides g so as to be composed of a smallest possible number of

sides from EΓ
h,i,j and EΓ

h,j,i. There is one mesh G∗
h,i,j for each interface Γi,j . We set

G∗
h,i := ∪1≤j≤nG∗

h,i,j and G∗
h := ∪1≤i<j≤nG∗

h,i,j , cf. Figure 2.1 (right). We denote
by Hg the diameter of a side g ∈ GH and by hg the diameter of a side g ∈ G∗

h. We
suppose that there exists a positive constant CG∗

h
such that, for all g ∈ G∗

h,

(2.1)
hg
he

≤ CG∗
h

∀e ∈ EΓ
h , e ⊂ g.

Assuming (2.1), we avoid the case where hg/he is only bounded by a function of H/h.

Finally, two other types of partitions of Ω will be used in the paper. Firstly, T̂h is
a matching refinement of Th, consisting of simplices and rectangular parallelepipeds
(as for Th, mixture grids are allowed for d = 2). We refer to Figure 2.2 (left) for an

example of T̂h. We denote by Êh the sides of T̂h and use the notation T̂h,i for the

restriction of T̂h on the subdomain Ωi. We suppose that T̂h,i coincides with Th,i in

the interior of each subdomain Ωi and only differs from T̂h near the interfaces. More
precisely, we assume that for each T ∈ Th such that T ∩Γ = ∅, there exists an element
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T ′ ∈ T̂h such that T = T ′. We also assume that every side e′ ∈ Êh which shares a node
with this T ′ either coincides with some side e ∈ E int

h or belongs to the interior of some

T ′′ ∈ Th. Finally, we assume that T̂h adds no new nodes and sides at the interface Γ
in comparison with Th. The last mesh used is denoted by TH . It will be in general
formed by groups of elements from Th and it will differ in different approaches. It
may be matching or nonmatching, shape-regular (cf. Section 4 for our definition of
shape-regularity) or not; it’s characteristic feature is that the restriction of TH on Γ
is the interface mesh GH . As before, we use the notation TH,i for the restriction of
TH on Ωi. We refer to Figure 2.2 (middle and right) and to Figure 2.3 for examples
of different meshes TH . For an element T ∈ TH , we denote by GT the set of its sides.

2.2. Finite-dimensional spaces and projection operators. We begin with
the mortar space MH . It is the space of discontinuous piecewise polynomials of or-
der m on the interface mesh GH ; MH thus in particular contains piecewise constant
functions on GH . We next define the spaces on Th. If T ∈ Th is a simplex, we let
Rr(T ) := Pr(T ) be the space of polynomials of total degree at most r. If T ∈ Th
is a rectangular parallelepiped, we let Rr(T ) := Qr(T ) be the space of polynomials
of degree at most r in each variable. We then define Rr(Th) as the space such that
for each w ∈ Rr(Th), w|T ∈ Rr(T ); we require no continuity at the sides. We also
define Rk−1,∗,d(T ) by [Pk−1(T )]

d for a simplex and Qk−1,k(T ) × Qk,k−1(T ) if d = 2
and Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ) if d = 3 for a rectangular parallelepiped.
Let Vh,i×Wh,i ⊂ H(div,Ωi)×L2(Ωi) be the Raviart–Thomas–Nédélec (RTN) mixed

finite element spaces of order k, Vh,i := RTNk(Th,i), Wh,i := Rk(Th,i), cf. [11, 28].
The present theory can easily be extended to other mixed finite element spaces. We
can also easily take into account spaces with different polynomial degrees in different
subdomains and also with different polynomial degrees in different elements; we re-
strict ourselves to the given setting for the sakes of brevity and clarity. We then set
Vh :=

⊕n
i=1 Vh,i, Wh :=

⊕n
i=1Wh,i. Note that the normal components of vectors

in Vh are continuous across the sides between elements in each subdomain Ωi but
not across Γ. Based on these spaces, we will also use V

ĥ
, the RTN space on the

matching submesh T̂h of Th, and W
ĥ
, the Wh equivalent on T̂h. We keep the same

order k when both Th and T̂h are simplicial. When T̂h contains simplices cutting
rectangular parallelepipeds (as in Figure 2.2 (left)) and when using the approach of
Section 3.3.2 below, we have to appropriately increase the space order to k′ in V

ĥ
and

W
ĥ
, see (3.20a). In the case where TH is matching and shape-regular, VH stands for

the m-th order RTN space on the coarse mesh TH and WH for the Wh equivalent on
TH . We use the notation V (S) for the restriction of some space V , a priori defined
on the whole Ω/mesh Th, to the subdomain/submesh S.

We will also need some orthogonal projections: let PWh
be the L2(Ω)-orthogonal

projection onto Wh, PW
ĥ
the L2(Ω)-orthogonal projection onto W

ĥ
, PWH

the L2(Ω)-

orthogonal projection onto WH , and PMH
the L2(Γ)-orthogonal projection onto MH ,

PWh
: L2(Ω) →Wh for w ∈ L2(Ω), (w − PWh

(w), wh) = 0 ∀wh ∈Wh,

PW
ĥ
: L2(Ω) →W

ĥ
for w ∈ L2(Ω), (w − PW

ĥ
(w), wh) = 0 ∀wh ∈W

ĥ
,

PWH
: L2(Ω) →WH for w ∈ L2(Ω), (w − PWH

(w), wH ) = 0 ∀wH ∈WH ,

PMH
: L2(Γ) →MH for µ ∈ L2(Γ), (µ− PMH

(µ), µH)Γ = 0 ∀µH ∈MH .

We also denote by πl the orthogonal projection onto Rl(T ) (T is the mesh in question).
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2.3. Other notation. Let D ⊂ Ω. Then ‖ · ‖D stands for the L2(D) norm and
(·, ·)D for the L2(D) scalar product. Shall D coincide with Ω, the subscript D will
be dropped. The L2(D) scalar product for D ⊂ Rd−1 will be denoted by 〈·, ·〉D. We
also use the notation |D| for the (d − 1)-dimensional Lebesgue measure of D ⊂ Rd′

,
1 ≤ d′ ≤ d. For v ∈ L1(D), we denote by vD the mean value of v on D. For D ⊂ Ω,
we denote by cK,D, CK,D the smallest and largest eigenvalue of K on D, respectively.

For a sufficiently smooth function v that is double-valued on an interior side
e ∈ E int

h , e = T− ∩ T+, its jump and average on e are defined as

(2.3) [[v]] := v|T− − v|T+ , {{v}} := 1
2 (v|T− + v|T+).

We set [[v]] := v|e and {{v}} := v|e for e ∈ Eext
h . We use similar notation for the sides

g from GH and G∗
h and also for the sides e from Êh. For each side e ∈ E int

h , g ∈ GH ,
or g ∈ G∗

h, we use the notation ne, ng for the unit normal vector, pointing from T−

towards T+. Similarly, nΓ stands for the unit normal vector to Γ, with arbitrary but
fixed orientation. For boundary sides e, ne coincides with the unit normal vector,
outward to Ω. Similarly, for D ⊂ Ω, nD is systematically used to denote the unit
normal vector, outward to D.

2.4. Bilinear form, weak solution, energy norm. Let the symmetric bilin-
ear form A be given by

(2.4) A(u,v) := (u,K−1v), u,v ∈ L2(Ω).

The weak solution of (1.1a)–(1.1b) is p ∈ H1
0 (Ω) such that

(2.5) A(K∇p,K∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω).

Recall that u := −K∇p is the weak flux satisfying u ∈ H(div,Ω). Let H1(Th) :=
{ϕ ∈ L2(Ω); ϕ|T ∈ H1(T ) ∀T ∈ Th} be the broken Sobolev space. We will use the
sign ∇ to denote the elementwise gradient. We define the energy seminorm on H1(Th)

(2.6) |||ϕ|||2 := A(K∇ϕ,K∇ϕ) =
∥∥K 1

2∇ϕ
∥∥2, ϕ ∈ H1(Th),

and the energy norm on L2(Ω) by

(2.7) |||v|||2∗ := A(v,v) =
∥∥K− 1

2v
∥∥2, v ∈ L2(Ω).

2.5. Poincaré and trace inequalities. We recall here two basic inequalities
necessary in order to obtain our a posteriori error estimates. Let T be an element of
any of the finite element partitions considered, e its side, and ϕ ∈ H1(T ). Firstly,
Poincaré’s inequality states that

(2.8) ‖ϕ− ϕT ‖T ≤ CP,ThT ‖∇ϕ‖T .

The constant CP,T is equal to 1/π whenever T is convex. Secondly, the trace inequality
states that

(2.9) ‖ϕ− ϕe‖e ≤ Ct,T,eh
1
2
e ‖∇ϕ‖T .

It has been shown in [25, Lemma 3.5] that Ct,T,e = (Ct,d)
1
2 (|e|h2T /(|T |he))

1
2 , where

Ct,d ≈ 0.77708 for a triangle, Ct,d ≈ 3.84519 for a tetrahedron, and Ct,d = 1/(π tanhπ)
for a rectangle.
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3. A posteriori error estimates. We present in this section a general frame-
work for a posteriori error estimates in the multiscale, multinumerics, and mortar
coupling setting. We propose several guaranteed and fully computable estimates and
we discuss their practical evaluation.

We present the results in a general setting, not relying on any particular discretiza-
tion method. Recall that the meshes Th and GH and the space Vh are introduced in
Section 2. We only make the following assumption:

Assumption 3.1 (Properties of uh). Let
1. uh ∈ Vh;
2. (∇·uh, 1)T = (f, 1)T ∀T ∈ Th;

3.
n∑

i=1

〈uh·nΩi
, µH〉Γi

= 0 ∀µH ∈MH .

Assumption 3.1 means that the approximate flux uh is H(div,Ωi)-conforming
inside each subdomain Ωi, locally conservative inside each subdomain Ωi on the el-
ements of Th,i, and that its normal trace is weakly continuous across the interface
sides. We will, in fact, still weaken this assumption in some of the results below.

3.1. Estimates for the flux. We first state estimates for the error in the flux
uh. We need to introduce some more notation. Let TH be a coarse-scale mesh as
introduced in Section 2.1. This mesh is only needed in order to state the following
estimate, it is not needed for the computation of uh. For a given subdomain Ωi and
a given interface side g ∈ GH,i, let Ti,g denote the element of TH,i having g as a side.
We assume that the elements Ti,g, g ∈ GH,i, i ∈ {1, . . . , n}, do not overlap. Such a
mesh TH can always be constructed; remark also that the choice of TH is not unique.
For a given i ∈ {1, . . . , n}, g ∈ GH,i, and the associated Ti,g ∈ TH,i, recall that we
have the trace inequality (2.9) with the constant Ct,Ti,g ,g. For a given T ∈ Th, recall
that we have Poincaré’s inequality (2.8) with the constant CP,T . The first result is:

Theorem 3.2 (A “mortar” estimate for the flux). Let u be the exact flux and
let uh satisfy Assumption 3.1. Pick an arbitrary sh ∈ H1

0 (Ω). Then

|||u − uh|||∗ ≤ ηP + ηR,h + ηM,

where the potential, residual, and mortar estimators are given respectively by

ηP :=|||uh +K∇sh|||∗,(3.1)

ηR,h :=

{
∑

T∈Th

C2
P,Th

2
T c

−1
K,T ‖f −∇·uh‖2T

} 1
2

,(3.2)

ηM :=

{
n∑

i=1

n∑

j=1

∑

g∈GH,i,j

(
1
2‖[[uh·ng]]‖gCt,Ti,g ,gH

1
2
g c

− 1
2

K,Ti,g

)2
} 1

2

.(3.3)

Theorem 3.2 gives a guaranteed upper bound on the error |||u−uh|||∗. It contains
the mortar estimate ηM which clearly corresponds to the discontinuity of the normal
component of uh across the subdomain interfaces. It is thus possible to distinguish the
error component stemming from the subdomain discretization error (ηP and ηR,h) and
the one due to the mortar coupling at the subdomain interfaces (ηM) and to adaptively
decide whether the subdomain or mortar approximation should be improved. The
estimate of Theorem 3.2 may, however, overestimate the mortar error since it is based
on the trace inequality (2.9) and features the (known) constant Ct,Ti,g ,g.
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In order to possibly improve on this point, we also present the following theorem
(here TH is either a coarse-scale or a fine-scale partition of Ω, to be determined later):

Theorem 3.3 (An optimal estimate for the flux). Let u be the exact flux and
let uh ∈ L2(Ω) be arbitrary. Pick an arbitrary sh ∈ H1

0 (Ω) and let th ∈ H(div,Ω) be
arbitrary but such that

(3.4) (∇·th, 1)T = (f, 1)T ∀T ∈ TH .

