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LIMIT THEOREM FOR A MODIFIED LELAND HEDGING

STRATEGY UNDER CONSTANT TRANSACTION COSTS RATE

SEBASTIEN DARSES AND EMMANUEL DENIS

Abstract. We study the Leland model for hedging portfolios in the presence
of a constant proportional transaction costs coefficient. The modified Leland’s
strategy defined in [2], contrarily to the classical one, ensures the asymptotic
replication of a large class of payoff. In this setting, we prove a limit theorem for
the deviation between the real portfolio and the payoff. As Pergamenshchikov
did in the framework of the usual Leland’s strategy [11], we identify the rate
of convergence and the associated limit distribution. This rate turns out to be
improved using the modified strategy and non periodic revision dates.

Keywords: Asymptotic hedging – Leland-Lott strategy – Transaction costs –
Martingale limit theorem.

1. Introduction

The present paper is concerned with the study of asymptotic hedging in the pres-
ence of transaction costs. The asymptotic replication of a given payoff is performed
via a modified Leland’s strategy recently introduced in [2].

Let us briefly recall the history and the main known results about Leland’s
strategy. In 1985 Leland suggested an approach to price contingent claims under
proportional transaction costs. His main idea was to use the classical Black-Scholes
formula with a suitably adjusted volatility for a periodically revised portfolio whose
terminal value approximates the payoff. The intuition behind this practical method
is to compensate for transaction cost by increasing the volatility in the following
way:

(1.1) σ̂2
t = σ2 + σ

√
nkn

√
8/π

√
f ′(t),

where n is the number of the portfolio revision dates and kn = k0n
−α, α ∈ [0, 1

2 ]
is the transaction costs coefficient generally depending of n; f is an increasing and
smooth function whose inverse g := f−1 defines the revision dates tni := g( i

n ),
1 ≤ i ≤ n.

The principal results on convergence for models with transaction costs can be
described as follows. First consider the case of approximate hedging of the European
call option using the strategy with periodic portfolio revisions (i.e g(t) = t). We
know the following results with T = 1:

(a) For α = 1
2 , Lott gave the first rigorous result on the convergence of the

approximating portfolio value V n
1 to the payoff V1 = (S1 − K)+. The

sequence V n
1 − V1 tends to zero in probability [10], and a stronger result

holds: n E (V n
1 − V1)

2 converges to a constant A1 > 0 [5];
1
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(b) For α ∈ (0, 1
2 ), the sequence V n

1 − V1 tends to zero in probability (see [8]),

and it is shown in [1] that npαE (V n
1 − V1)

2 → 0 as n → ∞, with pα < α.
(c) For α = 0, the terminal values of portfolios do not converge to the European

call as shown by Kabanov and Safarian [8]. Namely, there is a negative
σ{S1}-measurable random variable ξ such that V n

1 −V1 → ξ in probability.
Pergamenshchikov [11] then analyzed the rate of convergence and proved a

limit theorem: the sequence n
1
4 (V n

1 −V1−ξ) converges in law to a mixture of
Gaussian distributions [11]. He noticed that one can increase the modified
volatility to obtain the asymptotic replication. To do so, he utilizes the
explicit form of the systematic hedging error for the European call option.
For related results see also [6] and [12].

For models including uniform and non-uniform revision intervals one needs to im-
pose certain conditions on the scale transform g. Generalizations of some of the
above results to this more technical case as well as extensions to contingent claims
of the form h(S1) can be found in [12, 5, 1]. In particular, n1/2+α

E (V n
1 − V1)

2

converges to a constant in the case α > 0. Moreover, for α = 1
2 , the distributions

of the process Y n
t := n

1
2 (V n

t − V̂t)
∗ in the Skorohod space D[0, 1] converges weakly

to the distribution of a two-dimensional Markov diffusion process component (see
[4]). Notice that the asymptotic replication still does not hold for α = 0 in this
more general setting. For more details we refer to [1, 3, 4] and references therein.

We solve the case α = 0 for a large class of payoff and with specific non uniform
revision dates by means of the modified strategy introduced in [2]. This one makes
the portfolio’s terminal value converge to the contingent claim as n tends to infinity,
that is the approximation error vanishes. The analysis we performed here suggests
that it might be difficult to obtain a better convergence rate regarding uniform
revision dates. In the framework of the non uniform grid we use, concentrating the
revision dates near the maturity T = 1 accelerates the convergence rate. We leave
the issue concerning periodic revision dates as an open problem.

The asymptotic behavior of the hedging error is a practical important issue.
Since traders obviously prefer gains than losses, measuring the L2-norm of hedging
errors is strongly criticized. Of course, the limiting distribution of the hedging error
is much more informative. Our present work also aims at tackling this issue: we
prove that

n
1
4
+p(V n

1 − h(S1))
d−−−−→

n→∞
Z,

where the law of Z is explicitly identified and p > 0 depends on the choosen grid.

The paper is organized as follows. In Section 2, we introduce the basic notations,
models and assumptions of our study; In particular we recall the modified Leland’s
strategy defined in [2]. In Section 3, we state our main result: a limit theorem
for the renormalized asymptotic hedging error. In Section 4, we establish two
lemmas concerning, on one hand, random variables constructed from the geometric
Brownian motion, and on the other hand, some change of variables for the revision
dates. These auxiliary results will be used repeatedly throughout the paper. In

∗Note that Y n

t
corresponds to the deviation (up to a multiplicative constant) between the “real

world” portfolio and the theoretical Leland’s portfolio bVt = bC(t, St) where bC is the modified heat
equation solution suggested by Leland whose terminal value is the payoff function.
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Section 5, we prove the main result. An appendix finally recalls all the known
technical results we need for the various proofs.

2. Notations and Models

2.1. Black–Scholes model and hedging strategy. We are given a filtered prob-
ability space (Ω,F , (Ft)[0,1], P) on which a standard one-dimensional (Ft)-adapted

Brownian motion W is defined. As usual, we denote by L2(Ω) the space of square in-

tegrable F1-measurable random variables endowed with its norm ‖X‖2 :=
√

E X2.
We consider the classical Black–Scholes model composed of two assets without

transaction costs, i.e. k0 = 0 and σ̂ = σ. The first one is riskless (bond) with the
interest rate r = 0 and the second asset is S = (St), t ∈ [0, 1], a geometric Brownian
motion that is

St = S0e
σWt− 1

2
σ2t.(2.2)

It satisfies the SDE

dSt = σStdWt,

with positive constants S0, σ. It means that the risky asset is seen under the
martingale measure.

The well-known Black and Scholes problem without transaction costs is to hedge
a payoff h(S1), h being a continuous function of polynomial growth. The pricing
function solves the terminal valued Cauchy problem

(2.3)





Ct(t, x) +
σ2

t

2
x2Cxx(t, x) = 0, t ∈ [0, 1], x > 0,

C(1, x) = h(x).

Its solution can be written as

C(t, x) =

∫ ∞

−∞
h

(
xeρty−

ρ2
t
2

)
ϕ(y)dy(2.4)

where ρ2
t = (1 − t)σ2 and ϕ is the standard Gaussian density.

Without transaction costs (σ = σ̂) the self–financed portfolio process reads

Vt = C(0, S0) +

∫ t

0

Cx(u, Su)dSu.(2.5)

In the Itô formula for C(t, St) the integral over dt vanishes and, therefore, Vt =
C(t, St) for all t ∈ [0, 1]. In particular, V1 = h(S1): At maturity the portfolio V
replicates the terminal payoff of the option. Modeling assumptions of the above
formulation include frictionless market and continuous trading for instance.

However, an investor revises the portfolio at a finite set of dates

T n = {ti ∈ [0, 1], i = 0, · · · , n}
and keeps Cx(ti, Sti

) units of the stock until the next revision date ti+1. It is
well known that this discretized model converges to the Black–Scholes one in the
sense that the corresponding portfolio terminal value converges to the payoff as the
number of revision dates tends to infinity.
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2.2. Reminder about Leland’s strategy. We are now concerned with transac-
tion costs. We directly work in a discrete time setting.

Leland suggested to replace σ in the Cauchy problem above by a suitable modi-

fied volatility σ̂. In the case where σ̂ does not depend on t, the solution Ĉ satisfies

Ĉ(t, x) = C(t, x, σ̂),(2.6)

i.e. practitioners do not need to rectify their algorithms to compute the strategy.
Leland obtained an explicit expression of σ̂ by equalizing the transaction costs of
the portfolio and the drift term generated by the additional term σ̂ − σ2 > 0 in

the Ito expansion of the payoff h(S1) = Ĉ(1, S1). In the general case, the pricing
function can be written as

Ĉ(t, x) =

∫ ∞

−∞
h
(
xeρn

t y−(ρn
t )2/2

)
ϕ(y)dy(2.7)

where

(ρn
t )2 :=

∫ 1

t

σ̂2
sds,(2.8)

σ̂2
t := σ2 + σ

√
nkn

√
8/π

√
f ′(t),(2.9)

ϕ is the Gaussian density and g = f−1 is the revision date function.

2.3. A possible modification of Leland’s strategy. In the model with propor-
tional transaction costs and a finite number of revision dates the current value of
the portfolio process at time t is described as

(2.10) V n
t := V n

0 +

∫ t

0

Dn
udSu −

∑

ti<t

k0Sti
|Dn

i+1 − Dn
i |

where Dn is a piecewise-constant process with Dn = Dn
i on the interval (ti−1, ti],

ti = tni , i ≤ n, are the revision dates, and Dn
i are Fti−1

-measurable random vari-
ables.

Recall that the transaction costs coefficient is a constant k0 > 0 (that is α = 0 in
the Leland model) and the dates ti are defined by a function g, namely ti = g( i

n ).
Let us denote by f the inverse of g. Set for all i0 < n

Jn
i0(t) = {i ≥ i0, ti ≤ t, ti ∈ T n}

and let us define the dates

t−n (t) = t(n−1)∧max Jn
0

(t)

t+n (t) = t1+(n−1)∧max Jn
0

(t).

The “enlarged volatility”, depending on n, is given by the formula (2.9).
We modify the usual Leland strategy (see [2]) by considering the process Dn

with

Dn
i := Ĉx(ti−1, Sti−1) −

i−1∑

j=1

∫ tj

tj−1

Ĉxt(u, Stj−1
)du.(2.11)

Moreover, let us define

Kn
t :=

∑

i∈Jn
1

(t)

∆Kn
tn
i
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where ∆Kn
tn
0

:= 0 and for i ≥ 1,

∆Kn
tn
i

:= −
∫ ti

ti−1

Ĉxt(u, Su)du.(2.12)

In the same way, we set

Ln
t :=

∑

i∈Jn
1

(t)

∆Ln
tn
i

where ∆Ln
tn
0

:= 0 and for i ≥ 1,

∆Ln
tn
i

:= −
∫ ti

ti−1

Ĉxt(u, Sti−1
)du.(2.13)

2.4. Assumptions and notational conventions. Throughout the paper, we
adopt the following rules:

(i) we will often omit the indexes n and the variable t (especially in the ap-
pendix) when there is no ambiguity;

(ii) the constants C appearing in the various inequalities is independent of n
and may change from one line to the next;

(iii) we use the classical Landau notations O and o. These quantities will be
always deterministic.

