Logarithmic Jet Bundles and Applications
Résumé
We generalize Demailly's construction of projective jet bundles and strictly negatively curved pseudometrics on them to the logarithmic case. We establish this logarithmic generalization explicitly via coordinates, just as Noguchi's generalization of the jets used by Green-Griffiths. As a first application, we give a metric proof for the logarithmic version of Lang's conjecture concerning the hyperbolicity of complements of divisors in a semi-abelian variety as well as for the corresponding big Picard theorem.