Then

(3.5) |||u − uh|||∗ ≤ ηP + ηR,H + η̃M,

where ηP is given by (3.1) and

ηR,H :=

{
∑

T∈TH

C2
P,TH

2
T c

−1
K,T ‖f −∇·th‖2T

} 1
2

,(3.6)

η̃M := |||uh − th|||∗.(3.7)

We remark that the nature of the above estimate is clear. Instead of ηP and η̃M,
respectively, it can be written with infsh∈H1

0 (Ω) |||uh+K∇sh|||∗ and infth |||uh− th|||∗,
where th are to be taken in H(div,Ω) and such that (∇·th, 1)T = (f, 1)T for all
T ∈ TH . Then the first term corresponds to the fact that uh 6= −K∇sh for some
sh ∈ H1

0 (Ω), which is which is the case for the exact flux, whereas the second term
corresponds to the facts that uh 6∈ H(div,Ω) and ∇·uh 6= f .

3.2. Estimates for the potential. We state here our estimates for the error in
the potential. We present them for a general potential approximation p̃h ∈ H1(Th).

Theorem 3.4 (A “mortar” estimate for the potential). Let p be the exact po-
tential, let p̃h ∈ H1(Th) be arbitrary, and let uh satisfy Assumption 3.1. Pick an
arbitrary sh ∈ H1

0 (Ω). Then

|||p− p̃h||| ≤ ηNC + ηR,h + ηM + ηDF,

where ηR,h is given by (3.2), ηM by (3.3), and the nonconformity and diffusive flux
estimators are given respectively by

ηNC := |||p̃h − sh|||,(3.8)

ηDF := |||K∇p̃h + uh|||∗.(3.9)

As in Section 3.1, the following improved version of Theorem 3.4 holds (here TH
is as in Theorem 3.3):

Theorem 3.5 (An optimal estimate for the potential). Let p be the exact po-
tential and let p̃h ∈ H1(Th) be arbitrary. Pick an arbitrary sh ∈ H1

0 (Ω) and let
th ∈ H(div,Ω) be arbitrary but such that (3.4) holds. Then

(3.10) |||p− p̃h||| ≤ ηNC + ηR,H + ηDFM,

with ηNC given by (3.8), ηR,H by (3.6), and the diffusive flux–mortar estimator by

ηDFM := |||K∇p̃h + th|||∗.(3.11)
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The nature of the estimate is again clear: we can replace ηNC by infsh∈H1
0 (Ω) |||p̃h−

sh||| which corresponds to the fact that p̃h 6∈ H1
0 (Ω), which is the case for the exact

potential. Similarly, one can write the estimate with infth |||K∇p̃h + th|||∗ with th ∈
H(div,Ω) and (∇·th, 1)T = (f, 1)T for all T ∈ TH , which corresponds to the facts that
K∇p̃h 6∈ H(div,Ω) and −∇·(K∇p̃h) 6= f , which is the case for the exact potential.
Note that, by the triangle inequality, ηDFM ≤ ηDF + η̃M, so that we can once again
distinguish the subdomain and interface errors.

Remark 3.6 (Residual estimator ηR,H). Recall PW
ĥ
and PWH

of Section 2.2.
We will meet particular cases where th of Theorems 3.3 and 3.5 will be such that

(3.12) ∇·th = PW
ĥ
(f).

Then we can set TH := T̂h in Theorems 3.3 and 3.5 and replace ηR,H of (3.6) by

(3.13) ηR,ĥ
:=

{
∑

T∈T̂h

C2
P,Th

2
T c

−1
K,T ‖f − PW

ĥ
(f)‖2T

} 1
2

.

Note that ηR,ĥ
takes the form of the usual data oscillation estimate on the mesh T̂h.

We will also meet cases where th of Theorems 3.3 and 3.5 will be such that

(3.14) ∇·th = PWH
(f).

Then the residual estimator ηR,H of (3.6) takes the form

(3.15) ηR,H =

{
∑

T∈TH

C2
P,TH

2
T c

−1
K,T ‖f − PWH

(f)‖2T

} 1
2

.

Note that such ηR,H takes the form of the data oscillation on the mesh TH .
Remark 3.7 (Theorems 3.2–3.5). In Theorems 3.2 and 3.4, only the meshes

Th and GH are needed (the mesh T̂h introduced in Section 2.1 may be employed for
the construction of the the potential reconstruction sh when Th is nonmatching). For

Theorems 3.3 and 3.5, the meshes T̂h (when Th is nonmatching) and TH introduced in
Section 2.1 and specified in Section 3.3 below are essential. Note also that the potential
reconstruction sh is needed in all Theorems 3.2–3.5, whereas the flux reconstruction
th is only needed in Theorems 3.3 and 3.5.

Remark 3.8 (Necessity to practically construct sh and th). The a posteriori
error estimators above only involve norms featuring the reconstructions sh and th.
Following, e.g., [4], there may be ways how to compute these estimators (evaluate
these norms) without the need to practically construct sh and th.

Remark 3.9 (Upscaling ofK and the associated error). In the present setting, K
is not related to the fine-scale mesh Th nor to any coarse-scale mesh TH (it is not sup-
posed to be, for example, piecewise constant or piecewise polynomial on some mesh).
In practice, some upscaled version Kupsc of K (for instance, piecewise polynomial on
TH) may be used to obtain uh (and p̃h). We then can estimate

ηP =‖K− 1
2 (uh +K∇sh)‖ ≤ ‖(K− 1

2 −K
− 1

2
upsc)uh‖+ ‖(K 1

2 −K
1
2
upsc)∇sh‖

+ ‖K− 1
2

upsc(uh +Kupsc∇sh)‖,
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where the first two terms represent the upscaling error and the last term the discretiza-
tion error. Similar estimates can be devised for the other estimators.

We will consider below the restrictions of the different estimators to each element
T , denoted by η·,T . Similarly, for g ∈ GH,i,j , we set

(3.16) ηM,g := ‖[[uh·ng]]‖gH
1
2
g

{(
1
2Ct,Ti,g ,gc

− 1
2

K,Ti,g

)2
+
(

1
2Ct,Tj,g ,gc

− 1
2

K,Tj,g

)2} 1
2

.

3.3. Practical construction of H1
0 (Ω)- and H(div,Ω)-conforming recon-

structions. We describe here practical constructions of H1
0 (Ω)-conforming recon-

struction sh figuring in Theorems 3.2–3.5 and of H(div,Ω)-conforming reconstruction
th figuring in Theorems 3.3 and 3.5. We only propose one way of constructing sh but
we derive several ways of constructing th.

Let g ∈ GH,i,j . Then Assumption 3.1 (3) implies

(3.17) 〈[[uh·ng]], µg〉g = 0 ∀µg ∈MH(g).

From (3.17), the precise sense of the weak continuity is obvious: jumps of the normal
components of uh are orthogonal on g to the polynomials contained in MH(g). This
in particular allows us to define a function F ∈MH such that

(3.18) F |Γi,j
:= PMH

((uh|Ωi
·nΓ)|Γi,j

) = PMH
((uh|Ωj

·nΓ)|Γi,j
) i, j ∈ {1, . . . , n}.

Finally, using the weak continuity, we also clearly have

〈uh|Ωi
·ng, 1〉g = 〈uh|Ωj

·ng, 1〉g = 〈{{uh·ng}}, 1〉g = 〈F, 1〉g
∀g ∈ GH,i,j , i, j ∈ {1, . . . , n}.(3.19)

3.3.1. Construction of sh. We propose here a particular construction relying
on the mesh T̂h; other constructions, only using the mesh Th, are possible.

Recall that T̂h is the matching submesh of Th introduced in Section 2.1 and
note that Rr(Th) ⊂ Rr′(T̂h), r′ ≥ r, i.e., every piecewise polynomial on Th is also a

piecewise polynomial on T̂h, where possibly the polynomial degree r is increased to r′.
On Rr′(T̂h), we can thus use the averaging interpolate Iav : Rr′(T̂h) → Rr′(T̂h)∩H1

0 (Ω)

defined as follows: for a function ϕh ∈ Rr′(T̂h), the values of Iav(ϕh) at a Lagrange
node V inside Ω are given by the average of the values of ϕh at this node,

Iav(ϕh)(V ) =
1

|T̂V |
∑

T∈T̂V

ϕh|T (V ),

where T̂V is the set of those T ∈ T̂h to which V belongs and where for any set S, |S|
denotes its cardinality. Note that Iav(ϕh)(V ) = ϕ(V ) at those nodes V lying in the

interior of some T ∈ T̂h. At boundary nodes, the value of Iav(ϕh) is set to zero. We
refer to [21, 12, 31] for more details.

3.3.2. Construction of th ∈ V
ĥ

by direct prescription. We define here

th ∈ V
ĥ
where T̂h is the mesh introduced in Section 2.1, cf. Figure 2.2 (left).

Remark that {{uh·ne}} is univalued and is a polynomial on all e ∈ Êh. This follows
from the assumption that T̂h is a refinement of Th and, consequently, all sides e ∈ Êh
either coincide with the sides of Eh, are subsides of the sides of Eh, or pass through
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the interior of some T ∈ Th. Recall also that by assumption, T̂h is a matching mesh
of Ω. The flux th is prescribed by the degrees of freedom of V

ĥ
on the mesh T̂h by

th·ne := {{uh·ne}} ∀e ∈ Êh,(3.20a)

(th, rh)T = (uh, rh)T ∀rh ∈ Rl−1,∗,d(T ), ∀T ∈ T̂h,(3.20b)

where l = k or k′, depending on the order k or k′ of V
ĥ
(T ). Remark that th

given by (3.20a)–(3.20b) indeed satisfies th ∈ H(div,Ω), as required in Theorems 3.3

and 3.5. Recall also that by assumption, the mesh T̂h only differs from the mesh Th
near the interface Γ. Consequently, by the above construction, th completely coin-
cides with uh on those elements T of T̂h which do not share a node with Γ and the
estimator η̃M,T given by (3.7) is equal to 0 on such T .

To apply Theorems 3.3 and 3.5, we still need to identify a partition TH such that
the local conservation property (3.4) holds. For a fixed Ωi, we will form two groups of
elements of TH,i, denoted respectively by T Γ

H,i and T int
H,i. Elements T of T Γ

H,i are given

as unions of the elements of T̂h,i sharing a node with Γ, in a way that ∂T ∩ Γi is a
union of sides g ∈ GH,i. Optimally, ∂T ∩Γi is just one side g ∈ GH,i for each T ∈ T Γ

H,i.
Clearly, by (3.20a), (3.19), Green’s theorem, and Assumption 3.1 (2), (3.4) on all such
T follows. The elements of the second group T int

H,i are given directly by the elements
of Th,i; consequently, (3.4) follows immediately from Assumption 3.1 (2). Denote
TH := ∪1≤i≤nTH,i, T Γ

H := ∪1≤i≤nT Γ
H,i, and T int

H := ∪1≤i≤nT int
H,i . The resulting mesh

TH can be nonmatching and needs not be shape-regular, cf. Figure 2.2 (middle). In
order to optimally bound the constant CP,T from Poincaré’s inequality (2.8), which is
used on elements T ∈ TH , cf. (3.6), it is however preferable when the elements T ∈ TH
are convex; modifications of TH to a mesh like that in Figure 2.2 (right) are possible.

Remark 3.10 (th given by (3.20a)–(3.20b)). The definition of th by (3.20a)–
(3.20b) gives a lower-order (k-th or k′-th order RTN) polynomial th and is virtually
cost-free as no local linear systems are to be solved. We obtain local conservation on
the mesh TH in the sense of (3.4). This mesh is, however, rather unconventional and
can be nonmatching and not shape-regular. Most importantly, the mortar error is only
evaluated in the h-distance from the interface Γ, which, as we will see in Theorem 4.5
below, leads to its increased overestimation in the multiscale setting when h≪ H.