We use the abbreviations

δt := Ĉx(t, St),(2.14)

γt := Ĉxx(t, St).(2.15)

We denote by (δn
t )t the process equal to δtn

i
on the interval [tni , tni+1) and (γn

t )t is
defined similarly. For an arbitrary process H, we set ∆ Hti

= Hti
− Hti−1

.
We will work under the following assumptions:

(A1) The function g has the following form:

(2.16) g(t) = 1 − (1 − t)µ, µ ∈
(

1,
3 +

√
57

8

)
.

(A2) h is a convex and continuous function on [0,∞) which is twice differentiable
except the points K1 < · · · < Kp where h′ and h′′ admit right and left limits;
|h′′(x)| ≤ Mx−β for x ≥ Kp where β ≥ 3/2.

Assumption (A1) is not too restrictive. A trader can in particular choose µ
sufficiently close to 1 to balance its portfolio quasi periodically. However, as we will
see, it is more preferable to increase µ to obtain a better rate of convergence.

Note that f(t) = 1− (1− t)1/µ, hence the derivative f ′ for µ > 1 explodes at the
maturity date and so does the enlarged volatility. We define the increasing function

p := p(µ) :=
µ − 1

4(1 + µ)
.(2.17)

Under Assumption (A1), we have 0 < p < 1/16.
In the sequel, the quantity

Q(µ) =
µ1/2−2p(1 + µ)4p

24p
(√

8/π
)4p+1(2.18)

will frequently appear.
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 0

i-1

i

i+1

i+2

i+3

 1

 0 t(i-1) t(i) t(i+1) t(i+2) t(i+3) 1

Revision dates

f(t, 1/mu)

Figure 1. Revision dates with f(t) = 1 − (1 − t)
1
µ , µ = 1.5 and n = 10.

3. Main Result

In [2], it is proven that V n
1 converges in probability to h(S1). Our main result

here provides the rate of convergence and identifies the associated limit distribution
of the deviation:

Theorem 3.1. Consider the portfolio V n defined by (2.10) and (2.11) under As-
sumptions (A1) and (A2). The following convergence then holds:

n
1
4
+p(V n

1 − h(S1))
d−−−−→

n→∞
Z,(3.19)

where the law of Z is given by the characteristic function φZ(s) = E e−
s2

2
η2

with

η2 := Q(µ)(k0σ)1−4pS2
1 ×

∫ ∞

0

x4p

{(∫ ∞

x

J(y, S1)dy

)2

+

(
1 − 2

π

)
J̃(x, S1)

2

}
dx,

and

J(x, S1) :=
1

2x

∫ ∞

−∞
h′(Sue

√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy(3.20)

J̃(x, S1) :=
1√
x

∫ ∞

−∞
h′(Sue

√
xy+x/2)yϕ(y)dy.(3.21)

Moreover

n
1
2
+2p

E (V n
1 − h(S1))

2 −−−−→
n→∞

E η2.
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4. Auxiliary results

4.1. Geometric Brownian motion and related quantities. In the sequel, we
shall use the decomposition given by Ito formula

(4.22) Ĉx(t, St) = Ĉx(0, S0) + M̂n
t + Ân

t

where

M̂n
t :=

∫ t

0

σuSuĈxx(u, Su)dWu,

Ân
t :=

∫ t

0

[
Ĉxt(u, Su) +

1

2
σ2

uS2
uĈxxx(u, Su)

]
du.

The process M̂n is a square integrable martingale on [0, 1] by virtue of [2].

We set for u < v

Ev
u =

Sv

Su
− 1,

and

[Ev
u ]c = E (|Ev

u |) − |Ev
u | .

{Ev
u}2

s := (Ev
u)

2
sgn Ev

u .

In the sequel, we will use several times the following basic results.

Lemma 4.1. For all i the following inequalities and expansions hold:

E (Ev
u)

2m ≤ Cm(v − u)m, u ≤ v(4.23)

E

(
Eti

ti−1

)2

= σ2∆ti(1 + o(1))(4.24)

E

[
Eti

ti−1

]2
c

=

(
1 − 2

π

)
σ2∆ti(1 + o(1))(4.25)

E

[
Eti

ti−1

]2
c
sgn Ev

u =

(
1 − 2

π

)
σ2(∆ti)

3
2 (1 + o(1))(4.26)

E {Eti

ti−1
}2

s = k(∆ti)
3/2
(
1 + o(n−1/4)

)
.(4.27)

Proof. We refer to [1] or [4]. For the sake of completeness we recall the proof of the
last one. Let us notice the equality in law

{Eti

ti−1
}2

s
d
=

(
exp

{
σ
√

∆tjξ − σ2∆tj/2
}
− 1
)2 (

1
ξ≥σ

√
∆tj/2

− 1
ξ≤σ

√
∆tj/2

)
,

where ξ is the standard Gaussian variable. Since ξ and −ξ has the same law, this
yields

E {Eti

ti−1
}2

s = E

[(
euξ−u2/2 − 1

)2

−
(
e−uξ−u2/2 − 1

)2
]

1ξ≥u/2

−E

(
e−uξ−u/2 − 1

)2

1|ξ|≤u/2,

where u = σ
√

∆tj . Moreover, we have the inequality

E

(
e−uξ−u2/2 − 1

)2

1|ξ|≤u/2 ≤ u4.
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From [5], we recall that

E

[(
euξ−u2/2 − 1

)2

−
(
e−uξ−u2/2 − 1

)2
]

1ξ≥u/2 =
2√
2π

u3 + O(u4).

We then conclude. �

4.2. Basic results concerning the revision dates. The function ρt decreases
from ρ0 to 0. The following useful bounds are obvious:

ρ2
t ≥ (σ2 + cn

1
2 )(1 − t)(4.28)

ρ2
t ≤ σ2(1 − t) + σk0n

1
2

√
8/π(1 − t)

1
2 (1 − f(t))

1
2 .(4.29)

Moreover, it is straightforward that

ρ2
t ≥ cn

1
2

√
f ′(t)(1 − t),(4.30)

provided that f ′ is no decreasing.
Note that there is a constant C independent of n such that for all i ≤ n − 1,

1 − ti−1

1 − ti
≤ C.(4.31)

From there we deduce
∆ti

1 − ti
≤ C.(4.32)

We shall often use the inequality

n−1∑

i=1

∆ti
1 − ti

≤ C log(n)

where C is a constant independent of n.

Lemma 4.2. Fix x > 0 and t := t(n, x) such that x = ρ2
t . Set xi−1 = ρ2

ti−1

and xi = ρ2
ti

where ti−1, ti are such that t ∈ [ti−1, ti). Then, x ∈ (xi, xi−1] with

|xi−1 − xi| ≤ c n−1/2, c is a constant. There exists a constant C > 0 such that

∆tin
1/2+2p

xi−1 − xi
≤ C (x + 1).(4.33)

Moreover, for a given x, (1 − t) ≤ cn−1/2x → 0 as n → ∞ and

∆tin
1/2+2p

xi−1 − xi
−−−−→
n→∞

Q(µ)x4p

(σk0)
4p+1 .(4.34)

Proof. Let us write

∆tin
1/2+2p

xi−1 − xi
=

n2p

σ2n−1/2 + σk0

√
8/π 1

∆ti

∫ ti

ti−1

√
f ′(u)du

∼
n→∞

n2p

σk0

√
8/π

√
f ′(t̃i)

where t̃i ∈ [ti−1, ti]. Moreover

x = ρ2
t = σ2(1 − t) + σk0

√
8/πn1/2

∫ 1

t

√
f ′(u)du

= σ2(1 − t) + σk0

√
8/πn1/2 2µ1/2

1 + µ
(1 − t)

1+µ
2µ
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and

1 − t =

(
x − σ2(1 − t)

σk0

√
8/πn1/2

1 + µ

2µ1/2

) 2µ
1+µ

.

Note that x ≥ cn1/2(1 − t) so that (1 − t) ≤ cn−1/2x → 0. In a similar way, we
have

xi−1 − xi = ρ2
ti−1

− ρ2
ti

= σ2∆ti + cn1/2
√

f ′(ťi)∆ti

where ťi ∈ [ti−1, ti]. We deduce that

xi−1 − xi = σ2∆ti + cn1/2
√

f ′(ťi)g
′(θi)n

−1

where θi ∈ [(i − 1)/n, i/n]. Moreover,
√

f ′(ťi)g
′(θi) =

g′(θi)√
g′(f(ťi))

is bounded since f(ťi) ∈ [(i − 1)/n, i/n], i ≤ n − 1. Hence there is a constant c
satisfying xi−1 − xi ≤ cn−1/2. Since ρ is decreasing, x ∈ [xi, xi−1].

Eventually, t̃i ∈ [ti−1, ti] is such that x̃i = ρ2
t̃i
∈ [xi, xi−1] and x̃i → x. Similarly

we have

1 − t̃i =

(
x̃i − σ2(1 − t̃i)

σk0

√
8/πn1/2

1 + µ

2µ1/2

) 2µ
1+µ

(4.35)

which yields

√
f ′(t̃i) = µ−1/2

(
x̃i − σ2(1 − t̃i)

σk0

√
8/πn1/2

1 + µ

2µ1/2

) 1−µ
1+µ

(4.36)

and

∆tin
1/2+2p

xi−1 − xi
∼

n→∞
n2p

σk0

√
8/π

√
f ′(t̃i)

∼
n→∞

n2p

σk0

√
8/π

µ1/2

(
σk0

√
8/πn1/2

x̃i − σ2(1 − t̃i)

2µ1/2

1 + µ

) 1−µ
1+µ

∼
n→∞

1

σk0

√
8/π

µ1/2

(
σk0

√
8/π

x̃i − σ2(1 − t̃i)

2µ1/2

1 + µ

) 1−µ
1+µ

.

Since x̃i → x and t̃i → 0, we deduce that

∆tin
1/2+2p

xi−1 − xi
−−−−→
n→∞

1

σk0

√
8/π

µ1/2

(
σk0

√
8/π

x

2µ1/2

1 + µ

) 1−µ
1+µ

.

Since 0 < (µ − 1)/(1 + µ) < 1, we also find a constant c such that

∆tin
1/2+2p

xi−1 − xi
≤ c

∣∣x̃i − σ2(1 − t̃i)
∣∣µ−1

1+µ ≤ c (x + 1),

which concludes the proof. �
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We now stress an important remark regarding a slight abuse of notation repeat-
edly used along the paper.

Remark 4.3. Throughout the sequel, we shall often use the change of variable
x = ρ2

t with dx = −σ̂2
t dt. For ease of notation, we will use the abuse of notation t

instead of t(n, x) := (ρ2)−1(x) when applying this change of variable in an integral.

Similarly, a direct computation yields the following lemma.

Lemma 4.4. Set y > 0 and v := v(n, y) such that y = ρ2
v. There exists a constant

C > 0 such that
(1 − v)n1/2+2p

y
≤ C y.

