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RÉSUMÉ. Cet article présente une approche basée sur les réseaux Bayésiens pour représenter
les dépendances entre les variables aléatoires et des variables indicatrices qui représentent
la présence ou l’absence des valeurs des variables aléatoires auxquelles est sont associées.
L’apprentissage de la structure du réseau augmenté permet, dans certains cas, d’indentifier le
mécanisme par lequel les données sont manquantes. La méthode est illustrée sur des données
synthétiques et sur un cas réel.

ABSTRACT. This paper proposes a framework built on the use of Bayesian networks (BN) for rep-
resenting statistical dependencies between the existing random variables and additional dummy
boolean variables, which represent the presence/absence of the respective random variable
value. We show how augmenting the BN with these additional variables helps pinpoint the
mechanism through which missing data contributes to the classification task. The missing data
mechanism is thus explicitly taken into account to predict the class variable using the data at
hand. Experiments on synthetic and real-world incomplete data sets are reported.

MOTS-CLÉS : Réseaux Bayésiens, mécanisme des données manquantes.
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1. Introduction

According to (Rubin, 1976), the assumptions about the missing data mechanisms
may be classified into three categories : 1) missing completely at random (MCAR) :
the probability that an entry is missing is independent of both observed and unobser-
ved values in the data set ; 2) missing at random (MAR) : the probability that an entry
is missing is a function of the observed values in the data set ; 3) informatively mis-
sing (IM) or Non-MAR (NMAR) : the probability that an entry is missing depends
on both observed and unobserved values in the data set. The methods for coping with
missing values can be grouped into three main categories (Little et al., 2002) : infe-
rence restricted to complete data, imputation-based approaches, and likelihood-based
approaches. Unfortunately, these methods are based on the assumption that the mecha-
nism of missing data is not IM. This assumption is hard to test in practice (Statistical
tests have been proposed, but these are restricted to a certain class of problems) and
the decrease in accuracy may be severe when the assumption is violated. For instance,
when machine learning algorithms are applied to data collected during the course of
clinical care, the absence of expected data elements is common and the mechanism
through which a data element is missing often involves the clinical relevance of that
data element in a specific patient (Lin et al., 2008; Siddique et al., 2008). Hence the
need for methods that help to detect the censoring mechanism. While no method can
tell for sure, under all scenarios, from the data alone whether the missing observations
are IM (although it is possible to distinguish between MCAR and MAR), some me-
chanisms leading to missing data actually possess information and the missingness of
some variables can be a predictive information about other variables.

Recently, (Lin et al., 2008) experimented with a method of treating missing values
in a clinical data set by explicitly modeling the absence of data. They showed that in
most cases a Naive Bayesian network trained using the explicit missing value treat-
ments performed better. However there method is unable to pinpoint explicitly the
missing mechanism and their experiments focus on small clinical datasets and thus
the results may not generalize to other settings. Note also that several approaches have
been designed with a view to be ’robust’ to the missing data mechanism (Ramoni et
al., 2001; Aussem et al., 2010). No assumption about the unknown censoring mecha-
nism is made, hence the "robustness". However, the utility of these methods is questio-
nable when the percentage of missing data is high. In this study, we experiment a new
graphical method of treating missing values, based on Bayesian networks (BN). We
describe a novel approach that uses explicitly the information represented by the ab-
sence of data to help detect the missing mechanism and reduce the classification error.
We create an additional dummy boolean variable Rj to represent missingness for each
existing variable Xj that was found to be absent (missingness indicator approach).
The graphical structure of the BN representing the joint probability distribution of the
variables can be used to help identify the missingness mechanism. Our approach is
based on Markov boundary (MB for short) learning techniques to impute the missing
entries. Once all the missing data are imputed, visual inspection of the induced graph
reveals useful information on the the missing data mechanism. Several experiments
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on synthetic incomplete data sets are reported. We also illustrate the usefulness of this
approach to Nasopharyngeal Carcinoma (NPC) data. The data set is obtained from a
case-control epidemiologic study performed by the International Agency for Research
on Cancer in the Maghreb (north Africa).

2. Preliminaries

The missing data mechanisms can be graphically represented by meanings of a the
structure of a Bayesian network, as stated by the following definition :

Definition 1 Let G be a network structure, let D be a corresponding data set, and let
M be the variables of G that have missing values in the dataset. Let R be the set of
variables called missing-data indicators that are in one-to-one correspondence with
variables M. A network structure that results from adding variables R as leaf nodes
to G is said to explicate the missing-data mechanism and is denoted by GR.