3.3.3. Construction of th ∈ V
ĥ
by the solution of h-grid-size k-th order

local Neumann problems. We define here th ∈ V
ĥ
such that ∇·th = PW

ĥ
(f). We

first form a partition TH as in Section 3.3.2, while however, forming T Γ
H by all those

elements of T̂h which are located in a band of width H around the interface Γ. In this
way, TH can be nonmatching but is shape-regular, cf. Figure 2.3 (left).

On the elements T from T int
H , i.e., on those from partition Th, we simply set

(3.21) th|T := uh|T T ∈ T int
H .

On the elements T ∈ T Γ
H we consider the mesh T̂h|T . On this mesh, we will,

following [16], solve local Neumann problems by means of a k-th order mixed finite
element method. Denote by V

ĥ,{{uh·nT }},T the space of such vh ∈ V
ĥ
(T ) that vh·nT =

{{uh·nT }} on ∂T . Denote by V
ĥ,0,T the space of such vh ∈ V

ĥ
(T ) that vh·nT = 0 on

∂T . We look for th ∈ V
ĥ,{{uh·nT }},T and qh ∈W

ĥ
(T ) satisfying (qh, 1)T = 0 such that

(K−1(th − uh),vh)T − (qh,∇·vh)T = 0 ∀vh ∈ V
ĥ,0,T ,(3.22a)

(∇·th, wh)T = (f, wh)T ∀wh ∈W
ĥ
(T ) such that (wh, 1)T = 0.(3.22b)
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Recall from [16] that letting t′h := th − uh, (t
′
h, qh) corresponds to the mixed finite

element approximation to the local Neumann problem on T

−∇·(K∇q) = f −∇·uh in T,(3.23a)

−K∇q·nT = −ωg[[uh·ng]] on all g ∈ GT ,(3.23b)

(q, 1)T = 0,(3.23c)

where ωg := 1
2 when g 6⊂ ∂Ω and ωg := 0 when g ⊂ ∂Ω. Note that these problems are

well-posed as the Neumann boundary conditions are in equilibrium with the load,

∑

g∈GT

〈uh·nT − ωg[[uh·ng]], 1〉g = 〈{{uh·nT }}, 1〉∂T = (f, 1)T .

This follows by (3.19), Green’s theorem, and Assumption 3.1 (2). Note also that
indeed th given by (3.22a)–(3.22b) is in V

ĥ
, as the Neumann boundary condition on

T ∈ T Γ
H given by {{uh·nT }} gives the continuity of the normal component of th on

∂T ∩ Γ (the same condition is imposed from the opposite side), as well as on ∂T \ Γ,
where {{uh·nT }} = uh·nT , which is the value imposed in (3.21) on T ∈ T int

H . Finally,
as the mixed finite element method minimizes the complementary energy, another
way to rewrite equivalently (3.22a)–(3.22b) is

th|T = arg inf
vh∈V

ĥ,{{uh·nT }},T
,∇·vh=PW

ĥ
(f)

|||uh − vh|||∗,T .

Thus, on each T ∈ TH , th is the best choice from the space V
ĥ,{{uh·nT }},T to minimize

the quantity |||uh −vh|||∗,T (subject to the constraint ∇·vh = PW
ĥ
(f)). Remark that

this quantity is related to the definition of the η̃M,T estimator, see (3.7).
Remark 3.11 (th given by (3.21)–(3.22b)). The definition (3.21)–(3.22b) gives

a lower-order (k-th order RTN) polynomial th and is moderately expensive as local
linear systems need to be solved. These systems correspond to mixed finite element
approximations of order k posed over H-sized subdomains with h-sized grids. We ob-
tain local conservation on the fine mesh T̂h in the sense of (3.12). Consequently, we
can use (3.13) instead of (3.6). The mesh TH is here nonmatching but shape-regular
and only serves for the computation of the flux th and not for the evaluation of the
estimates of Sections 3.1–3.2. The mortar error is evaluated in the H-distance from
the interface Γ. As we will see in Theorem 4.5 below, this leads to a smaller overes-
timation in the multiscale setting when h≪ H, in comparison with the estimator ηM
of (3.3) or with (3.7) evaluated using th of Section 3.3.2.

3.3.4. Construction of th ∈ VH by the solution of H-grid-sizem-th order

local Neumann problems. We define here the flux which is of higher-order (m-th
order RTN) on the coarse mesh TH , th ∈ VH . For this purpose, we need TH to
be both matching and shape-regular; the elements of T int

H are no more given by the
elements of Th but rather by unions of elements of Th as for T Γ

H , cf. Figure 2.3 (right).
Recall that the main requirement on TH is that the restriction of TH on Γ is the
interface mesh GH .

In this section, we extend the mesh GH from the interface Γ only to Γ ∪ ∂Ω; we
define GH on ∂Ω by the sides of TH lying in ∂Ω. We also suppose that the mortar
space MH is defined over the whole new GH with the same m-th order polynomials.
Let the flux function F be on Γ given by (3.18). We extend it on ∂Ω by

F |∂Ω := PMH
((uh·nΩ)|∂Ω).
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Consider a fixed Ωi and the mesh TH,i. We solve local Neumann problems by means
of a m-th order mixed finite element method. Denote by VH,F,Ωi

the space of such
vH ∈ VH(Ωi) that vH ·nΓ = F on ∂Ωi ∩ Γ and that vH ·nΩi

= F on ∂Ωi ∩ ∂Ω and
by VH,0,Ωi

the space of such vH ∈ VH(Ωi) that vH ·nΩi
= 0 on ∂Ωi. We look for

th ∈ VH,F,Ωi
and qH ∈ WH(Ωi) satisfying (qH , 1)Ωi

= 0 such that

(K−1(th − uh),vH)Ωi
− (qH ,∇·vH)Ωi

= 0 ∀vH ∈ VH,0,Ωi
,(3.24a)

(∇·th, wH)Ωi
= (f, wH)Ωi

∀wH ∈WH(Ωi) such that (wH , 1)Ωi
= 0.(3.24b)

Once again, these problems are well-posed as

〈FnΩi
·nΓ, 1〉∂Ωi∩Γ + 〈F, 1〉∂Ωi∩∂Ω = (f, 1)Ωi

by the same reasoning as in the previous sections. We also indeed have th ∈ VH , as
the Neumann boundary condition on Γ given by F gives the continuity of the normal
component of th. Finally, as above, (3.24a)–(3.24b) is equivalent to

(3.25) th|T = arg inf
vH∈VH,F,Ωi

,∇·vH=PWH
(f)

|||uh − vH |||∗,Ωi
.

Remark 3.12 (th given by (3.24a)–(3.24b)). The definition (3.24a)–(3.24b) gives
a higher-order (m-th order RTN) polynomial th and is more expensive with semi-local
linear systems. These systems correspond to mixed finite element approximations of
order m posed over the subdomains Ωi with H-sized grids. We obtain local conserva-
tion on the mesh TH in the sense of (3.14). Consequently, (3.6) takes the form (3.15).
The mesh TH is here both matching and shape-regular. The mortar error is evaluated
in the Ωi-size-distance from the interface Γ, which, as we will see in Theorem 4.5
below, leads to its optimal estimation in the multiscale setting when h≪ H.

4. Local efficiency of the a posteriori estimates. We state here the local
efficiency of the estimators of Theorems 3.2–3.5. We suppose for simplicity that f is
a piecewise polynomial of degree q.

We will need the following assumption:
Assumption 4.1 (Properties of p̃h). Let
1. p̃h ∈ Rr(Th) for some r ≥ 1,
2. 〈[[p̃h]], 1〉e = 0 ∀e ∈ E int

h ∪ Eext
h ,

3. 〈[[p̃h]], 1〉g = 0 ∀g ∈ G∗
h.

Assumption 4.1 means that p̃h is a piecewise polynomial, that the means of traces
on interior sides in each subdomain are continuous, that the means of traces on bound-
ary sides are zero, and that the means of traces on collections of sides inside the
interface Γ are continuous. For all the results, we assume Assumption 4.1 (1). This
assumption is satisfied by all usual numerical methods. We will present some re-
sults without Assumptions 4.1 (2)–(3), as these assumptions are not satisfied by all
numerical methods.

The following theorem gives the efficiency for the estimator ηDF,T and shows that
the efficiency of the estimators ηP,T and ηDFM,T is controlled by the efficiency of the
estimators ηDF,T , ηNC,T , and η̃M,T .

Theorem 4.2 (Local efficiency of the diffusive flux and potential estimators).
Let p̃h ∈ H1(Th), uh ∈ L2(Ω), sh ∈ H1

0 (Ω), and th ∈ H(div,Ω) be arbitrary. Then,
for all T ∈ Th,

ηDF,T ≤ |||u− uh|||∗,T + |||p− p̃h|||T ,
ηP,T ≤ ηDF,T + ηNC,T ,

ηDFM,T ≤ ηDF,T + η̃M,T .
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We will henceforth assume that the mesh families {Th}h>0 and {T̂h}h>0 are shape-
regular in the sense that there exist constants κTh

> 0 and κT̂h
> 0 such that

minT∈Th
ρT /hT ≥ κTh

and min
T∈T̂h

ρT /hT ≥ κT̂h
for all h > 0, where ρT denotes

the diameter of the largest ball inscribed in T . For the approach of Section 3.3.4, we
will also assume that {TH}H>0 are shape-regular, i.e., that there exists a constant
κTH

> 0 such that minT∈TH
ρT /HT ≥ κTH

for all H > 0. We will in the sequel use
the notation A . B to denote that A ≤ CB, where the constant C depends on the
space dimension d, the polynomial degree r of p̃h, r

′ of sh, k of uh, k, k
′, or m of

th, and q of f , on the shape regularity parameters κTh
of Th, κT̂h

of T̂h, (and κTH
of

TH), on K, and on the constant CG∗
h
from (2.1) but is independent of any mesh size,

the domain Ω, and the regularity of the weak solution (p,u). Let, for T ∈ Th, the
notation TT stand for the union of all elements T ′ ∈ Th sharing a node with T and
TT,Γ for the union of all elements T ′ ∈ Th sharing a node with T or with that g ∈ G∗

h

which contains a node of T . Similarly, for T ∈ TH , let the notation TT,Γ stand for
the union of all elements T ′ ∈ Th sharing a node with that g ∈ GH which contains a
side of T and set hTT,Γ

:= minT ′∈TT,Γ
hT ′ . We also denote by Tg all the elements of

Th which share a node with a given g ∈ GH and set hTg
:= minT∈Tg

hT .
The following theorem is based on the entire Assumption 4.1:
Theorem 4.3 (Local efficiency of the nonconformity estimator). Let Assump-

tion 4.1 hold and let sh ∈ Rr′(T̂h) be given by sh := Iav(p̃h). Then, for all T ∈ Th,

ηNC,T . |||p− p̃h|||TT
if T ∩ Γ = ∅,(4.1a)

ηNC,T . |||p− p̃h|||TT,Γ
if T ∩ Γ 6= ∅.(4.1b)

For the following theorem, Assumption 4.1 (1) is sufficient:
Theorem 4.4 (Local efficiency of the nonconformity estimator). Let Assump-

tion 4.1 (1) hold and let sh ∈ Rr′(T̂h) be given by sh := Iav(p̃h). Then, for all T ∈ Th,

ηNC,T .
∑

e∈Êh; e∩T 6=∅

h
− 1

2
e ‖[[p̃h]]‖e.(4.2a)

The following theorem hinges on Assumption 3.1:
Theorem 4.5 (Local efficiency of the residual and mortar estimators). Let As-

sumption 3.1 be satisfied. Then:
1) Case where ηR,h is given by (3.2) and ηM by (3.3), localized by (3.16).

Let T ∈ Th and g ∈ GH . Then

ηR,h,T . |||u− uh|||∗,T ,(4.3a)

ηM,g .

√
Hg

hTg

|||u− uh|||∗,Tg
.(4.3b)

2) Case where th is constructed following Section 3.3.2, ηR,H,T is given by (3.6),
and η̃M by (3.7).

Let T ∈ Th ∩ T int
H . Then

ηR,H,T . |||u − uh|||∗,T ,(4.4a)

η̃M,T = 0.(4.4b)
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Let T ∈ Th, T ⊂ T ′ for some T ′ ∈ T Γ
H . Then

ηR,H,T .
HT ′

hT
|||u− uh|||∗,TT

,(4.5a)

η̃M,T . |||u− uh|||∗,TT
.(4.5b)

3) Case where th is constructed following Section 3.3.3, ηR,H takes the form ηR,ĥ

of (3.13), and η̃M is given by (3.7).