Moreover, for a given y, (1 − v) ≤ cn−1/2y → 0 as n → ∞ and

(1 − v)n1/2+2p

y
−−−−→
n→∞

µ−1/2−2p(1 + µ)4p+1y4p

24p
(
σk0

√
8/π

)4p+1 .
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5. Proof of the limit theorem

The proof is divided into three parts. In Step 1 we split the hedging error into a
martingale part M and a residual part ε. In Step 2 we show that the residual terms
tend to 0 in L2(Ω) with rate n

1
4
+p as n tends to infinity. We identify in Step 3 the

asymptotic distribution of the martingale n
1
4
+pMn and we conclude the proof of

the main result.

5.1. Step 1: Splitting of the hedging error. Comparing Expression (2.10)

with the Ito expansion of h(S1) = Ĉ(1, S1) yields the following decompositions.
The hedging error reads

V n
1 − h(S1) = Mn

1 + εn
1(5.37)

where for all n ∈ N, Mn is a martingale of terminal value

Mn
1 := k0

∑

i≤n−1

γti−1
S2

ti−1

[
Eti

ti−1

]

c
+

∫ 1

0

Kn
u dSu.(5.38)

The residual term can be splited as

εn
t = Rn

0 (t) + Rn
1 (t) + Rn

2 (t) + Rn
3 (t)(5.39)

where

Rn
0 (t) := k0

∑

i∈Jn
1

(t)

γti−1
S2

ti−1

(
σ

√
2

π

√
nf ′(ti−1)∆ti − E

∣∣∣Eti

ti−1

∣∣∣
)

(5.40)

Rn
1 (t) :=

∫ t

0

(δn
u − δu)dSu,(5.41)

Rn
2 (t) := k0

∑

i∈Jn
1

(t)

(
|∆ δn

ti
+ ∆ Kn

ti
| − |∆ δn

ti
+ ∆ Ln

ti
|
)
Sti

,(5.42)

Rn
3 (t) :=

∫ t

0

(Ln
u − Kn

u )dSu.(5.43)

5.2. Step 2: The mean square residue tends to 0 with rate n
1
2
+2p.

The most technical part of this paper is the following. The deviation of the
approximating portfolio from the payoff has been written in an integral form by
virtue of the Ito formula. The “real world” portfolio may be interpreted as a discrete-

time approximation of the theoretical portfolio Ĉ(t, St) yielding the residual terms
above. Consequently, the following analysis is mainly based on Taylor approxima-

tions involving the successive derivatives of Ĉ and so heavily utilizes estimates of
the appendix. Standard tools from stochastic calculus are also frequently used.

Theorem 5.1. The following convergence holds:

n
1
2
+2p

E (εn
t )2 −−−−→

n→∞
0.(5.44)

To prove this theorem, we show the suitable convergence to 0 concerning the
Rj , 0 ≤ j ≤ 3.

Lemma 5.2.

n
1
2
+2p

E (Rn
0 )2 −−−−→

n→∞
0.(5.45)
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Proof. We have

E

∣∣∣Eti

ti−1

∣∣∣ = 4Φ

(
σ
√

∆ti
2

)
− 2 = σ

√
2

π

√
∆ti + (∆ti)o(1),

σ

√
2

π
n

1
2

√
f ′(ti−1)∆ti = σ

√
2

π

√
∆ti εi

where εi = n
1
2

√
∆ti
√

f ′(ti−1) verifies

|εi − 1| ≤ c∆ti
1 − ti

by virtue of Lemma 6.12. Hence, there is a constant C > 0 such that:

sup
t

|Rn
0 (t)| ≤ Ck0

n−1∑

i=1

γti−1
S2

ti−1

(∆ti)
3
2

1 − ti
.

From Corollary 6.5 and Inequalities (4.28–4.32), we deduce the following

n
1
4
+p

√

E

(
sup

t
|Rn

0 (t)|
)2

≤ Cn
1
8
+p

n−1∑

i=1

(∆ti)
3
2

(1 − ti)5/4
(5.46)

≤ C
n

1
8
+p

n
1
4

log n −−−−→
n→∞

0.(5.47)

�

A Taylor formula suggests to write the following splitting:

Rn
1 = σ (Rn

10 − Rn
11 − Rn

12 − Rn
13 + 2Rn

14) ,(5.48)

where

Rn
10(t) :=

∑

i≤n

γti−1
S2

ti−1

∫ ti∧t

ti−1∧t

Eu
ti−1

Su

Sti−1

dWu

Rn
11(t) :=

n−1∑

i=1

∫ ti∧t

ti−1∧t

Ĉxt(ti−1, Sti−1
)(u − ti−1)SudWu,

Rn
12(t) :=

1

2

n−1∑

i=1

S3
ti−1

∫ ti∧t

ti−1∧t

Ĉxxx(t̃i−1, S̃ti−1
)
(
Eu

ti−1

)2 Su

Sti−1

dWu,

Rn
13(t) :=

1

2

n−1∑

i=1

Sti−1

∫ ti∧t

ti−1∧t

Ĉxtt(t̃i−1, S̃ti−1
)(u − ti−1)

2 Su

Sti−1

dWu,

Rn
14(t) := −1

2

n−1∑

i=1

S2
ti−1

∫ ti∧t

ti−1∧t

Ĉxxt(t̃i−1, S̃ti−1
)Eu

ti−1
(u − ti−1)

Su

Sti−1

dWu.

Lemma 5.3.

n
3
2
+2p

E

(
sup

t∈[0,1]

Rn
10(t)

)2

−−−−→
n→∞

0.(5.49)

Proof. The Doob inequality yields

n
3
2
+2p

E sup
t

(Rn
10(t))

2 ≤ 4n
3
2
+2p

E (Rn
10(1))2
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where the r.h.s tends to 0 as shown below. Indeed, by the independence of the
increments of the Wiener process, we write:

E (Rn
10(1))2 = σ2

n∑

i=1

Λti−1

∫ ti

ti−1

E

(
Eu

ti−1

)2 S2
u

S2
ti−1

du

where

Λt := E Ĉ2
xx(t, St)S

4
t .(5.50)

It is easy to check the following asymptotic

E

(
Eu

ti−1

)2 S2
u

S2
ti−1

= σ2(u − ti−1) + (u − ti−1)O(n−1).

Therefore

E (Rn
10(1))2 =

σ4

2

∑

i≤n

Λti−1
(∆ti)

2(1 + O(n−1))

where ∆ti = g′(θi)/n with θi ∈ [(i − 1)/n, i/n]. We then deduce

n
3
2
+2p

E (Rn
10(1))2 =

σ4(1 + O(n−1))

2

∑

i≤n

Λti−1
(∆tin)

∆tin
1
2
+2p

xi−1 − xi
(xi−1 − xi)

where xi = ρ2
ti

. So, we have:

n
3
2
+2p

E (Rn
10(1))2 =

σ4(1 + O(n−1))

2

∫ ρ2
0

0

fn(x)dx

where

fn(x) =
n∑

i=1

Λti−1
(∆tin)

∆tin
1
2
+2p

xi−1 − xi
1(xi,xi−1](x).

Let us remark the abuse of notations ρ2
0 = ρ2

0,n and ti = t(n, xi) as previously
mentioned.

First, let us show that fn satisfies the dominated convergence bound condition.
If x ∈ (xi, xi−1] then from Corollary 6.5, we have

0 ≤ Λti−1
≤ C

√
xi−1

e−xi−1/4 ≤ C√
x

e−x/4.

Thus, from (4.33) we obtain

fn(x) ≤ C√
x

e−x/4(1 + x).(5.51)

Regarding the pointwise convergence of fn, for a given x ∈ (xi, xi−1], there exists

u ∈ [ti−1, ti) such that x = ρ2
u ≥ cn

1
2 (1 − u). It follows that not only u → 1 but

also ti, ti−1 → 1. Recall that ∆ti = g′(θi)n
−1 where θi ∈ [(i − 1)/n, i/n]. Thus

g(θi) → 1 and θi → 1 since f is continuous. Therefore ∆tin → g′(1) = 0. Moreover,
note that

Λti−1
=

1

xi−1

∫ ∞

−∞
e2σ

√
ti−1z−σ2ti−1Υi(z)ϕ(z)dz
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where

Υi(z) =

(∫ ∞

−∞
h′
(

eσ
√

ti−1z−σ2ti−1

2
+
√

xi−1y+
xi−1

2

)
yϕ(y)dy

)2

.

Applying the Lebesgue theorem, we deduce that Λti−1
converges to

Λ(x) :=
1

x

∫ ∞

−∞
e2σz−σ2

(∫ ∞

−∞
h′
(
eσz−σ2

2
+
√

xy+ x
2

)
yϕ(y)dy

)2

ϕ(z)dz.

Finally, together with (4.34), fn −−−−→
n→∞

0 a.e. We then apply the Lebesgue theorem

to conclude the following limit

σ4(1 + O(n−1))

2

∫ ρ2
0

0

fn(x)dx −−−−→
n→∞

0.

�

Lemma 5.4. n
1
2
+2p

E (supt Rn
11(t))

2 −−−−→
n→∞

0.

Proof. Using the Doob inequality, we obtain that E (supt Rn
11(t))

2 ≤ 4E (Rn
11(1))2.

By independence of the increments of the Wiener process, we deduce that

n
1
2
+2p

E (Rn
11(1))2 = n

1
2
+2p

n−1∑

i=1

E Ĉ2
xt(ti−1, Sti−1

)S2
ti−1

∫ ti

ti−1

(u−ti−1)
2
E

(
Su

Sti−1

)2

du.

It follows that

n
1
2
+2p

E (Rn
11(1))2 ≤ cn

1
2
+2p

n−1∑

i=1

E Ĉ2
xt(ti−1, Sti−1

)S2
ti−1

(∆ti)
3 ≤ cn− 1

4
+2p log n,

since Corollary 6.14 gives

E Ĉ2
xt(ti−1, Sti−1

)S2
ti−1

≤ c
n

1
4 f ′(ti−1)

(1 − ti−1)
3
2

where nf ′(ti−1)∆ti is bounded. We then conclude. �

Lemma 5.5. n
1
2
+2p

E (supt Rn
12(t))

2 −−−−→
n→∞

0.

Proof. As previously, we have the Doob inequality E (supt Rn
12(t))

2 ≤ 4E (Rn
12(1))2

and the equality

4E (Rn
12(1))2 =

n−1∑

i=1

∫ ti

ti−1

E

(
Ĉ2

xxx(t̃i−1, S̃ti−1
)S6

ti−1

(
1 − St

Sti−1

)4
S2

t

S2
ti−1

)
dt.

From (6.125), there exists a constant C such that:

E Ĉ4
xxx(t̃i−1, S̃ti−1

) ≤ C

ρ8
ti

.(5.52)

Using the Cauchy-Schwarz inequality and (4.23) with m = 8, we deduce that

n
1
2
+2p

E (Rn
12(1))2 ≤ Cn

1
2
+2p

n−1∑

i=1

(∆ti)
3

n(1 − ti)2

≤ C
n2p log n

n
3
2
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which proves the desired convergence to 0. �

Lemma 5.6. n
1
2
+2p

E (supt Rn
13(t))

2 −−−−→
n→∞

0.