The following definition 2 provides a simple condition for the MCAR missing data
mechanism :

Definition 2 Let GR be a network structure that explicates the missing-data mecha-
nism of structure G and data set D. Let O be the set of variables that are always
observed in the data set D and let M be the variables that have missing values in the
data set. We say that GR satisfies the missing completely at random (MCAR) assump-
tion if R and {M,O} are disconnected in structure GR.

In other words, data will be MCAR if all the variables R form a sub-network that is
disconnected from the other variables. Informal definitions of MAR and IM, as given
in the introduction, only convey the general nature of the MAR and IM assumtpions.
We need to ground our work in proper definitions as found in (Rubin, 1976; Darwiche,
2009) to make sense of the statement “the probability that an entry is missing is a
function of the observed values”. The next definition 3 provides a general condition
for the MAR missing data mechanism (Darwiche, 2009) :

Definition 3 We say that GR satisfies the missing at random (MAR) assumption if R
and M are d-separated by O in structure GR.

Intuitively, GR satisfies the MAR assumption if once we know the values of the
variables O the specific values of variables M become irrelevant to whether these
values are missing in the data set. If the MAR assumption holds, the missing data
mechanism can be ignored as shown by the followong theorem (Darwiche, 2009) :

Theorem 1 Let GR and DR be a structure and a data set that explicate the missing-
data mechanism of G and D. Let θ be the parameters of structure G and θR be the
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Figure 1. Graphical representation of the missing data mechanisms MCAR, MAR and NMAR
(IM), respectively.

parameters of indicator variables in structure GR. If GR satisfies the MAR assumption,
then

argmaxθLL(θ|D) = argmaxθmaxθRLL(θ, θR|DR)

The data is IM if it not MAR. Note that the R are not necessary leaf nodes. Consi-
der for example the network R→ O ←M . R and M are dependent given the oberved
variable O, therefore the data is not MAR (noted IM or NMAR). To illustrate all these
concepts, let us consider the toy examples presented in Figure 1. Those examples were
originally used in (Ramoni et al., 2001). Whittaker reports a dataset (Whittaker, 1990)
that involves six boolean risk factors X1, . . . , X6 observed in a sample of 1841 em-
ployees of a Czech car factory. Then Ramoni and Sebastiani considered that dataset
and used a structure learning algorithm to output a structure that they used afterwards
as a toy problem to learn the conditional probability tables from incomplete datasets
(Ramoni et al., 2001). Clearly the network in the left-side is an example of the me-
chanism MCAR, whilst the mechanism of missing data present in the network in the
middle is an instance of MAR. Finally, the network in the right-side is a case of the
mechanism NMAR because the missing-data indicators Ri depend on both observed
and unobserved values in the dataset produced from this network.

Now let us consider the original data setD and an extensionD ⊂ DR that includes
missing-data indicators. When we apply a machine learning algorithm on the data set
D we are ignoring the missing-data mechanism, whilst we are accounting for it when
we apply the algorithm on DR. It turns out that the first and second approaches indeed
yield different estimates of the parameters of a structure G when data are not missing
at random.

From Definitions 2 and 3, the detection of the missing data mechanism boils down
to analysing the topology of the augmented network GR. In the MCAR case, a BN
structure learning algorithm is able to infer that R and {M,O} are disconnected. The
same is true for the mechanism MAR where the structure learning algorithm should
be able, in certain cases, to detect the presence of the edge between (at least) two
variables R and O as both variables are observed.
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A different picture emerges when one examines the NMAR case. If R→M in the
generating graph, it is clear that the edge will not be inferred because, each time M
is not missing, R is equal to 1. As R is constant, R and M appear as independent. To
infer the dependency, the missing values for M should be imputed given exogeneous
information. This should be possible if, for instance, R → M ← O. In this case, O
provides some information to infer the missing values for M . Once M is imputed, the
link between R and M might be inferred.

Obverall, theses examples suggest that encountering a situation where the dataset
has missing values should not discourage the researcher from applying a statistic prin-
cipled method. Rather, the attitude should be to account for as much of the missing
data mechanism as possible, knowing that these results will likely be better than those
produced by methods which do not consider such mechanism during the learning pro-
cess. Moreover, the missing data mechanism is rarely completely inaccessible. Often,
the mechanism is actually made up of both accessible and inaccessible factors. Thus,
although a researcher may not be confident that the data present a purely accessible
mechanism, covering as much of the mechanism as possible should be regarded as
beneficial rather than detrimental.