Let T ∈ T̂h. Then

(4.6) ηR,ĥ,T
. |||u − uh|||∗,T .

Let T ∈ T int
H . Then

(4.7) η̃M,T = 0.

Let T ′ ∈ T Γ
H . Suppose here additionally that f ∈ Rk(Th) and that ∇·uh = PWh

(f) so
that f −∇·uh = 0. Then

η̃M,T ′ .

√
HT ′

hTT ′,Γ

|||u− uh|||∗,TT ′,Γ
.(4.8)

4) Case where th is constructed following Section 3.3.4, ηR,H takes the form (3.15),
and η̃M is given by (3.7).

Assume that {TH}H>0 are shape-regular. Assume also sufficient smoothness lead-
ing to (7.5), see Section 7 below. Let T ′ ∈ TH and let i ∈ {1, . . . , n}. Then

ηR,H,T ′ . (η̃M,T ′ + |||u− uh|||T ′ ),(4.9a)

η̃M,Ωi
≤ |||uh − u|||∗,Ωi

+ ηR,h,Ωi
+ CHm+1.(4.9b)

Remark 4.6 (Efficiency of ηNC). Theorems 4.3 and 4.4 show that Assump-
tions 4.1 (2)–(3) are necessary in order to obtain local efficiency of the nonconfor-
mity estimator ηNC. This fact has been previously employed in, e.g., [2, 3, 30, 33]
in the non-multiscale setting. We show below that the multiscale mortar mixed finite
element method of [6] satisfies Assumptions 4.1 (2)–(3). In order to obtain two-sided
bounds in the same norm when Assumptions 4.1 (2)–(3) are not satisfied, one could,

noticing that [[p̃h]] = [[p̃h − p]] for all e ∈ Êh, add
∑

e∈Êh
h
− 1

2
e ‖[[p̃h]]‖e to both the error

and estimate, as usually done in the discontinuous Galerkin method.
Remark 4.7 (Higher-order convergence of ηR,h, ηR,ĥ

, and ηR,H). The residual

a posteriori error estimate ηR,ĥ
given by (3.13) represents a higher-order convergent

(“data oscillation”) term whenever f ∈ Hk+1(T̂h). It in fact vanishes whenever f ∈
Rk(T̂h). A similar remark holds for ηR,H taking the form (3.15) and also for ηR,h

given by (3.2) whenever ∇·uh = PWh
(f).

Remark 4.8 ((Semi-)robustness with respect to inhomogeneities and anisotropies
in K). The constants in the above inequalities depend on local inhomogeneities and
anisotropies in K in the same way as in [33], so that the estimates are semi-robust
with respect to K. Replacing the energy (semi-)norms ||| · ||| and ||| · |||∗ of (2.6)–
(2.7) by dual norms as in [32], global efficiency and full robustness with respect to the
inhomogeneities and anisotropies in K can be shown.

Remark 4.9 (Robustness with respect to the ratio H/h). As the results of Theo-
rem 4.3 show, the nonconformity estimator ηNC leads under Assumptions 4.1 (2)–(3)
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to the overestimation factor independent of the ratio H/h, i.e., to the robustness with
respect to multiscale. These conditions are shown below to be verified by the multiscale
mortar mixed finite element method of [6]. According to Theorem 4.5, neither of the
flux reconstruction of Sections 3.3.2 or 3.3.3 leads to a similar robustness result. A
different situation appears to arise using the reconstruction of Section 3.3.4. The a
priori error estimates presented in [6] for the multiscale mortar mixed finite element

method indicate that in that case, |||uh−u|||∗ converges as O(Hm+ 1
2 ), so that CHm+1

is of higher order. This result is of course not perfect as it hinges on the high regu-
larity of the exact solution and, moreover, the lower bound (4.9b) features the factor
CHm+1 on the right-hand-side, but it shows robustness with respect to the ratio H/h.
This is confirmed by the numerical experiments carried out in Section 8 below.

5. Multiscale, multinumerics, and mortar discretizations. We present
here different methods that fit into the framework of the previous sections. In order
to check that the presented a posteriori error estimates and their efficiency hold true,
we only need to verify that Assumptions 3.1 and 4.1 (1) are satisfied. Additionally,
Assumption 4.1 (2)–(3) will also be satisfied in the first case below.

5.1. Multiscale mortar mixed finite element method. The multiscale mor-
tar mixed finite element method for the problem (1.1a)–(1.1b), see [6], reads: for k ≥ 0,
find uh ∈ Vh, ph ∈ Wh, and λH ∈MH such that,

(K−1uh,vh)Ωi
− (ph,∇·vh)Ωi

+ 〈λH ,vh·nΩi
〉Γi

= 0 ∀vh ∈ Vh,i, ∀i,(5.1a)

(∇·uh, wh)Ωi
= (f, wh)Ωi

∀wh ∈ Wh,i, ∀i,(5.1b)
n∑

i=1

〈uh·nΩi
, µH〉Γi

= 0 ∀µH ∈MH .(5.1c)

Thus uh satisfying Assumption 3.1 is directly given in the multiscale mortar mixed
finite element method. The ph obtained directly from (5.1a)–(5.1c) is not suitable
to be used as p̃h in the a posteriori framework of Sections 3–4, see the discussion
in [30, 33]. We devote the rest of this section to obtaining a suitable p̃h.

Let Λh,i be the usual Lagrange multiplier spaces associated with Vh,i × Wh,i,

see [11, 28], and let Ṽh,i be the spaces without the interelement constraints, Ṽh,i :=⊕
T∈Th,i

Vh,i(T ). Set Λh :=
⊕n

i=1 Λh,i, Ṽh :=
⊕n

i=1 Ṽh,i. Let uh, ph be the solution

of (5.1a)–(5.1c). We define λh ∈ Λh by

(5.2) 〈λh,ve·nT 〉e := −(K−1uh,ve)T + (ph,∇·ve)T

for all flux basis functions ve of Ṽh,i associated with the element T ∈ Th and its side

e. Let P
Ṽh

be the L2(Ω)-orthogonal projection onto Ṽh with respect to the scalar

product (K−1·, ·) and PΛh
the L2(E int,Γ

h )-orthogonal projection onto Λh, i.e.,

P
Ṽh

: L2(Ω) → Ṽh for v ∈ L2(Ω), (K−1(v − P
Ṽh

(v)),vh) = 0 ∀vh ∈ Ṽh,

PΛh
: L2(E int,Γ

h ) → Λh for µ ∈ L2(E int,Γ
h ), (µ− PΛh

(µ), µh)E int,Γ

h

= 0 ∀µh ∈ Λh.

Our basic tool for the a posteriori error analysis of the mixed finite element method
will be the local postprocessing of the potential ph introduced in [5], see also [30]. Let
W̃h be a polynomial space of functions ϕh satisfying

(5.4) 〈[[ϕh]], ψh〉e = 0 ∀e ∈ E int
h ∪ Eext

h , ∀ψh ∈ Rk(e)
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and specified in [5, 30]. Then we define:
Definition 5.1 (Postprocessing p̃h of ph). We define p̃h ∈ W̃h by

PWh
(p̃h) = ph,(5.5a)

PΛh
(p̃h) = λh.(5.5b)

Note that employing (5.5a)–(5.5b) in (5.2) and using ∇·Vh(T ) = Wh(T ) and
Vh(T )·nT |∂T\∂Ω = Λh(T ) gives, for all T ∈ Th,

(5.6) (K−1uh,vh)T − (p̃h,∇·vh)T + 〈p̃h,vh·nT 〉∂T\∂Ω = 0 ∀vh ∈ Vh(T ).

Employing Green’s theorem for the two last terms of the above expression gives

(K−1(uh +K∇p̃h),vh)T = 0 ∀vh ∈ Vh(T ) ∀T ∈ Th,

which is nothing but

(5.7) P
Ṽh

(−K∇p̃h) = uh.

We refer to [5, 33] for more details.
The postprocessed potential p̃h satisfies Assumption 4.1 (1) as W̃h is a piecewise

polynomial space. Moreover, Assumption 4.1 (2) is implied by (5.4). The following
lemma shows that Assumption 4.1 (3) for the above p̃h holds as well.

Lemma 5.2 (Weak continuity of p̃h). For any union of interface sides g ∈ G∗
h,

(5.8) 〈[[p̃h]], ψh〉g = 0 ∀ψh ∈ Rk(g).

Moreover, for all e ∈ EΓ
h ,

(5.9) 〈p̃h|Te
− λH , ψh〉e = 0 ∀ψh ∈ Rk(e),

where Te is the element of Th having e as side.
Proof. Fix e ∈ EΓ

h (recall that this also fixes the subdomain Ωi and an element
Te ∈ Th,i) and take all basis functions ve in (5.1a). Using (5.6) and (5.5a), this gives

〈−p̃h|Te
+ λH ,ve·nTe

〉e = 0,

whence (5.9) follows. To prove (5.8), take any g ∈ G∗
h. Thus g is given by one or more

sides from some Ωi and by one or more sides from some Ωj ; as from both subdomains,
the associated basis functions fill the space Rk(g), (5.8) follows from (5.9).

5.2. Multiscale mortar discontinuous Galerkin method. We consider here
the multiscale mortar discontinuous Galerkin method of [19] for the problem (1.1a)–
(1.1b). Let K be piecewise constant on Th in this section for simplicity and let k ≥ 1.
Then the method reads: find ph ∈Wh and λH ∈MH such that

Bh,i(ph, λH ;ϕh) = (f, ϕh)Ωi
∀ϕh ∈Wh,i, ∀i ∈ {1, . . . , n},(5.10a)

n∑

i=1

∑

g∈GH,i

〈
−K∇ph|Ωi

·nΩi
+ αg

σK,g

Hg

(
ph|Ωi

− πk,EΓ
h,i

(λH)
)
, µH

〉
g
= 0 ∀µH ∈MH ,

(5.10b)
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where

Bh,i(ph, λH ;ϕh) :=−
∑

e∈E int
h,i

{〈{{K∇ph·ne}}, [[ϕh]]〉e + θ〈{{K∇ϕh·ne}}, [[ph]]〉e}

−
∑

g∈GH,i

{〈
K∇ph|Ωi

·nΩi
− αg

σK,g

Hg

(ph|Ωi
− λH), ϕh|Ωi

〉
g

+ θ̄〈K∇ϕh|Ωi
·nΩi

, ph|Ωi
− λH〉g

}

+ (K∇ph,∇ϕh)Ωi
+
∑

e∈E int
h,i

〈
αe

σK,e

he
[[ph]], [[ϕh]]

〉
e
.

(5.11)

Here αe, e ∈ E int
h , and αg, g ∈ GH , are the penalty parameters (taken sufficiently

large), σK,e and σK,g are K-dependent weights, and θ ∈ {−1, 0, 1}, θ̄ ∈ {−1, 0, 1}
lead to the usual choices of the various discontinuous Galerkin schemes. For the sake
of simplicity, we suppose here that EΓ

h,i is a refinement of GH,i for all i ∈ {1, . . . , n}.
In fact, in comparison with [19], we have replaced in (5.10b) λH by πk,EΓ

h,i
(λH) (recall

that πk,EΓ
h,i

is the L2-orthogonal projection onto piecewise polynomials of order k on

EΓ
h,i). We refer to Remark 5.5 below for the original version and to Remark 5.6 below

for yet another modification. Note that as ϕh ∈Wh,i, ϕh|Γi
is a piecewise polynomial

of order k on EΓ
h,i. Consequently, we can equivalently replace λH by πk,EΓ

h,i
(λH) also in

the fourth right-hand side term of (5.11). Note that λH can be equivalently replaced
by πk,EΓ

h,i
(λH) also in the multiscale mortar mixed finite element method (5.1a)–(5.1c).

Following [22, 15], we now introduce a reconstructed flux uh. We will use it in
our a posteriori error estimates but we remind that it can be of independent interest
for, e.g., subsequent contaminant transport modeling.