Proof. We still consider the Doob inequality E (supt Rn
13(t))

2 ≤ 4E (Rn
13(1))2 and

4E (Rn
13(1))2 ≤

n−1∑

i=1

∫ ti

ti−1

E

(
Ĉ2

xtt(t̃i−1, S̃ti−1
)(t − ti−1)

4S2
t

)
dt.

Moreover, using Lemma 6.19 and the Cauchy-Schwarz inequality, we deduce that

E

(
Ĉ2

xtt(t̃i−1, S̃ti−1
)S2

t

)
≤ c

(1 − ti)4
.

Then, we obtain

n
1
2
+2p

E (Rn
13(1))2 ≤ Cn

1
2
+2p

n−1∑

i=1

(∆ti)
5

(1 − ti)4
≤ C n− 1

2
+2p log n.

The conclusion follows. �

Lemma 5.7. n
1
2
+2p

E (supt Rn
14(t))

2 −−−−→
n→∞

0.

Proof. We use the Doob inequality E (supt Rn
14(t))

2 ≤ 4E (Rn
14(1))2 and the equal-

ity

4E (Rn
14(1))2 =

n−1∑

i=1

∫ ti

ti−1

E

(
S4

ti−1
Ĉ2

xxt(t̃i−1, S̃ti−1
)

(
1 − St

Sti−1

)2

(t − ti−1)
2 S2

t

S2
ti−1

)
dt.

From (6.126), we deduce that

E

(
S4

ti−1
Ĉ2

xxt(t̃i−1, S̃ti−1
)

(
1 − St

Sti−1

)2
S2

t

S2
ti−1

)
≤ c

t − ti−1

(1 − ti)3
.

Then,

n
1
2
+2p

E (Rn
14(1))2 ≤ cn

1
2
+2p

n−1∑

i=1

(ti − ti−1)
4

(1 − ti)3
≤ c n− 1

2
+2p log n.

Thus, we can conclude. �

Let us now study the residual term Rn
2 . Again, a Taylor formula suggests to

write the following splitting:

Rn
2 = Rn

20 + · · · + Rn
24,(5.53)
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where

Rn
20(t) := σk0

√
2

π
n

1
2

∫ t

t−n (t)

S2
uγu

√
f ′(u)du,

Rn
21(t) := σk0n

1
2

√
2

π

∑

i∈Jn
1

(t)

∫ ti

ti−1

(
S2

uγu

√
f ′(u) − S2

ti−1
γti−1

√
f ′(ti−1)

)
du,

Rn
22(t) := kn

∑

i∈Jn
1

(t)

γti−1
|Sti

− Sti−1
|(Sti−1

− Sti
),

Rn
23(t) := k0

∑

i∈Jn
1

(t)

Θi(Sti
− Sti−1

),

Rn
24(t) := k0

∑

i∈Jn
1

(t)

ΘiSti−1
,

Θi := γti−1
|Sti

− Sti−1
| − |Ĉx(ti, Sti

) − Ĉx(ti−1, Sti−1
) + ∆ Kn

ti
|.(5.54)

Lemma 5.8. n
1
2
+2p

E (Rn
20(1))2 −−−−→

n→∞
0.

Proof. We have

n
1
2
+2p

E (Rn
20(1))2 = c n

3
2
+2p

E

∫

[tn−1,1]2
S2

uγuS2
vγv

√
f ′(u)

√
f ′(v)dudv.

We use the Cauchy–Schwarz inequality, Inequalities (6.5) and (4.30). From the
explicit formula of f ′, we thus obtain

n
1
2
+2p

E (Rn
20(1))2 ≤ c n1+2p

∫

[tn−1,1]2

dudv

(1 − u)5/8−3/(8µ)(1 − v)5/8−3/(8µ)
,

≤ c
n1+2p

n3/4+3/(4µ)
.

Since µ ∈ (1, 2],

3

4
+

3

4µ
− (1 + 2p) =

−3µ2 + 5µ + 3

4µ(µ + 1)
> 0

so that we can conclude. �

Lemma 5.9. n
1
2
+2p

E (supt Rn
21(t))

2 −−−−→
n→∞

0.

Proof. Let us consider Ψ(t, x) := x2Ĉxx(t, x)
√

f ′(t). The Ito formula yields

Ψ(t, St) = Ψ(ti−1, Sti−1
) +

∫ t

ti−1

∂Ψ

∂x
(u, Su)σSudWu +

∫ t

ti−1

∂Ψ

∂t
(u, Su)du

+
1

2

∫ t

ti−1

∂2Ψ

∂x2
(u, Su)σ2S2

udu,
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where

∂Ψ

∂t
(t, x) = x2

[
Ĉxxt(t, x)

√
f ′(t) + Ĉxx(t, x)

f ′′(t)

2
√

f ′(t)

]
,

∂Ψ

∂x
(t, x) =

[
2xĈxx(t, x) + x2Ĉxxx(t, x)

]√
f ′(t),

∂2Ψ

∂x2
(t, x) =

[
2Ĉxx(t, x) + 4xĈxxx(t, x) + x2Ĉxxxx(t, x)

]√
f ′(t).

If we set Xt = S2
t Ĉxx(t, x)

√
f ′(t) then dXt = µtdt + βtdWt where

µt =
∂Ψ

∂t
(t, St) +

1

2

∂2Ψ

∂x2
(t, St)σ

2S2
t ,

βt =
∂Ψ

∂x
(t, St)σSt.

We write n
1
4
+pRn

21(t) = An
t + Bn

t with

An
t := σk0n

3
4
+p

√
2

π

∑

i∈Jn
1

(t)

∫ ti

ti−1

(∫ t

ti−1

βudWu

)
dt,

Bn
t := σk0n

3
4
+p

√
2

π

∑

i∈Jn
1

(t)

∫ ti

ti−1

(∫ t

ti−1

µudu

)
dt.

From (6.120), there exists a constant C such that:

E β2
t ≤ c

(
E S4

t δ2
t + E S6

t Ĉ2
xxx(t, St)

)
f ′(t) ≤ Cf ′(t)

1
4

n
3
4 (1 − t)

3
2

.

Using A1, we claim that there exists a constant c̃ such that

|f ′′(t)|√
f ′(t)

=
c̃

(1 − t)
3
2
−1/(2/µ)

.

Thus, using (6.119–6.124), we obtain some constant C such that the following
inequality holds:

E µ2
t ≤ c (1 − t)3/(4µ)

n
1
4 (1 − t)13/4

+
c (1 − t)3/(4µ)

n3/4(1 − t)7/4
+

c

n5/4(1 − t)9/4+1/(4µ)
.(5.55)

By means of the stochastic Fubini theorem, we obtain that

An
t = σk0n

3
4
+2p

√
2

π

∑

i∈Jn
1

(t)

∫ ti

ti−1

(ti − u)βudWu.

Since the Doob inequality E (supt An
t )

2 ≤ 4E (An
1 )

2
holds, it suffices to estimate

E (An
1 )

2
. From the boundedness of

√
(ti − u)/(1 − u) and f ′(u)(ti − u)n on u ∈
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[ti−1, ti), we deduce the following estimates:

E (An
1 )

2 ≤ cn
3
2
+2p

n−1∑

i=1

∫ ti

ti−1

(ti − u)2E β2
udu,

≤ cn
3
2
+2p

n−1∑

i=1

∫ ti

ti−1

(ti − u)2f ′(u)
1
4

n3/4(1 − u)
3
2

du,

≤ c n2p

n
1
4

n−1∑

i=1

∫ ti

ti−1

(ti − u)

(1 − u)
3
2

du ≤ c
n2p log n

n3/4
−−−−→
n→∞

0.

Then, we conclude that E (supt An
t )

2 −−−−→
n→∞

0.

Secondly, we write:

Bn
t = cn3/4+p

∑

i∈Jn
1

(t)

∫ ti

ti−1

µu

∫ ti

ti−1

1t≥udt du,

= cn3/4+p
∑

i∈Jn
1

(t)

∫ ti

ti−1

(ti − u)µudu.

Then,

sup
t

|Bn
t | ≤ cn3/4+p

n−1∑

i=1

∫ ti

ti−1

(ti − u)|µu|du.

Thus there exists a constant c such that E supt |Bn
t |2 ≤ c n

3
2
+2pΥn where

Υn = E

(∫ 1

0

n−1∑

i=1

(ti − u)|µu|1(ti−1,ti](u)du

)2

,

= E

∫ 1

0

∫ 1

0

n−1∑

i, j=1

(ti − u)(tj − v)|µu||µv|1(ti−1,ti](u)1(tj−1,tj ](v)du dv.

Using the Cauchy–Schwarz inequality and (5.55), we can then bound Υn:

Υn ≤
∫ 1

0

∫ 1

0

n−1∑

i, j=1

(ti − u)(tj − v)
(
E µ2

u

) 1
2
(
E µ2

v

) 1
2
1(ti−1,ti](u)1(tj−1,tj ](v)du dv,

≤
(∫ 1

0

n−1∑

i=1

(ti − u)
(
E µ2

u

) 1
2
1(ti−1,ti](u)du

)2

,

≤ c (Υ1n + Υ2n + Υ3n)

where

Υ1n ≤



∑

i≤n−1

(∆ti)
2

(1 − ti)

1

n1/8(1 − t)5/8−3/(8µ)




2

≤ c log n

n1+3/(4µ)
.(5.56)
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In a same way, we obtain the following inequalities

Υ2n ≤



∑

i≤n−1

(∆ti)
2

n3/8(1 − ti)7/8




2

≤ C

n
5
4

(5.57)

Υ3n ≤



∑

i≤n−1

(∆ti)
2

n5/8(1 − ti)1+(1/8+1/(8µ))




2

≤ Ct log n

n7/2+1/(4µ)
.(5.58)

Then, from inequalities (5.56), (5.57) and (5.58) we deduce that

E sup
t

|Bn
t |2 ≤ C n

3
2
+2p log n

n1+3/(4µ)
≤ C log n

n3/(4µ)− 1
2
−2p

where

3/(4µ) − 1

2
− 2p =

−4µ2 + 3µ + 3

4µ(µ + 1)
.

Assumption (A1) yields −4µ2 + 3µ + 3 > 0. Hence the result follows. �

Lemma 5.10. n
1
2
+2p

E (supt Rn
22(t))

2 −−−−→
n→∞

0.

Proof. We write

−Rn
22(t) = kn

∑

i∈Jn
1

(t)

γti−1
S2

ti−1
{Eti

ti−1
}2

s = Un(t) + V n(t)

where Un is a martingale defined as

Un(t) := k0

∑

i∈Jn
1

(t)

γti−1
S2

ti−1

(
{Eti

ti−1
}2

s − E {Eti

ti−1
}2

s

)
,

and

V n(t) := k0

∑

i∈Jn
1

(t)

γti−1
S2

ti−1
E {Eti

ti−1
}2

s.

Recall that from Lemma 4.1

E {Eti

ti−1
}2

s = k(∆tj)
3
2

(
1 + o(n− 1

4 )
)

.