3. Imputation and detection

Our learning approach is rather heuristic in nature. We treat each variable that
contains missing values as a variable to be imputed, then we fill each missing value
with a single estimate (single imputation). When all vaiables are imputed, the network
structure reveals some information on the data missing mechanism. In order to gene-
rate imputations for the missing values, one must impose a probability model on the
complete data (observed and missing values). This is where the inferred BN model
comes into the picture. The proposed imputation approach works in phases. First, a
set of relevant variables is searched for building a probability model of the missing
variable, and second, a BN is constructed on this set of variables. The problem of fin-
ding relevant predictive features is achieved in the context of determining the Markov
boundary of the class variable that we want to predict. However, as some of these
variables may have missing values as well, the idea is to induce a broader set of fea-
tures that would not be strictly relevant for classification purposes if the dataset was
complete, but that are still associated to the target. Therefore, the MB learning algo-
rithm is called several times recursively to construct a local BN around the target. We
call MBLearning the generic procedure applied for seeking the Markov boundary of
a target from a dataset. This procedure can be replaced by any of the current state-
of-the-art Markov boundary searching algorithms, such as those described in (Peña et
al., 2007; Rodrigues de Morais et al., 2010; Tsamardinos et al., 2006). The local graph
provides a broader picture of the features that carry some information about the tar-
get variable. If the dataset was complete, these additional variables would deteriorate
classification accuracy due to increasing design cost. This is not the case here as the
variables in the true Markov boundary may be missing. A second important characte-
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ristic of the method presented in this section is that the scope of the search process is
augmented by the R variables.

Algorithm 1 GMB
Require: T : target variable ; r : maximal number of iterations for FSS ; α : minimal considered

ratio for missing values ; D : data set.
Ensure: BN : Bayesian network.

1: U = (Xi..n ∪Ri..n)
2: Set1← MBLearning(T,U)
3: V← Set1 ∪ T
4: I ← 1
5: while I < r do
6: Set2← ∅
7: for all (Xi ∈ Set1, such that MissRatio(Xi) ≥ α) do
8: Set2← Set2 ∪MBLearning(Xi,U)
9: end for

10: Set1← Set2
11: V← V ∪ Set2
12: I ← I + 1
13: end while

14: BN← Build Bayesian Network for V

The iterative algorithm is called Growing Markov Boundary (GMB for short).
GMB (described in Algorithm 1) receives four parameters : the target variable (T ),
the maximal number of iterations (r), the minimal considered ratio for missing values
(α) and the data set (D). GMB proceeds as follows : first the scope of variables (U) is
created in line 1 of the algorithm. U is composed by all the original random variables
(Xi) and artificially created variables (Ri) representing missingness of their respective
random variables. MBLearning is then first run on the target variable T (line 2). It is
then run again repeatedly on the adjacent nodes and so on up to a radius of r around
the target node (lines 5-13). A similar approach was proposed in (Peña et al., 2005),
but it does not take into account missingness as a possible piece of information. After
finishing the feature subset selection process, GMB creates at line 14 the local BN
including the selection of existing and the dummy variables. The user-defined radius
(r) of the Bayesian network constructed by GMB trades off accuracy and scalability.
MissRatio(X) is the missing rate of X .

It is important to note that MBLearning builds the MB in the presence of mis-
sing data. The structural learning can be performed with EM or MCMC techniques
for instance. In this study, we adopt the simple available cases analysis (ACA), i.e.,
the contingency table for the test X ⊥P Y |Z is constructed on the cases having no
missing values for X , Y and ∀i, Zi ∈ Z. Of course, this will bias results if the re-
maining cases are not representative of the entire sample. Notice however that ACA
was empirically compared to EM in (François, 2006) leading to the conclusions that
Bayesian network structure learning methods using ACA are faster and do not loose
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accuracy compared to the same methods using EM. The algorithm MBOR (Rodrigues
de Morais et al., 2010) was used to implement MBLearning.

The shortcomings of signe-imputation have been well documented (Rubin,
1976). Without special corrective measures, single-imputation inference (contrary
to multiple-imputation) tends to overstate precision because it omits the between-
imputation component of variability. However if the proportion of missing values is
small, then single imputation may be quite reasonable. We assume here that our single-
imputation inferences for scalar estimands are fairly accurate although the statistical
uncertainty due to missing data is not captured. Of course, our model used to generate
the imputations will at best be only approximately true. Future work will generalize
this appraoch to multiple-imputation.