Definition 5.3 (Discontinuous Galerkin flux reconstruction). Let T ∈ Th. Then
the reconstructed flux uh|T ∈ Vh(T ) is given by

〈uh·ne, qh〉e =
〈
−{{K∇ph·ne}}+ αe

σK,e

he
[[ph]], qh

〉
e

∀qh ∈ Rk(e), ∀e ∈ ET , e 6⊂ Γ,(5.12a)

〈uh·ne, qh〉e =
〈
−K∇ph·ne + αg

σK,g

Hg

(ph − λH), qh

〉
e

∀qh ∈ Rk(e), ∀e ∈ ET , e ⊂ g ∈ GH ,(5.12b)

(uh, rh)T = − (K∇ph, rh)T + θ
∑

e∈ET , e6⊂Γ

ωe〈Krh·ne, [[ph]]〉e

+ θ̄
∑

e∈ET , e⊂Γ

〈Krh·ne, (ph − λH)nT ·ne〉e

∀rh ∈ Rk−1,∗,d(T ),(5.12c)

where ωe :=
1
2 if e ∈ E int

h and ωe := 1 if e ∈ Eext
h

We now check that the above uh satisfies Assumption 3.1.
Lemma 5.4 (Discontinuous Galerkin reconstructed flux property). Let uh be

given by Definition 5.3. Then uh satisfies Assumption 3.1.
Proof. Assumption 3.1 (1), i.e., the fact that uh ∈ Vh, is given by the construction

(the normal components on sides from E int
h,i are univalued). Let next i ∈ {1, . . . , n},

T ∈ Th,i, and ξh ∈ Rk(T ) be arbitrary. We then have, using Green’s theorem, the fact
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that ξh|e ∈ Rk(e) for all e ∈ ET , ∇ξh ∈ Rk−1,∗,d(T ), Definition 5.3 of uh, and setting
ϕh = ξh on T and ϕh = 0 otherwise,

(∇·uh, ξh)T = −(uh,∇ξh)T +
∑

e∈ET

〈uh·nT , ξh〉e

= Bh,i(ph, λH ;ϕh) = (f, ϕh)Ωi
= (f, ξh)T .

(5.13)

Thus, ∇·uh = πk(f), and, consequently Assumption 3.1 (2) follow. Finally, Assump-
tion 3.1 (3) is immediate from (5.10b) noticing that (5.12b) implies, on all e ∈ EΓ

h,i,

uh|Ωi
·ne = −K∇ph|Ωi

·ne + αg

σK,g

Hg

(
ph|Ωi

− πk,EΓ
h,i

(λH)
)
.

Remark 5.5 (Original multiscale mortar discontinuous Galerkin method). Us-
ing in (5.10b) directly λH as proposed in [19] and not πk,EΓ

h,i
(λH), we can construct

uh|Ωi
in the higher-order mixed finite element spaces RTNm(Th,i), i ∈ {1, . . . , n}, as

in Definition 5.3 (we have to test by qh ∈ Rm(e) and rh ∈ Rm−1,∗,d(T ). Assump-
tion 3.1 (2) holds. Note however that neither ∇·uh = πk(f) nor ∇·uh = πm(f) holds
in this case. Assumption 3.1 (3) is then satisfied by definition from (5.10b). Assump-
tion 3.1 (1), however, does not hold true; we have to replace the k-th order RTN space
Vh by the m-th order RTN spaces RTNm(Th,i).

Remark 5.6 (Lower-order flux recovery in the multiscale mortar discontinuous
Galerkin method). The Definition 5.3 enables to recover the flux from the k-th order
RTN space Vh. Following [22, 15], we can also recover uh|Ωi

from RTNk−1(Th,i),
i ∈ {1, . . . , n}, provided that ph|Ωi

−πk,EΓ
h,i

(λH) and ph|Ωi
−λH from (5.10b) and (5.11)

are respectively replaced by πk−1,EΓ
h,i

(ph|Ωi
− λH).

Remark 5.7 (Potential p̃h in the multiscale mortar discontinuous Galerkin me-
thod). The solution ph ∈ Wh can directly be used in Section 3 as p̃h, or a similar
postprocessing of p̃h from ph and uh as that devised in Section 5.1 can be used. Such
potential p̃h satisfies Assumption 4.1 (1). In any case, however, the multiscale mor-
tar discontinuous Galerkin method, contrarily to the multiscale mortar mixed finite
element method of Section 5.1, will not lead to the continuity of p̃h expressed by As-
sumptions 4.1 (2)–(3).

5.3. Multiscale mortar coupled mixed finite element–discontinuous Ga-

lerkin method. We give here an example of a multinumerics discretization. Follow-
ing [19], we consider the multiscale mortar coupled mixed finite element–discontinuous
Galerkin method. Let K be piecewise constant on Th in this section once again for
simplicity. Let I denote the index set of the subdomains where the k-th order dis-
continuous Galerkin method is used and J the index set of the subdomains where
the k-th order mixed finite element method is used. We then look, for k ≥ 1, for
ph|Ωi

∈Wh,i, i ∈ I, ph|Ωi
∈Wh,i, i ∈ J , uh|Ωi

∈ Vh,i, i ∈ J , and λH ∈MH such that

Bh,i(ph, λH ;ϕh) = (f, ϕh)Ωi
∀ϕh ∈Wh,i, ∀i ∈ I,(5.14a)

(K−1uh,vh)Ωi
− (ph,∇·vh)Ωi

+ 〈λH ,vh·nΩi
〉Γi

= 0 ∀vh ∈ Vh,i, ∀i ∈ J,(5.14b)

(∇·uh, wh)Ωi
= (f, wh)Ωi

∀wh ∈Wh,i, ∀i ∈ J,(5.14c)
∑

i∈J

〈uh·nΩi
, µH〉Γi

+
∑

i∈I

∑

g∈GH,i

〈
−K∇ph|Ωi

·nΩi

+ αg

σK,g

Hg

(
ph|Ωi

− πk,EΓ
h,i

(λH)
)
, µH

〉
g
= 0 ∀µH ∈MH .(5.14d)
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The following lemma is a straightforward generalization of the results of the two
previous sections:

Lemma 5.8 (Coupled mixed finite element–discontinuous Galerkin flux property).
Let uh|Ωi

∈ Vh,i, i ∈ J , be given by (5.14a)–(5.14d). Define uh|Ωi
∈ Vh,i, i ∈ I,

using the flux reconstruction of Definition 5.3. Then uh satisfies Assumption 3.1.

5.4. Multiscale mortar finite volume methods. The present approach can
be easily extended to finite volume-type multiscale mortar methods and their cou-
plings with other multiscale mortar methods, following the above approach in combi-
nation with the results of [31, 17].

6. Proof of the a posteriori estimates. We prove here the a posteriori esti-
mates derived in Section 3.

6.1. Proofs of the a posteriori estimates for the flux. The following the-
orem follows readily from [33, Theorems 3.1 and 6.1]. Note that it gives an abstract
upper bound for the error |||u − uh|||∗ which is optimal, up to the factor 2.

Theorem 6.1 (A general estimate for the flux and its efficiency). Let u be the
exact flux and let uh ∈ L2(Ω) be arbitrary. Then

|||u − uh|||∗ ≤ inf
s∈H1

0 (Ω)
|||uh +K∇s|||∗ + sup

ϕ∈H1
0 (Ω), |||ϕ|||=1

A (u− uh,−K∇ϕ)

≤ 2|||u− uh|||∗.
(6.1)

Using this result, we can now justify Theorem 3.2:
Proof. [Proof of Theorem 3.2] The first term in (6.1) clearly leads to the ηP

estimate of (3.1). Let ϕ ∈ H1
0 (Ω) with |||ϕ||| = 1 be arbitrary. Using the characteri-

zation (2.5) of the weak solution, we have A(u,−K∇ϕ) = (f, ϕ), whereas

−A(uh,−K∇ϕ) = (uh,∇ϕ) =
n∑

i=1

{−(∇·uh, ϕ)Ωi
+ 〈uh·nΩi

, ϕ〉∂Ωi
}

= − (∇·uh, ϕ) +
n∑

i=1

〈uh·nΩi
, ϕ〉∂Ωi

,

using Green’s theorem. By Assumption 3.1 (2), we have

(f −∇·uh, ϕ) =
∑

T∈Th

(f −∇·uh, ϕ− ϕT )T

≤
∑

T∈Th

‖f −∇·uh‖T‖ϕ− ϕT ‖T ≤ ηR,h|||ϕ|||,
(6.2)

using also Cauchy–Schwarz’s inequality, Poincaré’s inequality (2.8), and the defini-
tion (2.6) of the ||| · ||| norm. Introduce now a function ϕH , piecewise constant on GH

and given by ϕg := 〈ϕ, 1〉g/|g| for all g ∈ GH . Note that ϕH ∈MH by the assumption
on the space MH . Note also that

∑n
i=1〈uh·nΩi

, ϕH〉Γi
= 0 by Assumption 3.1 (3).

Using that ϕ = 0 on ∂Ωi ∩ ∂Ω for all i ∈ {1, . . . , n},
n∑

i=1

〈uh·nΩi
, ϕ〉∂Ωi

=

n∑

i=1

〈uh·nΩi
, ϕ− ϕH〉Γi

= 1
2

n∑

i=1

n∑

j=1

∑

g∈GH,i,j

〈[[uh·ng]], ϕ− ϕg〉g

≤ 1
2

n∑

i=1

n∑

j=1

∑

g∈GH,i,j

‖[[uh·ng]]‖gCt,Ti,g ,gH
1
2
g c

− 1
2

K,Ti,g
|||ϕ|||Ti,g

≤ ηM|||ϕ|||.
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Here we have used the trace inequality (2.9), the definition (2.6) of the |||·||| norm, and
Cauchy–Schwarz’s inequality. We have also used the assumption that Ti,g, g ∈ GH,i,
i ∈ {1, . . . , n}, do not overlap. We have expressly carried out the proof with the
double sum

∑n
i=1

∑n
j=1, so that the tensor K-dependent constants cK,Ti,g

are related
to the elements Ti,g and thus to the individual subdomains Ωi. The assertion follows
by combining the above results.

The following modification of Theorem 6.1 follows easily by adding and subtract-
ing t ∈ H(div,Ω), by Green’s theorem, and by (2.5) as in the proof of Theorem 3.2:

Theorem 6.2 (A general estimate for the flux and its efficiency). Let u be the
exact flux and let uh ∈ L2(Ω) be arbitrary. Then

|||u− uh|||∗ ≤ inf
s∈H1

0 (Ω)
|||uh +K∇s|||∗

+ inf
t∈H(div,Ω)

{
|||uh − t|||∗ + sup

ϕ∈H1
0 (Ω), |||ϕ|||=1

(f −∇·t, ϕ)
}

≤ 2|||u− uh|||∗.

By virtue of Theorem 6.2, the proof of Theorem 3.3 is immediate, using a similar
technique as in (6.2) to treat the term with the source function f .

6.2. Proofs of the a posteriori estimates for the potential. A similar
abstract error estimate as that of Theorem 6.1 for the error |||p − p̃h||| holds (cf. [30,
Lemma 7.1]):

Theorem 6.3 (A general estimate for the potential and its efficiency). Let p be
the exact potential and let p̃h ∈ H1(Th) be arbitrary. Then

|||p− p̃h||| ≤ inf
s∈H1

0 (Ω)
|||p̃h − s|||+ sup

ϕ∈H1
0(Ω), |||ϕ|||=1

A(K∇(p− p̃h),K∇ϕ) ≤ 2|||p− p̃h|||.

Using this result, the proof of Theorem 3.4 follows easily by the same arguments
as in the proof of Theorem 3.2, noticing that

A(K∇(p− p̃h),K∇ϕ) = A(u− uh,−K∇ϕ)−A(uh +K∇p̃h,K∇ϕ)
≤ A(u− uh,−K∇ϕ) + |||uh +K∇p̃h|||∗

for ϕ ∈ H1
0 (Ω) such that |||ϕ||| = 1.

The proof of Theorem 3.5 follows from the following consequence of Theorem 6.3:
Theorem 6.4 (A general estimate for the potential and its efficiency). Let p be

the exact potential and let p̃h ∈ H1(Th) be arbitrary. Then

|||p− p̃h||| ≤ inf
s∈H1

0 (Ω)
|||p̃h − s|||

+ inf
t∈H(div,Ω)

sup
ϕ∈H1

0(Ω), |||ϕ|||=1

((f −∇·t, ϕ)− (K∇p̃h + t,∇ϕ))

≤ 2|||p− p̃h|||.