We deduce that for n large enough, 0 ≤ E {Eti

ti−1
}2

s ≤ c(∆ti)
3
2 . Using the Doob

inequality E (supt Un(t))
2 ≤ 4E (Un(1))

2
, it suffices to estimate E (Un(1))

2
. The

independence of the increments of the Brownian motion implies the equality

E (Un(1))
2

= k2
0

n−1∑

i=1

E Ĉ2
xx(ti−1, Sti−1

)S4
ti−1

E

(
{Eti

ti−1
}2

s − E {Eti

ti−1
}2

s

)2

.

Then, there exists a constant C such that

n
1
2
+2p

E (Un(1))
2 ≤ C n2p

n
1
4

−−−−→
n→∞

0.
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At last, for n large enough, E {Eti

ti−1
}2

s ≥ 0. Hence, 0 ≤ supt V n(t) ≤ Nn(1). In

order to prove that n
1
2
+2p

E V n(1)2 −−−−→
n→∞

0, we first analyze the following sum

n
1
2
+2pk2

0

n−1∑

i=1

E Ĉ2
xx(ti−1, Sti−1

)S4
ti−1

(E {Eti

ti−1
}2

s)
2 ≤ c n2p

n7/4
−−−−→
n→∞

0.

Using the Cauchy-Schwarz inequality, we also have

n
1
2
+2p

∑

ti<tj≤tn−1

E γti−1
S2

ti−1
γtj−1

S2
tj−1

E {Eti

ti−1
}2

sE {Etj

tj−1
}2

s ≤ c n2p

n
−−−−→
n→∞

0.

We then deduce that n
1
2
+2p

E V n(1)2 −−−−→
n→∞

0 and finally

n
1
2
+2p

E (sup
t

Rn
22(t))

2 −−−−→
n→∞

0.

�

Lemma 5.11. n
1
2
+2p

E (supt Rn
23(t))

2 −−−−→
n→∞

0.

Proof. We write Rn
23(t) = Rn

231(t) + Rn
232(t) where

Rn
231(t) := k0

∑

i∈Jn
1

(t)

Θ1
i (Sti

− Sti−1
)

Rn
232(t) := k0

∑

i∈Jn
1

(t)

(
Θi − Θ1

i

)
(Sti

− Sti−1
)

with
Θ1

i := γti−1
|Sti

− Sti−1
| − |Ĉx(ti, Sti

) − Ĉx(ti−1, Sti−1
)|.

We note that supt |Rn
231(t)| is bounded by

k0

n−1∑

i=1

∣∣Ĉx(ti, Sti
) − Ĉx(ti−1, Sti−1

) − γti−1
(Sti

− Sti−1
)
∣∣|Sti

− Sti−1
|.

Applying Taylor’s formula to the difference Ĉx(ti, Sti
)−Ĉx(ti−1, Sti−1

) it is sufficient
to estimate the following sums (5.59), · · · ,(5.62). The first one satisfies

n
1
4
+p

∥∥∥∥∥k0

n−1∑

i=1

Ĉxt(ti−1, Sti−1
)(∆ti)(Sti

− Sti−1
)

∥∥∥∥∥
2

≤ C
np

n1/8
→ 0.(5.59)

Indeed, from Corollary 6.14, we deduce that:

E Ĉ2
xt(ti−1, Sti−1

)(∆ti)
2(Sti

− Sti−1
)2 ≤ C

(∆ti)
3n

1
4 f ′(ti−1)

1
4

(1 − ti)
3
2

.

The second one verifies

n
1
4
+p

∥∥∥∥∥k0

n−1∑

i=1

Ĉxxx(t̃i−1, S̃_ti−1)(Sti
− Sti−1

)3

∥∥∥∥∥
2

≤ C
np log n

n
1
2

→ 0.(5.60)

Thirdly, from (6.126), we deduce that

E Ĉ2
xxt(t̃i−1, S̃ti−1

)(Sti
− Sti−1

)4(∆ti)
2 ≤ C(∆ti)

4

(1 − ti)3
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and it follows that

n
1
4
+p

∥∥∥∥∥k0

n−1∑

i=1

Ĉxxt(t̃i−1, S̃ti−1
)(Sti

− Sti−1
)2∆ti

∥∥∥∥∥
2

≤ C
np log n

n
1
4

−−−−→
n→∞

0.(5.61)

Finally, from Lemma 6.19, we get that

E Ĉ2
xtt(t̃i−1, S̃ti−1

)(Sti
− Sti−1

)2(∆ti)
4 ≤ C(∆ti)

5

(1 − ti)4

and

n
1
4
+p

∥∥∥∥∥k0

n−1∑

i=1

Ĉxtt(t̃i−1, S̃ti−1
)(Sti

− Sti−1
)(∆ti)

2

∥∥∥∥∥
2

≤ C
np log n

n
1
4

−−−−→
n→∞

0.(5.62)

From above, we can conclude about that n
1
2
+2p

E (supt Rn
231(t))

2 −−−−→
n→∞

0.

As for Rn
232(t), we use the inequality

∣∣Θi − Θ1
i

∣∣ ≤ |∆ Kn
ti
|

and we deduce from Definition (2.12) the bound

|Rn
232(t)| ≤ c sup

i
|∆Sti

|
∫ tn−1

0

|Ĉxt(tu, Su)|du,

with

|Ĉxt(tu, Su)| ≤ c√
Su(1 − u)

so that

|Rn
232(t)| ≤ c log(n) sup

t
S
− 1

2

t sup
i

|∆Sti
| .

Using the Cauchy–Schwarz inequality, the boundedness of E supt S−2
t yields

E sup
t

(Rn
232(t))

2 ≤ C log2(n)

√
E sup

i
(∆Sti

)
4
.

Moreover,

E sup
i

(∆Sti
)
4 ≤ n− 3

2 + E sup
i

(∆Sti
)
4
1

supi(∆Sti)
4≥n−

3
2
,

≤ n− 3
2 + C

√
P

(
sup

i
(∆Sti

)
4 ≥ n− 3

2

)
.

By virtue of the Bienaymé–Tchebytchev inequality P(|X| ≥ k) ≤ k−8
E X8,

P

(
sup

i
(∆Sti

)
4 ≥ n− 3

2

)
≤ n12

∑

i

E (∆Sti
)
32 ≤ C n−3.

We deduce that

E sup
i

(∆Sti
)
4 ≤ C n− 3

2

and finally E supt (Rn
232(t))

2 ≤ Cn−3/4 log2(n) so that we can conclude the lemma.
�
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Lemma 5.12. We have

n
1
2
+2p

E (sup
t

Rn
24(t))

2 −−−−→
n→∞

0.

Proof. Let us notice that supt |Rn
24(t)| is bounded by the random variable

k0

n−1∑

i=1

∣∣∣Ĉx(ti, Sti
) − Ĉx(ti−1, Sti−1

) + ∆ Kn
ti
− Ĉxx(ti−1, Sti−1

)
(
Sti

− Sti−1

)∣∣∣Sti−1
.

Using the Ito formula for the increments Ĉx(ti, Sti
) − Ĉx(ti−1, Sti−1

), we obtain

sup
t

|Rn
24(t)| ≤ k0

n−1∑

i=1

Sti−1

∣∣∣∣
∫ ti

ti−1

σSu

[
Ĉxx(u, Su) − Ĉxx(ti−1, Sti−1

)
]
dWu

+
1

2

∫ ti

ti−1

σ2S2
uĈxxx(u, Su)du

∣∣∣∣.(5.63)

Thus
n

1
4
+p‖ sup

t
Rn

24(t)‖2 ≤ T 1
n + T 2

n

where

T 1
n = σk0n

1
4
+p

n−1∑

i=1

(∫ ti

ti−1

E S2
ti−1

S2
u

(
γu − γti−1

)2
du

) 1
2

and

T 2
n =

k0n
1
4
+pσ4

4

n−1∑

i=1

(∆ti)
1
2

(∫ ti

ti−1

E S2
ti−1

S4
uĈ2

xxx(u, Su)du

) 1
2

.

We first prove that T 1
n −−−−→

n→∞
0. Using the Taylor Formula, we get that

γu − γti−1
= γu − Ĉxx(u, Sti−1

) + Ĉxx(u, Sti−1
) − γti−1

= Ĉxxx(u, Sti−1
)(Su − Sti−1

) +
1

2
Ĉxxxx(u, S̃ti−1

)(Su − Sti−1
)2

+ Ĉxxt(t̃i−1, Sti−1
)(u − ti−1).

Using the suitable estimations from the Appendix, we then obtain

E S2
ti−1

S2
u

(
γu − γti−1

)
)2 ≤ c∆ti

n
7
8 (1 − ti)

7
4

+
c(∆ti)

2

n
3
2 (1 − ti)3f ′(ti)

3
2

+
c(∆ti)

2

n3/4(1 − ti)1
1
4

.

The last estimate follows from Corollary 6.124. Indeed, the proof is the same since
ρeti−1

≤ ρti−1
. We can therefore deduce that T 1

n −−−−→
n→∞

0.

We then prove that T 2
n −−−−→

n→∞
0. We deduce from Appendix the following in-

equality:

E S2
ti−1

S4
uĈ2

xxx(u, Su) ≤ c

n7/8(1 − ti)7/4
.

It suffices to obtain the convergence

n
1
4
+p

n−1∑

i=1

∆ti
n7/16(1 − ti)7/8

≤ c np

n3/16
−−−−→
n→∞

0

to conclude the lemma. �

This last lemma completes the proof of Theorem 5.1.
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5.3. Step 3: Asymptotic distribution.

From the previous subsection, it turns out that the deviation between the “real
world” terminal portfolio and the payoff h(S1) is essentially composed of a martin-

gale as n → ∞. To study the asymptotic distribution of n
1
4
+pMn

1 , we consider it as
terminal values of the following sequence of martingales (Nn

j )j=0,··· ,n with respect
to the filtration Fn = (Fti

)i:

Nn
j := n

1
4
+pMn

j =

j∑

i=1

(χi + ϑi),

where

χi := k0n
1/4+pγti−1

S2
ti−1

[
Eti

ti−1

]

c
,(5.64)

ϑi := k0n
1/4+pKn

ti−1
(Sti

− Sti−1
).(5.65)

Theorem 5.13. The following convergence holds:

Nn
1

d−−−−→
n→∞

Z,(5.66)

where the law of Z is given by the characteristic function φZ(s) = E e−
s2

2
η2

with

η2 := Q(µ)(k0σ)1−4pS2
1 ×

∫ ∞

0

x4p

{(∫ ∞

x

J(y, S1)dy

)2

+

(
1 − 2

π

)
J̃(x, S1)

2

}
dx,

and

J(x, S1) :=
1

2x

∫ ∞

−∞
h′(Sue

√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy(5.67)

J̃(x, S1) :=
1√
x

∫ ∞

−∞
h′(Sue

√
xy+x/2)yϕ(y)dy.(5.68)

Moreover

E (Nn
1 )2 −−−−→

n→∞
E η2.