Figure 2 reports the results of an empirical evaluation of GMB for MCAR, MAR
and IM (NMAR). In this experiments we assess how the use of explicit representation
of missing data affects classification across a range of different amounts of missing va-
lues, sample size and missing data mechanisms. We caused about 5%, 15% and 25%
of the values to be missing according to MCAR, MAR and NMAR mechanisms by
modifying the probability tables of the toy BN presented in Figure 1. Tow sample sizes
(i.e., 500 and 1500) are considered in the experiments. X6 was considered as target
because this variable permits a maximal value for the parameter r. We run GMB(X6)
for r = 1, 2, 3 and the local BN output by GMB was used as the classifier for X6

using standard inference techniques. Figure 2 summarizes the variability of the Kappa
measure by 10-fold cross-validation. The Kappa distribution over 50 datasets is illus-
trated in the form of boxplots. The Kappa measure assesses improvement over chance.
The following ranges of agreement for the Kappa statistic suggested in the literature
are : poor K < 0.4, good 0.4 < K < 0.75 and excellent K > 0.75. As may be
seen in Figure 2, the prediction value derived from missing data appears to be useful
for increasing the accuracy of the toy problem when the percentage of missing data
is superior to 5%. The term ’MB’ denotes the classifier using only the MB of the tar-
get variable without the use of the dummy variables Ri. The analysis presented here
suggests that attention to missing data may improve the prediction accuracy. Further
conclusions can be drawn from these results. In the MCAR case, the inclusion of the
dummy variables cannot improve classification because they are independent of all
the variables. The observed improvement for r > 1 is only due to the additional Xi

variables that are found useful when others are missing. A radius r > 1 was not found
to improve significantly the classification, compared to r = 1, when data are missing
by MAR or NMAR. The usefulness of the dummy variables increases with the ratio of
missing data when data are MAR or NMAR. Finally, the size of the dataset has little
influence on the results when data is MAR and NMAR.

4. Nasopharyngeal carcinoma analysis

The NPC data set consists of 1289 subjects (664 cases of NPC and 625 controls),
150 nominal variables and 5% missing values. Here the local structure around the tar-
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Figure 2. Accuracy of GMB for MCAR, MAR and IM missing data mechanisms on synthetic
data, for 5%, 15% and 25% missing values, and 500, and 1500 instances .

get variable NPC was obtained by running GMB. GMB was run for r = 1 on each
existing variable Xj with missing values and we used the BN output by GMB as the
classifier using standard inference techniques to fill in the missing entries for Xj .
Once all missing values were imputed, the overall structure was constructed by ap-
plying HPC on the completed dataset. Figure 3 shows the local graph obtained. The
nodes in dotted lines correspond to the dummy missingness variables. Line width is
proportional to the G-statistic association measure discussed earlier. The emphasis
here is on the missingness information. As may be observed, Nonresponse to "ciga-
rette smoking duration" and "stop smoking age" are directly associated to NPC even
if smoking is known to have a marginal effect on NPC. In fact, smoking is known to
be highly correlated to lifestyle habits in the maghrebian societies but not to NPC as
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Figure 3. Local NPC graph with missingness variables shown in dotted line.

NPC is less sensitive to the carcinogenic effects of tobacco constituents. It is worthy
to note that these variables are considered by our expert domain as effects of NPC
instead of causes because he believes that NPC patients are more inclined to answer
these questions as they are anxious about the effects of smoke inhalation. Inspection
of the graph also reveals that "industrial harissa age", "sheep fat", "lamb sausage age",
"spiced meat age", "tuberculosis", "alcohol age", "insulin-dependent" and "mononu-
cleosis" appear to be MAR and that the nonresponse to these questions is indirectly
associated to NPC (their influence is mediated by other variables and they are not in
the Markov boundary of NPC). Moreover, the missingness of "burning" seems to be
NMAR. A possible reason is that individuals skip this item if they are not exposed
to smoke particles from incomplete combustion of coal and wood. Finally, inclusion
of the missingness variables seems here to increase a little the prediction accuracy
(about 2%). While the gain in prediction accuracy is relatively moderate due the li-
mited amount of missing data (5%), the present study confirms that non response to
smoking and habitat conditions are associated to NPC risk.
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5. Discussion and conclusions

In study, we discussed a model for the imputation and the detection of the missing
data mechanism. Although absence of data is usually considered a hindrance to accu-
rate prediction, our conclusion is that the absence of some data elements in the data
sets can be informative when the amount of missing data is greater than 5%. Further
experiments were reported in (Rodrigues de Morais et al., 2009). Future work will
extend this approach to multiple imputation.
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