7. Proof of the local efficiency. We prove here the local efficiency of our a
posteriori estimates announced in Section 4, namely Theorems 4.3–4.5. The proof of
Theorem 4.2 is immediate using the triangle inequality.

Proof. [Proof of Theorem 4.3] Let T ′ ∈ T̂h. Then we proceed as in [31, 33], using
the two following fundamental results: Firstly, it follows from [21, 12] that, for any
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p̃h ∈ Rr′(T̂h),

(7.1) ‖∇(p̃h − Iav(p̃h))‖T ′ ≤ C
∑

e′∈Êh; e′∩T ′ 6=∅

h
− 1

2

e′ ‖[[p̃h]]‖e′ ,

where C depends only on d, r′, and κT̂h
. Secondly, it was established in [2, Theo-

rem 10] that for e′ ∈ Êh and p̃h ∈ H1(T̂h) such that 〈[[p̃h]], 1〉e′ = 0,

(7.2) h
− 1

2

e′ ‖[[p̃h]]‖e′ ≤ C
∑

T ′∈T̂h; e′∈ET ′

‖∇(p̃h − ψ)‖T ′ ,

where ψ ∈ H1
0 (Ω) is arbitrary and C depends only on d and κT̂h

.
Let T ∈ Th be such that T ∩Γ = ∅. Recall that we have assumed that for T ∈ Th

such that T∩Γ = ∅, there exists an element T ′ ∈ T̂h such that T = T ′. Moreover, every
side e′ ∈ Êh such that e′ ∩ T ′ 6= ∅, again by assumption, either coincides with a side
e ∈ E int

h or belongs to the interior of some T ′′ ∈ Th. Recalling the Assumption 4.1 (2),
we see that on each such side e′, 〈[[p̃h]], 1〉e′ = 0 holds. Combining the above results,
we arrive at (setting ψ = p)

‖∇(p̃h − Iav(p̃h))‖T . ‖∇(p̃h − p)‖TT
,

taking also into account that by assumption, T̂h is a refinement of Th. Thus, (4.1a)
follows after an appropriate scaling with respect to the tensor K.

Let now T ∈ Th such that T ∩ Γ 6= ∅ be given. Then

‖∇(p̃h − Iav(p̃h))‖2T =
∑

T ′∈T̂h; T ′⊂T

‖∇(p̃h − Iav(p̃h))‖2T ′ ≤ C
∑

e∈Êh; e∩T 6=∅

h−1
e ‖[[p̃h]]‖2e,

using (7.1). For all e ∈ Êh such that e ∩ T 6= ∅ and such that e 6⊂ Γ, we have
〈[[p̃h]], 1〉e = 0 by the same reasoning as above. Thus we can use directly (7.2). All
the other sides e are included in some g ∈ G∗

h. We now use assumption (2.1). In

combination with the assumption that T̂h does not add any nodes on Γ with respect
to Th, we arrive at

∑

e∈Êh; e⊂g∈G∗
h
, g∩T 6=∅

h−1
e ‖[[p̃h]]‖2e ≤ CG∗

h

∑

g∈G∗
h
, g∩T 6=∅

h−1
g ‖[[p̃h]]‖2g.

Using now Lemma A.1 instead of (7.2), (4.1b) follows after an appropriate scaling
with respect to the tensor K and setting ψ = p.

Proof. [Proof of Theorem 4.4] The assertion of Theorem 4.4 follows immediately

using (7.1) and the fact that T̂h is a refinement of Th.
Proof. [Proof of Theorem 4.5] The proof is decomposed into four parts.
1) Firstly, (4.3a) follows by using the element bubble function technique, cf. [30,

Lemma 7.6], whereas (4.3b) is shown as in [35, 6] in combination with (4.3a).
2) We next prove (4.4a)–(4.5b), corresponding to the construction of th from

Section 3.3.2.
Let T ∈ Th ∩ T int

H . Then ηR,H,T coincides with ηR,h,T and consequently (4.4a)
coincides with (4.3a), whereas (4.4b) follows by construction. Let T ∈ Th, T ⊂ T ′

for some T ′ ∈ T Γ
H . We then use the estimate

‖vh‖2T ′′ ≤ C

{
∑

e′′∈ET ′′

he′′‖vh·ne′′‖2e′′ +
(

sup
rh∈Rl−1,∗,d(T ′′)

(vh, rh)T ′′

‖rh‖T ′′

)2}
,
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valid for any T ′′ ∈ T̂h and any vh ∈ V
ĥ
(T ′′); here l = k or k′. We set vh = uh − th

and use (3.20a)–(3.20b) to infer

|||uh − th|||∗,T =

{
∑

T ′′∈T̂h, T ′′⊂T

|||uh − th|||2∗,T ′′

} 1
2

≤ Cc
− 1

2

K,T

∑

e∈ET

h
1
2
e ‖[[uh·ne]]‖e

≤ CC
1
2

K,TT
c
− 1

2

K,TT
|||u− uh|||∗,TT

,

(7.3)

where for the last estimate, we proceed as in the proof of (4.3b) (note that there is
he and not Hg in (7.3)). Thus (4.5b) is proved. We are left with bounding ηR,H,T .
We have

ηR,H,T = CP,T ′HT ′c
− 1

2

K,T ′‖f −∇·th‖T ≤ CC
1
2

K,T c
− 1

2

K,T ′HT ′h−1
T |||u− th|||∗,T ,

proceeding as in the proof of (4.3a). Combining this with the triangle inequality
and (7.3), (4.5a) follows.

3) We now turn to the proof of (4.6)–(4.8), corresponding to the construction of
th from Section 3.3.3.

Using the same techniques as before, (4.6) is obvious. Next, the fact that η̃M,T = 0
for T ∈ Th ∩ T int

H is immediate from (3.21). It thus remains to prove (4.8). For
T ′ ∈ T Γ

H , consider (t′h, qh) given by the mixed finite element approximation of (3.23a)–

(3.23c) on T̂h|T ′ . We will denote by T a generic element of T̂h|T ′ . Considering the
postprocessing as in Section 5.1, we obtain q̃h ∈ W̃

ĥ
(T ′) such that P

Ṽ
ĥ
(−K∇q̃h) = t′h

and PW
ĥ
(q̃h) = qh. Here P

Ṽ
ĥ
is the equivalent of P

Ṽh
from Section 5.1 on the mesh

T̂h and PW
ĥ
is given in Section 2.2. Thus

|||t′h|||2∗,T ′ = (K−1t′h, t
′
h)T ′ = −(∇q̃h, t′h)T ′ =

∑

T⊂T ′

{(q̃h,∇·t′h)T − 〈q̃h, t′h·nT 〉∂T }

= 〈q̃h, 12 [[uh·ng]]〉∂T ′∩Γ = 〈q̃h − (q̃h)T ′ , 12 [[uh·ng]]〉∂T ′∩Γ

≤ C
∑

g∈GH , g⊂∂T ′

‖[[uh·ng]]‖gH
1
2

T ′c
− 1

2

K,T ′ |||q̃h|||T ′

≤ C|||t′h|||∗,T ′

∑

g∈GH , g⊂∂T ′

‖[[uh·ng]]‖gH
1
2

T ′c
− 1

2

K,T ′ ,

using Green’s theorem, the fact that ∇·t′h = PW
ĥ
(f−∇·uh) = 0 using the assumption

f−∇·uh = 0 made in this case, the fact that q̃h ∈ W̃
ĥ
(T ′) and hence 〈[[q̃h]], t′h·ne〉e = 0

for any interior side e of T̂h|T ′ , the fact that t′h·nT ′ = 0 on ∂T ′ \ Γ and t′h·nT ′ =
1
2 [[uh·ng]] on all g ⊂ ∂T ′ ∩ Γ, the fact that (q̃h, 1)T ′ = 0 which follows from the
assumption (qh, 1)T ′ = 0 and from PW

ĥ
(q̃h) = qh, a discrete trace inequality

‖q̃h − (q̃h)T ′‖g ≤ CH
1
2

T ′‖∇q̃h‖T ′

which can be obtained as discrete Poincaré’s and Friedrichs’ inequalities in [29, Theo-
rems 5.4 and 8.1], and finally the inequality (cf. [33, Lemma 5.4]) |||q̃h|||T ′ ≤ C|||t′h|||∗,T ′ .
The proof is finished recalling that t′h = th − uh and using (4.3b).

4) We finally prove (4.9a)–(4.9b), corresponding to the construction of th from
Section 3.3.4.
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Firstly, we show (4.9a). Let T ′ ∈ TH be given. Then, using the element bubble
function technique as in the step 1) and the triangle inequality,

CP,T ′HT ′c
− 1

2

K,T ′‖f −∇·th‖T ′ ≤ CC
1
2

K,T ′c
− 1

2

K,T ′(|||uh − th|||∗,T ′ + |||u− uh|||∗,T ′).

Secondly, for a fixed i ∈ {1, . . . , n}, consider the following subdomain problem:

−∇·(K∇q) = f in Ωi,(7.4a)

−K∇q·nΩi
= F (nΩi

·nΓ) on ∂Ωi,(7.4b)

(q, 1)Ω,i = (p, 1)Ω,i .(7.4c)

Denote by (t#H , q
#
H) its mixed finite element approximation in VH,F,Ωi

× WH(Ωi)
(recall that this space was defined in Section 3.3.4). This approximation is not to be
computed, it is only introduced for the analysis. We then have

|||uh − th|||∗,Ωi
≤ |||uh − t

#
H |||∗,Ωi

≤ |||t#H +K∇q|||∗,Ωi
+ |||uh +K∇q|||∗,Ωi

,

using (3.25) and the triangle inequality. Supposing that q is smooth enough, we have

(7.5) |||t#H +K∇q|||∗,Ωi
≤ CHm+1.

Using [33, Theorem 3.1], we have

|||uh +K∇q|||∗,Ωi
≤ |||uh +K∇p|||∗,Ωi

+

∣∣∣∣∣

(
uh +K∇q, ∇(p− q)

|||p− q|||Ωi

)

Ωi

∣∣∣∣∣ .

Set ϕ := (p− q)/|||p− q|||Ωi
and note that ϕ ∈ H1(Ωi), ϕΩi

= 0. Thus

|||uh +K∇q|||∗,Ωi

≤ |||uh − u|||∗,Ωi
+ |(uh +K∇q,∇ϕ)Ωi

|
= |||uh − u|||∗,Ωi

+ |(f −∇·uh, ϕ)Ωi
+ 〈(uh +K∇q)·nΩi

, ϕ〉∂Ωi
|

= |||uh − u|||∗,Ωi
+ |(f −∇·uh, ϕ)Ωi

+ 〈uh·nΩi
− F (nΩi

·nΓ), ϕ− PMH
(ϕ)〉∂Ωi

|
≤ |||uh − u|||∗,Ωi

+ ηR,h,Ωi
+ ‖uh·nΩi

− F (nΩi
·nΓ)‖∂Ωi

‖ϕ− PMH
(ϕ)‖∂Ωi

.

The first term in the above expression is directly the actual error, the second one is
of higher order/can be bounded by (4.3a), and if both p and q (and consequently ϕ)
are smooth enough, [6, estimate (3.5)] gives

(7.6) ‖ϕ− PMH
(ϕ)‖∂Ωi

≤ CHm+1.

Both estimates (7.5) and (7.6) are, of course, imperfect as C is unknown and depends
on the smoothness of p and q; moreover, there is the additional quantity ‖uh·nΩi

−
F (nΩi

·nΓ)‖∂Ωi
, which is, however, expected to be bounded in view of (3.18).

8. Numerical experiments. We present here several numerical experiments
illustrating the a posteriori error estimates for different numerical methods.

The H1
0 (Ω)-conforming potential reconstruction sh will always be constructed

following Section 3.3.1. The different a posteriori error estimators corresponding to
the four cases of Theorem 4.5 will be given the following shorthand notations:

• Method 1: The a posteriori error estimates are given by Theorems 3.2 and 3.4.
In particular, the notion of the H(div,Ω)-conforming flux reconstruction th
is not needed here.



A POSTERIORI CONTROL FOR MULTISCALE, MULTINUMERICS, AND MORTARS 25

Fig. 8.1. Initial subdomains grid Th and interface grid GH , Section 8.1 (left) and Section 8.2
(right)

• Method 2: The a posteriori error estimates are given by Theorems 3.3 and 3.5.
The H(div,Ω)-conforming flux reconstruction th is constructed by direct pre-
scription of Section 3.3.2.