We achieve the proof of this theorem by means of the result page 58 in [7] recalled
by Theorem 6.1 in the Appendix. (Note that the completion of the σ-field generated
by the collection (Fn)n coincides with F1.) We thus need to prove the following
lemmas.

Lemma 5.14. The sequence of martingales (Nn
i )i=0,··· ,n satisfies

for all ε > 0,
∑

i

E
(
(χi + ϑi)

2
1|χi+ϑi|>ε|Fti−1

) P−−−−→
n→∞

0.(5.69)

Proof. We use the inequality (χi + ϑi)
2 ≤ 2χ2

i + 2ϑ2
i and we shall prove a stronger

result, i.e. a convergence in L1.

First let us show that

E
(
ϑ2

i 1|χi+ϑi|>ε

)
−−−−→
n→∞

0.(5.70)
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By virtue of the Markov inequality, we obtain

E
(
ϑ2

i 1|ϑi|>ε/2

)
≤

√
E ϑ4

i

√
P(|ϑi| > ε/2)

≤ Cε−6
√

E ϑ4
i

√
E ϑ12

i .

By independance, we have

E ϑ4
i = k2

0n
1+4p

E (Kn
ti−1

)4S4
ti−1

E (Eti

ti−1
)4(5.71)

E ϑ12
i = k2

0n
3+12p

E (Kn
ti−1

)12S12
ti−1

E (Eti

ti−1
)12(5.72)

Recall that

Kn
ti−1

= −
∫ ti−1

0

Ĉxt(u, Su)du

and by virtue of Lemma 6.8 there exists a constant C such that

|Kn
ti−1

|4 ≤ C sup
0≤u≤T

S−2
u

(∫ tn−1

0

du

1 − u

)4

≤ C sup
0≤u≤T

S−2
u log4(n).

We deduce that

E ϑ4
i ≤ C log4(n)n4p−1,

E ϑ12
i ≤ C log12(n)n12p−3.

Since p < 1/8, we deduce

∑

i

E
(
ϑ2

i 1|ϑi|>ε/2

)
≤ C ε−6n8p−1 log8(n)

∑

i≤n

n−1

≤ C ε−6n8p−1 log8(n) −−−−→
n→∞

0.

Let us study E
(
ϑ2

i 1|χi|>ε/2

)
. Again,

E
(
ϑ2

i 1|χi|>ε/2

)
≤

√
E ϑ4

i

√
P(|χi| > ε/2)

≤ Cε−2
√

E ϑ4
i

√
E χ4

i .

Once again by independence,

E χ4
i = k4

0n
1+4p

E γ4
ti−1

S8
ti−1

E

[
Eti

ti−1

]4
c
.

We easily deduce from Lemma 4.1 the inequality

E

[
Eti

ti−1

]4
c

≤ C(∆ti)
2.

Using Corollary 6.119 we obtain

E χ4
i ≤ C n1+4p (∆ti)

2

(
n1/4

√
1 − ti−1

)3 ≤ C n4p−1/4.(5.73)
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Since p < 1
16 < 3

32 , then

∑

i

E
(
ϑ2

i 1|χi|>ε/2

)
≤ C ε−2n4p log2(n)

∑

i

∆ti
n3/8(1 − ti−1)3/4

.

≤ C ε−2n4p−3/8 log2(n)
∑

i

∆ti
1 − ti−1

≤ Cε−2 n−3/8+4p log3(n) −−−−→
n→∞

0.

From the inequality 1|χi+ϑi|>ε ≤ 1|χi|>ε/2 + 1|ϑi|>ε/2 we then deduce that
∑

i

E
(
ϑ2

i 1|χi+ϑi| > ε
)
−−−−→
n→∞

0.

Second let us show that

E
(
χ2

i 1|χi+ϑi|>ε

)
−−−−→
n→∞

0.(5.74)

In the same way, we have

E
(
χ2

i 1|ϑi|>ε/2

)
≤

√
E χ4

i

√
P(|ϑi| > ε/2)(5.75)

≤ Cε−6
√

E χ4
i

√
E ϑ12

i .(5.76)

From (5.73) we have

E χ4
i ≤ C n4p−1/4.

Thus, using p < 1
16 < 5

64 ,
∑

i

E
(
χ2

i 1|ϑi|>ε/2

)
≤ Cε−6 n8p−5/8 log6(n) −−−−→

n→∞
0.(5.77)

Let us now study E
(
χ2

i 1|χi|>ε/2

)
.

E
(
χ2

i 1|χi|>ε/2

)
≤

√
E χ4

i

√
P(|χi| > ε/2)(5.78)

≤ Cε−2
E χ4

i .(5.79)

Using the bound (5.73), we obtain
∑

i

E
(
χ2

i 1|χi|>ε/2

)
≤ Cn4p−1/4 −−−−→

n→∞
0.(5.80)

We finally conclude the lemma. �

Lemma 5.15. The sequence of martingales (Mn
i )i=0,··· ,n satisfies the following

convergence

V 2
n :=

∑

i

E
(
(χi + ϑi)

2|Fti−1

) d−−−−→
n→∞

η2,(5.81)
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where

η := Q(µ)(k0σ)1−4pS2
1 ×

∫ ∞

0

x4p

{(∫ ∞

x

J(y, S1)dy

)2

+

(
1 − 2

π

)
J̃(x, S1)

2

}
dx,

with

J(x, S1) :=
1

2x

∫ ∞

−∞
h′(Sue

√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy(5.82)

J̃(x, S1) :=
1√
x

∫ ∞

−∞
h′(Sue

√
xy+x/2)yϕ(y)dy.(5.83)

Proof. First, let us study the term

ξϑ
n :=

∑

i

E
(
ϑ2

i |Fti−1

)
.(5.84)

By independence, we obtain

E
(
ϑ2

i |Fti−1

)
= k2

0n
1/2+2p

(
Kn

ti−1

)2

S2
ti−1

E

(
Eti

ti−1

)2

.(5.85)

Hence, using Lemma 4.1 and the change of variable y = ρ2
u and xi = ρ2

ti
,

E
(
ϑ2

i |Fti−1

)
= k2

0n
1/2+2pKn2

ti−1
S2

ti−1
σ2∆ti(1 + O(n−1))

= k2
0σ

2n1/2+2pS2
ti−1

(∫ ti−1

0

Ĉxt(u, Su)du

)2

∆ti(1 + O(n−1))

= k2
0σ

2S2
ti−1

(∫ ti−1

0

Ĉxt(u, Su)du

)2
n1/2+2p∆ti
xi−1 − xi

∆xi(1 + O(n−1))

= k2
0σ

2S2
ti−1

(∫ ρ2
0

xi−1

Ĉxt(u, Su)σ̂−2
u dy

)2
n1/2+2p∆ti
xi−1 − xi

∆xi(1 + O(n−1)).

We then deduce that

ξϑ
n = (1 + O(n−1))

∫ ∞

0

zϑ
n(x)dx(5.86)

where

zϑ
n(x) := S2

ti−1
k2
0σ

2
∑

i

(∫ ρ2
0

xi−1

Ĉxt(u, Su)σ̂−2
u dx

)2
n1/2+2p∆ti
xi−1 − xi

1(xi,xi−1](x).

Recall that

|Ĉxt(u, Su)σ̂−2
u |du ≤ c G1(x, Su), x = ρ2

u

where

G1(x, y) =
1

x
e−x/8




p∑

j=1

| log(y/Kj)|√
x

exp

{
− log2(y/Kj)

2x

}
+
√

x + x


 .

In particular,
√

xG1(x, y) ≤ G(x)(5.87)
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where G(x) = c x− 1
2 e−x/16, c > 0 is a constant. Hence, a.s.

∣∣∣∣∣

∫ ρ2
0

xi−1

Ĉxt(u, Su)σ̂−2
u dy

∣∣∣∣∣ ≤
∫ ∞

x

G(x′)dx′ ≤
∫ ∞

0

G(x′)dx′ < +∞.(5.88)

Therefore, using (4.34),

|zϑ
n(x)| ≤ C(1 + x)

(∫ ∞

x

G(x′)dx′
)2

sup
u∈[0,1]

S2
u.(5.89)

But, due to Hölder’s inequality,
∫ ∞

0

(1 + x)

(∫ ∞

x

G(x′)dx′
)2

dx < +∞.(5.90)

We can thus apply Lebesgue’s theorem using Corollary 6.22 and (4.33):

(5.91)

ξϑ
n

a.s.−−−−→
n→∞

Q(µ)(k0σ)1−4pS2
1

∫ ∞

0

x4p

(∫ ∞

x

J(y, S1)dy

)2

dx.

Second, let us study the term

ξχ
n =

∑

i

E
(
χ2

i |Fti−1

)
.(5.92)

By independence, we obtain

E
(
χ2

i |Fti−1

)
= k2

0n
1/2+2pγ2

ti−1
S4

ti−1
E

[
Eti

ti−1

]2
c
.(5.93)

Then

E
(
χ2

i |Fti−1

)
= k2

0σ
2n1/2+2pγ2

ti−1
S4

ti−1

(
1 − 2

π

)
∆ti(1 + o(1)).(5.94)

We then deduce that
∑

i

E
(
χ2

i |Fti−1

)
= (1 + O(n−1))

∫ ∞

0

zχ
n(x)dx(5.95)

where

zχ
n(x) := S4

ti−1
k2
0σ

2
∑

i

γ2
ti−1

n1/2+2p∆ti
xi−1 − xi

1(xi,xi−1](x).

Let us obtain a suitable bound for zχ
n(x), integrable in x. Recall that

γti−1
= Ĉxx(ti−1, Sti−1

)(5.96)

=
1

ρti−1
Sti−1

∫ ∞

−∞
h′(Sti−1

e
ρti−1

y+ρ2
ti−1

/2
)yϕ(y)dy(5.97)

=
1

√
xi−1Sti−1

∫ ∞

−∞
h′(Sti−1

e
√

xi−1y+xi−1/2)yϕ(y)dy.(5.98)

Due to Inequality (6.117), we claim that a.s.(ω) for n large enough, there is a
constant cω which does not depend on n such that

|γti−1
| ≤ C sup

u≤1
S−3/2

u e−x/8

(
1x≥1 +

(
e−

cω
x

√
x

+ 1

)
1x≤1

)
.(5.99)
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Indeed, this is obvious for x ≥ 1. Otherwise, 1 ≥ x = ρ2
u ≥ c n1/2(1−un(x)) implies

that u = un(x) is close to 1 uniformly in x ≤ 1 as soon as n is large enough. It then
suffices to choose S1 out of the null–set {S1 = K1, · · · , Kp} to obtain by continuity
that Sun(x) is also far enough from the points K1, · · · , Kp if x ≥ 1.

We conclude that for all j, log2(Kj/Sun(x)) ≥ cω,j for some constants cω,j > 0.
Therefore,

(5.100)

|Sti−1
|4|γti−1

|2 ≤ C sup
0≤u≤1

S4
u sup

0≤u≤1
S−3

u e−x/4

(
1x≥1 +

(
e−

cω
x

√
x

+ 1

)2

1x≤1

)
.

Thus, due to (4.33)

(5.101)

|zχ
n(x)| ≤ C sup

0≤u≤1
S4

u sup
0≤u≤1

S−3
u (1 + x)e−x/4

(
1x≥1 +

(
e−

cω
x

√
x

+ 1

)2

1x≤1

)
.

We can then apply the dominated convergence theorem using the limit (4.34). We
obtain

(5.102)

ξχ
n

a.s.−−−−→
n→∞

(
1 − 2

π

)
Q(µ)(k0σ)1−4pS2

1

∫ ∞

0

x4pJ̃(x, S1)
2dx.

Finally, let us study the term
∑

i E
(
χiϑi|Fti−1

)
.

By independence, we have

E
(
χiϑi|Fti−1

)
= k2

0n
1/2+2pγti−1

S2
ti−1

Kn
ti−1

Sti−1
E

([
Eti

ti−1

]

c
Eti

ti−1

)
.

But

E

([
Eti

ti−1

]

c
Eti

ti−1

)
= E

[
Eti

ti−1

]2
c
sgn Eti

ti−1
=

(
1 − 2

π

)
σ2(∆ti)

3
2 (1 + o(1)).

Due to (4.33), we obtain

(∆ti)
3
2 n1/2+2p

xi−1 − xi
−−−−→
n→∞

0.

From the bounds (4.34), (5.88), (5.99) and by applying again Lebesgue’s theorem,
we then deduce the following limit

(5.103)
∑

i

E
(
χiϑi|Fti−1

) a.s.−−−−→
n→∞

0.

�

Lemma 5.16. We have

E (Nn
1 )2 −−−−→

n→∞
E η2.(5.104)
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Proof. Due to the independence of the increments of the Wiener process, we have
E (χi + ϑi)(χj + ϑj) = 0 whenever i 6= j. We thus obtain

E (Nn
1 )2 =

∑

i

E (χi + ϑi)
2(5.105)

= E

∑

i

E
(
(χi + ϑi)

2|Fti−1

)
(5.106)

But
∑

i

E
(
(χi + ϑi)

2|Fti−1

)
≤ 2

∑

i

E
(
χ2

i + ϑ2
i |Fti−1

)
= 2(ξχ

n + ξϑ
n).(5.107)

Let us show that ξn := ξχ
n + ξϑ

n is uniformly integrable. First let us note that ξn

is bounded in L1(Ω). Indeed, from Corollary 6.5, Inequalities (5.89) and (4.33), we
obtain for all n

E |ξn| ≤ C

∫ ∞

0

(1 + x)

(
(E S2

1)
e−x

√
x

+

(∫ ∞

x

G(x′)dx′
))

< ∞.(5.108)

Now, using the Cauchy-Schwarz inequality and then the Markov inequality, we have

E ξϑ
n1ξn≥k ≤ C

∫ ∞

0

(1 + x)

(∫ ∞

x

G(x′)dx′
)2

dx
√

E S4
1

√
P(ξn ≥ k)

≤ C

√
supn E |ξn|

k
−−−−→
k→∞

0.

Recall that

zχ
n(x)1ξn≥M0

:= k2
0σ

2
∑

i

S4
ti−1

γ2
ti−1

1ξn≥M0

n1/2+2p∆ti
xi−1 − xi

1(xi,xi−1](x).

Therefore, applying successively the Cauchy-Schwarz inequality, (4.33), Corollary
6.16, and the Markov inequality, we obtain

E ξχ
n1ξn≥k ≤ C

∑

i

(
E S5

ti−1
γ

5/2
ti−1

)4/5

(P(ξn ≥ k))
1/5 n1/2+2p∆ti

xi−1 − xi
1(xi,xi−1](x)

≤ C

∫ ∞

0

(1 + x)

(
e−5x/32

x15/16

)4/5

dx

(
supn E ξn

k

)1/5

−−−−→
k→∞

0.

Therefore, ξn is uniformly integrable, and so is
∑

i E
(
(χi + ϑi)

2|Fti−1

)
, which

moreover converges to η a.s. This yields the conclusion of the Lemma.
�

This last lemma completes the proof of Theorem 5.13.

5.4. Conclusion. Let us summarize the results of the previous theorems:

n
1
2
+2p

E (εn
t )2 −−−−→

n→∞
0(5.109)

n
1
4
+pNn

1
d−−−−→

n→∞
Z.(5.110)

Therefore

n
1
4
+p(V n

1 − h(S1))
d−−−−→

n→∞
Z,(5.111)
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and

n
1
2
+2p

E (V n
1 − h(S1))

2 −−−−→
n→∞

E η2 = E Z2.

The proof of the limit theorem is then complete.
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6. Appendix

The following limit result combines Theorem 3.2 page 58 [7] with its corollary
3.1 and its remarks.

Theorem 6.1 ([7] page 58). Let {Mn
i ,Fti

, 0 ≤ i ≤ n} be a zero-mean square
integrable martingale with increments ∆Mn

i = Xn
i and let η2 be an a.s. finite r.v.

Suppose that

for all ε > 0,
∑

i

E
(
(Xn

i )21|χn
i
|>ε|Fti−1

) P−−−−→
n→∞

0,(6.112)

V 2
n =

∑

i

E
(
(Xn

i )2|Fti−1

) P−−−−→
n→∞

η2.(6.113)

Then Mn
n

d−−−−→
n→∞

Y where the r.v. Y has the characteristic function E exp− 1
2η2t2.

6.1. A0.

We recall from [3] the following expressions for the successive derivatives. They
are based on direct computations using the integration by parts formula under
suitable assumptions on the payoff function h.

Lemma 6.2. Let Ĉ(t, x) is given by (2.7). Then

Ĉx(t, x) =

∫ ∞

−∞
h′(xeρy+ρ2/2)ϕ(y)dy,

Ĉxx(t, x) =
1

ρx

∫ ∞

−∞
h′(xeρy+ρ2/2)yϕ(y)dy,

Ĉxxx(t, x) =
1

ρ2x2

∫ ∞

−∞
h′xeρy+ρ2/2)P2(y)ϕ(y)dy,

Ĉxxxx(t, x) =
1

ρ3x3

∫ ∞

−∞
h′(xeρy+ρ2/2)P3(y)ϕ(y)dy

where

P2(y) := y2 − ρy − 1,

P3(y) := y3 − 3ρy2 + (2ρ2 − 3)y + 3ρ.

In particular, |Ĉx(t, x)| ≤ ||h′||∞.
Similarly, we obtain the following expressions for the successive derivatives in t:

Lemma 6.3. Let Ĉ(t, x) is given by (2.7). Then

Ĉt(t, x) =
−σ̂2

t x

2ρ

∫ ∞

−∞
h′(xeρy+ρ2/2)yϕ(y)dy,(6.114)

Ĉtx(t, x) =
σ̂2

t

2ρ2

∫ ∞

−∞
h′(xeρy+ρ2/2)Q2(y)ϕ(y)dy,(6.115)

Ĉxxt(t, x) =
σ̂2

t

2ρ3x

∫ ∞

−∞
h′(xeρy+ρ2/2)Q3(y)ϕ(y)dy,(6.116)

with

Q2(y) := −y2 − ρy + 1,

Q3(y) := −y3 − ρy2 + 3y + ρ.



32 SEBASTIEN DARSES AND EMMANUEL DENIS

To study the residual terms generated by the discretization of the theoretical

Ĉ(T, ST ), we use Taylor approximations. We then need to estimate some bounds

of the successive derivatives of Ĉ.

Lemma 6.4. There is a constant C > 0 such that

(6.117) |Ĉxx(t, x)| ≤ C
e−ρ2/8

ρx3/2

p∑

j=1

exp

{
−1

2

log2(Kj/x)

ρ2

}
+ c

e−ρ2/8

x3/2
.

Corollary 6.5. There exists a constant C such that for t ∈ [0, 1[

E S4
t Ĉ2

xx(t, St) ≤
C

ρ
e−ρ2/4.

Similarly, we can deduce the following bounds:

Corollary 6.6. There exists a constant c such that for t ∈ [0, 1[

E S2
t Ĉ2

xx(t, St) ≤ c




p∑

j=1

1

ρ2
√

2u2 + 1
exp

{
−

v2
j

2u2 + 1

}
+ e−ρ2/4




where c is a constant, u = αt/ρ and

vj :=
log(S0/Kj) − α2

t /2

ρ
+

ρ

2
.

Corollary 6.7. There exists a constant c such that for t ∈ [ 12 , 1[,

E S2
t Ĉ2

xx(t, St) ≤ c

(
1

ρ
+ e−ρ2/4

)
.

Lemma 6.8. There exists a constant c such that

|Ĉxxx(t, x)| ≤ ce−ρ2/8

ρ2x5/2
(L(x, ρ) + ρ) ,

|Ĉxxxx(t, x)| ≤ ce−ρ2/8x−7/2P3(ρ
−1),

|Ĉtx(t, x)| ≤ cσ̂2e−
ρ2

8

x1/2ρ2

(
L(x, ρ) + ρ + ρ2

)
,

|Ĉxxt(t, x)| ≤ cσ̂2e−ρ2/8x−3/2(ρ−1 + ρ−3),

where P3 is a polynomial of the third order and

L(x, ρ) :=

p∑

j=1

| log(x/Kj)|
ρ

exp

{
− log2(x/Kj)

2ρ2

}
.

Lemma 6.9. There exists a constant c and a polynomial Q of third order such that

E Sm
t Ĉ2

tx(t, St) ≤ cσ̂4
t Q(ρ−1)e−ρ2/4.

6.2. A.1.

We give here some necessary calculus and inequalities for the present work.
Moreover, we recall some results from [2] and [3]. In particular, we can show the
following in a similar way:
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Lemma 6.10. We have:

Ĉxxt(t, x) =
σ̂2

t

2ρ3
t x

∫ ∞

−∞
h′(xeρty+ρ2

t /2)P1(ρt, y)ϕ(y)dy,

Ĉxtt(t, x) = −ρ′′t
ρt

∫ ∞

−∞
h′(xeρty+ρ2

t /2)P2(ρt, y)ϕ(y)dy

+
σ̂4

t

2ρ4
t

∫ ∞

−∞
h′(xeρty+ρ2

t /2)P3(ρt, y)ϕ(y)dy,

Ĉxxxt(t, x) =
σ̂2

t

2ρ4
t x

2

∫ ∞

−∞
h′(xeρty+ρ2

t /2)P4(ρt, y)ϕ(y)dy

where

P1(x, y) := −y3 − xy2 + 3y + x,

P2(x, y) := −y2 − xy + 1,

P3(x, y) := y4 − (4 + x2)y2 + 2xy + x2 + 1,

P4(x, y) := −y4 + 2xy3 + (6 − x2)y2 − 8xy + x2 − 3.