• Method 3: The a posteriori error estimates are given by Theorems 3.3 and 3.5.
The H(div,Ω)-conforming flux reconstruction th is constructed by solving h-
grid-size k-th order local Neumann problems of Section 3.3.3.

• Method 4: The a posteriori error estimates are given by Theorems 3.3 and 3.5.
The H(div,Ω)-conforming flux reconstruction th is constructed by solving H-
grid-size m-th order local Neumann problems of Section 3.3.4.

The paper focuses on three major issues: mortars, multiscale, and multinumerics;
so we consider three test examples, each emphasizing one of the issues. We always
reduce the problem to a coarse scale interface operator and use the multiscale mortar
basis method developed in [18, 34] to solve the coarse scale interface equation.

8.1. Mortar coupling. This first example focuses on the mortar coupling. We
solve on Ω := (0, 1)×(0, 1) the problem (1.1a)–(1.1b) with a diagonal highly oscillating
tensor coefficient K,

K :=

{
15− 10 sin(10πx) sin(10πy), x, y ∈ (0, 1/2) or x, y ∈ (1/2, 1),

15− sin(2πx) sin(2πy), otherwise.

We impose the source term f according to the analytic solution

p(x, y) = x(1 − x)y(1− y).

We use the multiscale mortar mixed finite element method (5.1a)–(5.1c). The
domain Ω is divided into four subdomains Ωi with the interface Γ along the lines x =
1/2 and y = 1/2. In each subdomain Ωi, we use the lowest-order Raviart–Thomas–
Nédélec mixed finite element method on a square mesh Th,i, Vh,i := RTN0(Th,i),
Wh,i := R0(Th,i). Thus k = 0. The mortar space MH is the space of discontinuous
first-order polynomials on the interface mesh GH . Thus m = 1. The meshes Th,i do
not match along the interface Γ. For initial meshes Th,i, we use 8 × 8 and 10 × 10
square grids alternated in a checkerboard fashion (so, initially, h =

√
2/16). The

initial mortar grid GH has one element on all GH,i,j , so that H = 1/2 for the coarsest
mesh. We refer to Figure 8.1 (left) for the visualization of this setting. We run several
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Fig. 8.2. Estimated and actual flux error (left) and effectivity indices (right) on uniformly
refined meshes using methods 1, 2, and 3 for Section 8.1
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Fig. 8.3. Mortar estimators using methods 1, 2, and 3 (left) and different estimators using
method 3 (right) on uniformly refined meshes for Section 8.1

levels of uniform grid refinement where we always halve both subdomain and mortar
element diameters, so that H = 4

√
2h on each level. Note that this setting is rather

extreme, with coarse mortar grid and fine subdomain grids and relatively increased
CG∗

h
= 5. We have chosen it purposely so that the mortar error is significant.

Figure 8.2 (left) compares the actual and estimated flux errors |||u−uh|||∗ against
the total number of degrees of freedom for the methods 1, 2, and 3. Firstly, we see that
in all of the cases, the estimates give an upper bound on the error, as predicted by the
theory. The corresponding effectivity indices, given as the ratios of the estimate over
the error, are plotted in Figure 8.2 (right). We give some more details in Figure 8.3
(left), where we plot the mortar estimator ηM for method 1 and the mortar estimators
η̃M for methods 2 and 3. As predicted by the theory, see the discussion following
Theorem 3.2, the mortar error is overestimated in method 1. Its convergence rate
is roughly the same as for the estimators η̃M, but the actual value of the estimate is
increased. Methods 2 and 3 show better results for the mortar error only. In method 2,
however, a part of the actual mortar error is also estimated by the residual estimator
ηR,H of (3.6) which does not correspond to data oscillation (and is not as efficient as
the other estimators, see (4.5a)). In method 3, on the contrary, ηR,H of (3.6) takes the
superconvergent form of ηR,ĥ

given by (3.13), see Remark 3.6. Thus, finally, method 3
gives the best results, followed by methods 1 and 2, as Figure 8.2 demonstrates.
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Fig. 8.4. Estimated (left) and actual (right) flux error distribution on a uniformly refined mesh
using method 3 for Section 8.1

Figure 8.3 (right) compares the flux estimators ηP, ηR,H = ηR,ĥ
, and η̃M for

method 3. The estimator ηP, the same as the flux error |||u − uh|||∗, converges as
O(h). Since f is smooth, ηR,H = ηR,ĥ

converges as O(h2). It is interesting to notice

that η̃M converges here faster than O(h) and eventually gets negligible. For the
same reason, all methods 1, 2, and 3 approach mutually in the overall precision with
increasing refinement level, cf. Figure 8.2.

We next show in Figure 8.4 the estimated and actual spatial distribution of the
flux errors |||u − uh|||∗ of method 3 on the third level refinement. We can see that
the error estimator can detect the actual error distribution (and not only its size, like
indicated by the effectivity indices given in Figure 8.2 (right)) very well. In particular,
both the error inside each subdomain and the mortar error along the interface Γ are
well predicted. The distribution of the predicted mortar error η̃M of method 3 itself
corresponds to the increased values along the lines x = 1/2 and y = 1/2 in Figure 8.4.
Note that η̃M in method 3 is a volumetric quantity and can be nonzero in a band of
width H around the interface Γ, see Section 3.3.3. Once again, we have purposely
used quite coarse mortar mesh, so as to obtain rather increased mortar error.

8.2. Multiscale. The second example focuses on the multiscale setting and com-
pares methods 1, 3, and 4. We solve on Ω := (0, 1)× (0, 1) the problem (1.1a)–(1.1b)
with a full tensor coefficient K,

K :=

(
3 2
2 3

)
,

and we impose the source term f according to the analytic solution

p(x, y) = sin(2πx) sin(2πy).

Note that such a solution belongs to C∞(Ω) and hence is smooth enough for the proof
of Theorem 4.5, part 4).

As in the previous example, we use the multiscale mortar mixed finite element
method (5.1a)–(5.1c). The subdomains Ωi, the initial subdomain meshes Th,i, and the
mortar mesh GH are illustrated in Figure 8.1 (right). We keep Vh,i := RTN0(Th,i),
Wh,i := R0(Th,i), i.e., k = 0. We, however, increase the polynomial order approxi-
mation on the interface mesh GH . More precisely, we consider two cases, where MH
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Fig. 8.5. Estimated and actual potential error (left) and effectivity indices (right) on uniformly
refined meshes using methods 1, 3, and 4 for Section 8.2, case (a)
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Fig. 8.6. Diffusive flux–mortar estimators using methods 1, 3, and 4 (left) and different poten-
tial estimators using methods 3 and 4 (right) on uniformly refined meshes for Section 8.2, case (a)

consists of discontinuous piecewise quadratic polynomials, i.e., m = 2, in case (a),
and of discontinuous piecewise linear polynomials, i.e., m = 1, in case (b). For both
cases, we run several levels of uniform grid refinement where we halve mortar element
diameters and reduce four times the subdomain element diameters, so H = 2−

3
4

√
h

on each level.

Case (a) corresponds to the a priori analysis of [6]. The present experiments
indicate that case (b) is also computationally possible. This case is much more com-
putationally efficient (recall that (5.1a)–(5.1c) can be reduced to an interface problem
on MH , which is given in case (b) by piecewise first-order polynomials on GH only)
and it appears here that it has the same accuracy (the overall error still decreases
as O(h)). The present a posteriori estimates can be used to monitor and verify this
asymptotic accuracy. Note also that in case (b), the mortar error is expected to be
rather significant and presents a challenging test case for the robustness of the mortar
estimators.

Figures 8.5 and 8.6 show the results for case (a) and Figures 8.7 and 8.8 for
case (b). As predicted by Theorem 4.5, the estimator ηM of method 1 and η̃M of
method 3 are not robust with respect to the ratio H/h (see Figure 8.8, where these
estimators clearly decay with a slope inferior to O(h) of ηP,T and of |||u−uh|||∗). Con-
sequently, the effectivity index for method 1 (see Figure 8.7 (right)), although quite
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Fig. 8.7. Estimated and actual flux error (left) and effectivity indices (right) on uniformly
refined meshes using methods 1, 3, and 4 for Section 8.2, case (b)
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Fig. 8.8. Mortar estimators using methods 1, 3, and 4 (left) and different flux estimators using
methods 3 and 4 (right) on uniformly refined meshes for Section 8.2, case (b)

close to the optimal value of one on coarse meshes, grows with the refinement level.
On the other hand, as predicted by Theorem 4.5 in conjunction with Remark 4.9, the
estimator η̃M of method 4 is fully robust with respect to the ratio H/h (see Figure 8.6,
where η̃M for method 4 decays with the slope O(h) of ηP,T and of |||u− uh|||∗). Con-
sequently, for method 4, the effectivity index is not increasing but rather decreasing
with the refinement level. The rate in Figure 8.8 is no longer optimal (0.85 instead of
1), but still much better than 0.64 of method 3. Recall that case (b) is not covered by
the theory of [6], so that the robustness conclusions of Theorem 4.5 and Remark 4.9
do not apply to it. The estimated and the actual spatial distribution of the flux er-
rors |||u−uh|||∗ in case (a) for method 4 on the third level of refinement are shown in
Figure 8.9. Once again, they match very well. Recall that the mortar estimator η̃M is
by construction nonzero in the entire domain, as we, by the problems (3.24a)–(3.24b),
redistribute the mortar mass balance interface error over the entire subdomains Ωi.

8.3. Multinumerics and adaptivity. The third example focuses on the mult-
inumerics and local adaptivity of both the subdomain and mortar grids. We solve on
Ω := (−1, 1)× (−1, 1) the problem (1.1a)–(1.1b) with a piecewise constant K,

K :=

{
5 (x, y) ∈ (−1, 0)× (−1, 0) or (x, y) ∈ (0, 1)× (0, 1),

1 otherwise.
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Fig. 8.9. Estimated (left) and actual (right) flux error distribution on a uniformly refined mesh
using method 4 for Section 8.2, case (a)
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Fig. 8.10. Estimated and actual potential error (left) and effectivity indices (right) on uniformly
refined meshes using methods 1 and 3 for Section 8.3

We impose the source term f and Dirichlet boundary conditions according to the
analytic solution, which is given by (in polar coordinates)

p(r, θ)|i = rα(ai sin(αθ) + bi cos(αθ)),

where i ∈ {1, . . . , 4} corresponds to the axis quadrants and where α = 0.53544,
a1 = 0.44721, b1 = 1, a2 = −0.74536, b2 = 2.33333, a3 = −0.94412, b3 = 0.55556,
a4 = −2.4017, and b4 = −0.48148. Inhomogeneous Dirichlet boundary conditions are
set according the solution; the error stemming from their discrete approximation is
neglected. This solution has been studied previously in [27, 30, 31] and provides an
excellent test for a posteriori error estimation and adaptive mesh refinement due to
the singularity at the point (0, 0).

The domain Ω is divided into sixteen subdomains Ωi with the interface Γ along
the lines x = −1/2, 0, 1/2 and y = −1/2, 0, 1/2. On the inner subdomains, i.e.,
those which intersect the point (0, 0) where the singularity resides, we use piecewise
linear NIP discontinuous Galerkin finite element method on triangular meshes. In the
remaining subdomains we use the lowest-order Raviart–Thomas–Nédélec mixed finite
element method on a square mesh. The coupling is achieved via (5.14a)–(5.14d).

The mortar space MH is the space of discontinuous second-order polynomials on
the interface mesh GH (m = 2). For initial meshes we use 4 × 4 rectangular meshes
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Fig. 8.11. Adaptive subdomain mesh (left) and mortar mesh (right) after 12 steps of adaptive
refinement for Section 8.3

in the mixed subdomains and the same 4 × 4 meshes divided into triangles in the
discontinuous Galerkin subdomains. The initial mortar grid GH has one element on
all GH,i,j , so that H = 1/4 for the coarsest mesh. We note that the initial subdomain
grids match along the interface, but as we have seen in the previous examples, this
is not required and in the adaptive algorithm the subdomains may each be refined
independently.

Figure 8.10 (left) compares the actual and estimated potential errors for the
methods 1 and 3 on uniformly refined meshes. The estimates give an upper bound on
the error, as predicted by the theory. The corresponding effectivity indices are plotted
in Figure 8.10 (right). We see that they remain relatively constant as the grids are
refined.

Next, we use the a posteriori error estimate for adaptive mesh refinement. For
our refinement criteria, we compute the maximum of the subdomain and mortar
error indicators and mark a subdomain or mortar mesh for refinement if its error
indicator is larger that 0.8 times this maximum. Within the mixed subdomains the
grids are refined uniformly, while within the discontinuous Galerkin subdomains and
the mortars the elements are refined independently. The numerical simulator we
use requires conforming meshes within each subdomain, so we remove any hanging
nodes by refining neighboring elements, although in general this is not necessary for
discontinuous Galerkin.

Figure 8.11 shows the adapted subdomain mesh (left) and the adapted mor-
tar mesh (right) after twelve levels of refinement using method 3. We see that the
adaptivity is concentrated around the singularity as one might expect. Figure 8.12
(left) compares the actual and estimated flux errors |||u − uh|||∗ and potential errors
|||p−p̃h|||∗ using method 3 on adaptively refined meshes. The corresponding effectivity
indices are plotted in Figure 8.12 (right). We see that method 3 accurately predicts
the decay in both errors as the mesh is refined.

Finally, in Figure 8.13 we compare the estimated and actual flux errors (left)
and potential errors (right) on uniform and adaptive meshes. Clearly, the adaptively
refined meshes are able to provide an accurate solution with far fewer degrees of
freedom. The convergence order is approximately O(h0.55) for uniform refinement
and O(h1.03) for the adaptive algorithm which indicates that the refinement resolves
the singularity.
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Fig. 8.12. Estimated and actual flux error and potential error (left) and effectivity indices
(right) on adaptively refined meshes using method 3 for Section 8.3
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Fig. 8.13. Estimated and actual flux error (left) and potential error (right) on uniformly and
adaptively refined meshes using method 3 for Section 8.3

9. Concluding remarks. We have introduced here a general framework for
guaranteed a posteriori error estimates for multiscale, multinumerics, and mortar
coupling. In Sections 4 and 8, we have classified the various estimators of Section 3
into four methods. Method 1, where the estimates are given by Theorems 3.2 and 3.4
and where no notion of the H(div,Ω)-conforming flux reconstruction th appears, is
the easiest to implement and the cheapest to evaluate. It gives quite good results.
Method 3, where the estimates are given by Theorems 3.3 and 3.5 and the H(div,Ω)-
conforming flux reconstruction th following Section 3.3.3, is slightly more involved to
implement and requires the solution of local Neumann problems. It, however, gives
the best results for almost all the test cases. Method 2, with th constructed following
Section 3.3.2, is cheaper than method 3 but gives worse results and should be avoided.
Method 4, with th constructed following Section 3.3.4, is the most expensive but the
only one robust in the multiscale setting of the multiscale mortar mixed finite element
method, under sufficient regularity assumptions.

Appendix A. A technical result. We give here a technical result which was
necessary in the proof of Theorem 4.3 in Section 7.
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Lemma A.1. Let p̃h ∈ H1(Th) satisfying Assumptions 4.1 (2)–(3) be given. Then

h
− 1

2
g ‖[[p̃h]]‖g ≤ C

∑

T∈Th; |g∩∂T |6=0

‖∇(p̃h − ψ)‖T

for all g ∈ G∗
h, where ψ ∈ H1(Ω) is arbitrary and C depends on d, κTh

, and CG∗
h
.

Proof. The proof is a generalization of [2, Theorem 10] to the case where g ∈ G∗
h

is, from each side of the interface, a union of sides from EΓ
h , not necessarily matching,

such that only 〈[[p̃h]], 1〉g = 0 holds. If not specified otherwise, C denotes a generic
constant depending on d, κTh

, and CG∗
h
, not necessarily the same at each occurrence.

Consider g ∈ G∗
h and all the elements T ′

i and T ′′
j of Th from the two subdomains

Ωi and Ωj such that |g∩∂T ′
i | 6= 0 and |g∩∂T ′′

j | 6= 0, cf. Figure 2.1. Denote ∪T ′
i by T

′

and ∪T ′′
j by T ′′. Note that T ′ and T ′′ are not elements of Th but unions of elements

of Th. We will herein use the letter T to denote an element of Th. In each of T ′ and
T ′′, T ∗ = T ′, T ′′, consider the following Neumann problem:

−∆ϕ = 0 in T ∗,(A.1a)

∇ϕ·ng = [[p̃h]] on ∂T ∗ ∩ g,(A.1b)

∇ϕ·nT∗ = 0 on ∂T ∗ \ g,(A.1c)

(ϕ, 1)T∗ = 0.(A.1d)

Note that these problems are well-posed, using Assumption 4.1 (3). Let now ψ ∈
H1(T ′ ∪ T ′′) be arbitrary. Set ψ̃|T ′ := ψ|T ′ + cT ′ and ψ̃|T ′′ := ψ|T ′′ + cT ′′ , where
cT ′ := (p̃h − ψ)T ′ and cT ′′ := (p̃h − ψ)T ′′ . The function ψ is on T ′, T ′′ shifted by the
constants cT ′ and cT ′′ so that ψ̃ has a the same mean value as p̃h on both T ′, T ′′,

(ψ̃, 1)T ′ = (p̃h, 1)T ′ ,(A.2a)

(ψ̃, 1)T ′′ = (p̃h, 1)T ′′ .(A.2b)

Now develop

(∇ϕ,∇(ψ̃ − p̃h))T ′∪T ′′ =
∑

T⊂T ′∪T ′′

(∇ϕ,∇(ψ̃ − p̃h))T =
∑

T⊂T ′∪T ′′

〈∇ϕ·nT , ψ̃ − p̃h〉∂T

= − ‖[[p̃h]]‖2g + 〈[[p̃h]], [[ψ̃]]〉g +
∑

T⊂T ′∪T ′′

〈∇ϕ·nT , ψ̃ − p̃h〉∂T

−
∑

T⊂T ′∪T ′′

nT ·ng〈[[p̃h]], ψ̃ − p̃h〉∂T∩g,

using Green’s theorem (note that p̃h is by assumption only regular on the elements T
of Th) and (A.1a). This leads to

‖[[p̃h]]‖2g ≤ ‖∇ϕ‖T ′∪T ′′‖∇(ψ̃ − p̃h)‖T ′∪T ′′ +
∑

T⊂T ′∪T ′′

‖∇ϕ·nT ‖− 1
2
,∂T ‖ψ̃ − p̃h‖ 1

2
,∂T

+
∑

T⊂T ′∪T ′′

‖[[p̃h]]‖∂T∩g‖ψ̃ − p̃h‖∂T∩g + |〈[[p̃h]], [[ψ̃]]〉g|.

(A.3)

(Here we use the definitions ‖ · ‖− 1
2
,∂T and ‖ · ‖ 1

2
,∂T as in [24].) We now estimate each

of the above right-hand-side terms separately.
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1) First of all,

‖∇ϕ‖2T ′ = 〈∇ϕ·nT ′ , ϕ〉∂T ′ = nT ′ ·ng〈[[p̃h]], ϕ〉g ≤ C‖[[p̃h]]‖gh
1
2
g ‖∇ϕ‖T ′ ,

where C is the constant from the trace inequality

‖ϕ‖g ≤ Ch
1
2
g ‖∇ϕ‖T ′

(recall that (A.1d) holds). As a similar estimate on T ′′ can be established likewise, it
follows that the first term of (A.3) can be bounded by

(A.4) C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ̃ − p̃h)‖T ′∪T ′′ = C‖[[p̃h]]‖gh

1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ .

Here we have also used the fact that ∇ψ̃ = ∇ψ (recall that we use ∇ as the sign for
the piecewise gradient).

2) Next, recall that

‖∇ϕ·nT ‖2− 1
2
,∂T

≤ C(‖∇ϕ‖2T + h2T ‖∆ϕ‖2T ) = C‖∇ϕ‖2T ,
‖ψ̃ − p̃h‖21

2
,∂T

≤ ‖∇(ψ̃ − p̃h)‖2T + h−2
T ‖ψ̃ − p̃h‖2T

for all T ⊂ T ′ ∪ T ′′, see [24]. Thus the second term of (A.3) can be bounded by

{
∑

T⊂T ′∪T ′′

‖∇ϕ·nT ‖2− 1
2
,∂T

} 1
2
{

∑

T⊂T ′∪T ′′

‖ψ̃ − p̃h‖21
2
,∂T

} 1
2

≤ C‖∇ϕ‖T ′∪T ′′

(
‖∇(ψ̃ − p̃h)‖2T ′∪T ′′ + h−2

g ‖ψ̃ − p̃h‖2T ′ + h−2
g ‖ψ̃ − p̃h‖2T ′′

) 1
2

≤ C‖∇ϕ‖T ′∪T ′′‖∇(ψ̃ − p̃h)‖T ′∪T ′′ ,

where we have employed Cauchy–Schwarz’s inequality, the fact that hT for all T ⊂
T ′ ∪T ′′ and hg are comparable (their ratio is bounded as a function of κTh

and CG∗
h
),

and the discrete Poincaré inequality

(A.5) ‖ψ̃ − p̃h‖T∗ ≤ Chg‖∇(ψ̃ − p̃h)‖T∗ ,

T ∗ = T ′, T ′′, whose use is justified by the fact that Assumption 4.1 (2) holds (thus
ψ̃ − p̃h is continuous in mean on interior sides of Th|T∗) and by (A.2a)–(A.2b) (thus
ψ̃ − p̃h is of zero mean value in T ∗), see [29, Theorem 8.1]. Thus the second term
of (A.3) is bounded by (A.4) as the first one is.

3) Let T ∈ Th and e ∈ ET . Similarly to (2.9), we also have the trace inequality

‖ϕ− ϕT ‖e ≤ Ch
1
2

T ‖∇ϕ‖T .
Thus, for a given T ⊂ T ′ ∪ T ′′,

‖ψ̃ − p̃h‖2∂T∩g ≤ C(hT ‖∇(ψ̃ − p̃h)‖2T + h−1
T ‖ψ̃ − p̃h‖2T ).

Consequently, the third term of (A.3) is bounded by

{
∑

T⊂T ′∪T ′′

‖[[p̃h]]‖2∂T∩g

} 1
2
{

∑

T⊂T ′∪T ′′

‖ψ̃ − p̃h‖2∂T∩g

} 1
2

≤ C‖[[p̃h]]‖g
(
hg‖∇(ψ̃ − p̃h)‖2T ′∪T ′′ + h−1

g ‖ψ̃ − p̃h‖2T ′ + h−1
g ‖ψ̃ − p̃h‖2T ′′

) 1
2

≤ C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ̃ − p̃h)‖T ′∪T ′′ = C‖[[p̃h]]‖gh

1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ ,
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where we have employed Cauchy–Schwarz’s inequality, the fact that hT for all T ⊂
T ′ ∪ T ′′ and hg are comparable, and the discrete Poincaré inequality (A.5).

4) Let us finally turn to the last term of (A.3). We have, using Cauchy–Schwarz’s
inequality, the fact that |[[ψ̃]]| = |cT ′ − cT ′′ |, adding and subtracting (p̃h − ψ)g, and
employing the triangle inequality,

|〈[[p̃h]], [[ψ̃]]〉g | ≤ ‖[[p̃h]]‖g‖cT ′ − cT ′′‖g ≤ ‖[[p̃h]]‖g(‖(p̃h − ψ)T ′ − (p̃h − ψ)g‖g
+ ‖(p̃h − ψ)T ′′ − (p̃h − ψ)g‖g).

Now, using the same technique as in [31, Lemma 7.2] and employing discrete Friedrichs’
inequality [29, Theorem 5.4 and Remark 5.9]

‖χ‖T∗ ≤ Chg‖∇χ‖T∗ ,

T ∗ = T ′, T ′′, with χ := (p̃h − ψ) − (p̃h − ψ)g, (it is once again crucial that Assump-
tion 4.1 (2) holds), we come to

|〈[[p̃h]], [[ψ̃]]〉g | ≤ C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ .

Combining the above estimates on the individual terms of (A.3), we come to

‖[[p̃h]]‖g ≤ Ch
1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ ,

whence the assertion of the lemma follows.
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[31] Vohraĺık, M. Residual flux-based a posteriori error estimates for finite volume and related
locally conservative methods. Numer. Math. 111, 1 (2008), 121–158.
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