Moreover, we have the following inequalities:

Lemma 6.11.

|Ĉxxt(t, x)| ≤ c
e−ρ2

t /8

x3/2

σ̂2
t

ρ3
t




p∑

j=1

(
̺j(x)2 + ρ2

t /4 + 1
)
e−̺j(x)2/2 + ρt + ρ3

t


 ,

|Ĉxtt(t, x)| ≤ X 1(t, x) + X 2(t, x)

where

X 1(t, x) := c
e−ρ2

t /8

√
x

|ρ′′t |
ρt




p∑

j=1

̺j(x)e−̺j(x)2/2 + ρt + ρ2
t


 ,

X 2(t, x) := c
e−ρ2

t /8

√
x

σ̂4
t

ρ4
t




p∑

j=1

(
̺j(x)3 + ̺j(x)

)
e−̺j(x)2/2 +

4∑

j=1

ρj
t




and ̺j(x) := |log(Kj/x)| /ρt.

Lemma 6.12. Assume that Assumption A1 holds. Then there exists a constant
c such that εi := n1/2

√
∆ti
√

f ′(ti−1), i ≤ n − 1 satisfies the inequality |εi − 1| ≤
c∆ti/(1 − ti) for n large enough.

Proof. We have obviously

|εi − 1| ≤ |n∆tif
′(ti−1) − 1|,

where ∆ti = g′(θi)n
−1 and θi ∈ [(i− 1)/n, i/n]. Then, di := g(θi)− ti−1 ∈ [0,∆ti].

We deduce that:

|εi − 1| ≤
∣∣∣∣
f ′(g(θi) − hi)

f ′(g(θi))
− 1

∣∣∣∣ ≤ c
∆ti

1 − ti
.

Indeed, we use a first order Taylor expansion to estimate the difference f ′(g(θi) −
hi) − f ′(g(θi)). We conclude by using the explicit expression of f , g but also the
inequality (1 − ti−1)/(1 − ti) ≤ c for i ≤ n − 1. �
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The following lemma is of first importance to get estimations of expectations we
need in some of our proofs.

Lemma 6.13. Suppose that t ≤ u < 1, m ∈ R, q ∈ 2N and K > 0. There exists a
constant c = c(m, q) such that

E Sm
u logq Su

K
exp

{
− log2(Su/K)

ρ2
t

}
≤ cPq(ρt)

where

P0(ρt) := ρt,

P2(ρt) := ρ3
t + ρ5

t ,

P4(ρt) := ρ5
t + ρ7

t + ρ9
t ,

P2q(ρt) := ρ2q+1
t + ρ2q+3

t + · · · + ρ4q+1
t .

Proof. We set p = log S0

K − σ2u/2 , α = σ
√

u and

A(q) = E Sm
u logq Su

K
exp

{
− log2(Su/K)

ρ2
t

}
.

Then,

A(q) =
Sm

0√
2π

∫ ∞

−∞
(p + αy)q exp

{
αmy − α2m/2 − 1

ρ2
t

(p + αy)
2 − y2/2

}
dy,

A(q) =
Sm

0 eA1

√
2π

∫ ∞

−∞
(p + αy)q exp

{
−1

2

(
1 +

2α2

ρ2
t

)
y2 + α

(
m − 2p

ρ2
t

)
y

}
dy

where

A1 = −α2m

2
− p2

ρ2
t

.

Let y = z/A2 with A2 =
√

1 + 2α2/ρ2
t . Then

A(q) =
Sm

0 eA4

√
2πA2

∫ ∞

−∞
(p +

αz

A2
)q exp

{
−1

2

[
z2 − 2(A3/A2)z + A2

3/A
2
2

]}
dz

where A3 = α
(
m − 2p/ρ2

t

)
and A4 = A1 + A2

3/(2A2
2). After the change of variable

y = z − A3/A2, we obtain that

A(2) =
Sm

0 ρte
A4

√
ρ2

t + 2α2

[(
p +

αρ2
t A3

ρ2
t + 2α2

)2

+
α2ρ2

t

ρ2
t + 2α2

]
.

Moreover, if u ≥ t, then ρ2
t ≥ σ2(1 − t) implies that

ρ2
t + 2α2 ≥ σ2(1 − t) + σ2u ≥ σ2.

We have

A4 = −mα2

2
− p2

ρ2
t

+
α2ρ2

t

2(ρ2
t + 2α2)

(
m2 +

4p2

ρ4
t

− 4pm

ρ2
t

)

where p, α are bounded. But, the term

α2ρ2
t

2(ρ2
t + 2α2)

m2

is obviously bounded whereas we can establish the following inequality

α2ρ2
t

2(ρ2
t + 2α2)

4p2

ρ4
t

≤ p2

ρ2
t

.
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The following term ∣∣∣∣
α2ρ2

t

2(ρ2
t + 2α2)

4pm

ρ2
t

∣∣∣∣

is also bounded. It follows that eA4 is bounded and we can conclude easily for q = 2.
In a similar way, we can conclude for any q ∈ 2N because we use in particular the
property ∫ ∞

−∞
ykϕ(y)dy = 0

if k ∈ 2N + 1. �

From now on, we can deduce the following results.

Corollary 6.14. If m ∈ R and u ≥ t, then there exists a constant cm > 0 such
that

E Sm
u Ĉ2

xt(t, Su) ≤ cmσ̂4
t

ρ3
t

e−ρ2
t /8.

Proof. Indeed, it suffices to use Lemma 6.8 and apply the previous lemma. �

In a similar way, we have:

Corollary 6.15. If m ∈ R and u ≥ t, then there exists a constant Cm > 0 such
that

E Sm
u Ĉ4

xt(t, Su) ≤ cmσ̂8
t

ρ7
t

e−ρ2
t /8(6.118)

E Sm
u Ĉ4

xx(t, Su) ≤ cm

ρ3
t

e−ρ2
t /4.(6.119)

Corollary 6.16. If m ∈ R then there exists a constant cm > 0 such that

E Sm
t Ĉ5/2

xx (t, St) ≤
cm

ρ
15/8
t

e−5ρ2
t /32.

Proof. We write

E Sm
t Ĉ5/2

xx (t, St) = E Sm
t Ĉ3/2

xx (t, St)Ĉxx(t, St)

and we apply Cauchy-Schwarz’ inequality with p = 4/3 and q = 4 such that p−1 +
q−1 = 1. We obtain

E Sm
t Ĉ5/2

xx (t, St) ≤
(
E S

4m/3
t Ĉ2

xx(t, St)
)3/4 (

E Ĉ4
xx(t, St)

)1/4

,

≤
(
Cm E Ĉ4

xx(t, St)
)3/8 (

E Ĉ4
xx(t, St)

)1/4

,

≤
(

Cm
c

ρ3
t

e−ρ2
t /4

)3/8(
c

ρ3
t

e−ρ2
t /4

)1/4

where the last inequality is deduced from Corollary 6.119. The conclusion follows.
�
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Corollary 6.17. If m ∈ R and u ≥ t, then there exists a constant cm > 0 such
that

E Sm
u Ĉ2

xxx(t, Su) ≤ cm

ρ3
t

e−ρ2
t /8(6.120)

E Sm
u Ĉ2

xxt(t, Su) ≤ cmσ̂4
t

ρ5
t

e−ρ2
t /8(6.121)

E Sm
u Ĉ4

xxx(t, Su) ≤ cm

ρ7
t

e−ρ2
t /8(6.122)

E Sm
u Ĉ2

xxxx(t, Su) ≤ cm

ρ5
t

e−ρ2
t /8(6.123)

E Sm
u Ĉ4

xxt(t, Su) ≤ cmσ̂8
t

ρ11
u

e−ρ2
t /8.(6.124)

Let S̃ti−1
∈ [Sti−1

, Sti
] and t̃i−1 ∈ [ti−1, ti] be some random variables. We have

the following inequalities:

Lemma 6.18. There exists a constant c such that

E Ĉ4
xt(t̃i−1, S̃ti−1

) ≤ ce−ρ2
ti

/4

(1 − ti)4
.

Proof. We have S̃m
ti−1

≤ Sm
ti−1

+ Sm
ti

, and ρeti−1
≥ ρti

. Furthermore, in virtue of

Lemma 6.8, recall that we have

|Ĉxt(t, x)| ≤ c
σ̂2

t e−ρ2
t /8

x1/2ρ2
t

.

Then, the conclusion follows. �

In the same way, we can prove the following results:

Lemma 6.19. There exists a constant C such that

E Ĉ4
xtt(t̃i−1, S̃ti−1

) ≤ Ce−ρ2
ti

/4

(1 − ti)8
.

Proof. The arguments are similar to the previous ones but we also use the inequal-
ity:

g′′(u)

g′(u)2
≤ C

(1 − g(u))3/2
, ∀u < 1

in order to have

ρ′′t
ρt

≤ C

(1 − t)2
.

�
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Lemma 6.20. There exists a constant C such that

E Ĉ4
xxx(t̃i−1, S̃ti−1

) ≤ Ce−ρ2
ti

/4

ρ8
ti

(6.125)

E Ĉ4
xxt(t̃i−1, S̃ti−1

) ≤ Ce−ρ2
ti

/4

n(1 − ti)6f ′(ti)
(6.126)

E Ĉ4
xxxx(t̃i−1, S̃ti−1

) ≤ Ce−ρ2
ti

/4

ρ12
ti

.(6.127)

6.3. A.2.

Recall the two following lemmas (see [2]). These results ensures the convergence
of the Leland scheme without any hedging error when using the modified Leland
strategy. The change of variable x = ρ2

u appears to be as essential in the following
proofs and points out the significative role of the revision dates near the maturity.

Lemma 6.21. We have the following equality

∫ t

s

Ĉxt(u, Su)du =

∫ ρ2
s

ρ2
t

Ĉxt(u, Su)σ̂−2
u dx,

where u = u(x, n) is defined by x = ρ2
u and verifies limn→∞ u(x, n) = 1. Moreover,

Cxt(u, Su)σ̂−2
u =

1

2x

∫ ∞

−∞
h′(Sue

√
xy+x/2)(−y2 −

√
xy + 1)ϕ(y)dy

satisfies the following inequality

|Ĉxt(u, Su)σ̂−2
u |du ≤ c G1(x, Su)

where

G1(x, S) :=
1

x
e−x/8




p∑

j=1

| log(S/Kj)|√
x

exp

{
− log2(S/Kj)

2x

}
+
√

x + x


 .

Corollary 6.22. Assume that we have two sequences (tkn)n∈N and (skn)n∈N in
[0, 1] such that ρtkn and ρskn respectively converge to a ∈ [0,∞] and b ∈ [0,∞].
Then,

lim
n→∞

∫ tkn

skn

Ĉxt(u, Su)du =

∫ b

a

J(x, S1)dx < ∞, a.s.

Proof. We apply Lemma 6.21 with the change of variable x = ρ2
u. Recall that

0 ≤ 1 − u ≤ c x n−1/2 so that u → 1 as n → ∞ for a given x ≥ 0. We can apply
the Lebesgue theorem by dominating the function G1(x, Su) whether x ≤ 1 or not
because x ≤ 1 implies that u is sufficiently near from 1 independently of x for n ≥
n0. Indeed, outside of the null-set ∪i{S1 = Ki}, we have 0 < a ≤ | log(Su/Kj)| ≤ b
for some constants a, b (depending on ω) provided that u is sufficiently near one. �
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