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ABSTRACT 

In this paper we consider multiple constrained resource allocation problems, where the constraints can be specified by 

formulating activity dependency restrictions or by using game-theoretic models. All the problems are focused on generic 

resources, with a few exceptions which consider financial resources in particular. The problems consider low-risk 

circumstances and the values of the uncertain variables which are used by the algorithms are the expected values of the 

variables. For each of the considered problems we propose novel algorithmic solutions for computing optimal resource 

allocation strategies. The presented solutions are optimal or near-optimal from the perspective of their time complexity. 

The considered problems have applications in a broad range of domains, like workflow scheduling in industry (e.g. in 

the mining and metallurgical industry) or the financial sector, motion planning, facility location and data transfer or job 

scheduling and resource management in Grids, clouds or other distributed systems. 
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1. INTRODUCTION 

In this paper we address several constrained resource allocation problems, in which the problem parameters are 

considered to present low fluctuation risks. For instance, each parameter P may have an associated probability 

distribution (e.g. Gaussian, discrete), which models the probability associated to each value v that the parameter P may 

take. In the case of a discrete probability distribution, P may take NV(P) different values v1, …, vNV(P), each value vi 

having an associated occurrence probability probi (with prob1+…+probNV(P)=1). Because of the low fluctuation risk, we 

will compute the expected value E(P) of the parameter P (in the case of a discrete distribution, 

E(P)=v1·prob1+…+vNV(P)·probNV(P)) and we will only consider this value in the following problems. Using the expected 

value of a parameter P instead of the probability distribution simplifies matters enough such that for the considered 

problems we were able to develop efficient algorithmic solutions. In the considered problems we will implicitly assume 

that the given values of the parameters are expected values. We should keep in mind, though, that each problem can be 

also modeled by assigning probability distributions to its parameters, instead of fixed expected values. However, 

handling probability distributions is much more difficult than handling expected values and, thus, in this paper we only 

consider expected values. 

In Section 2 we consider a cost optimization problem which may occur in several situations. We have a business 

workflow [10] in which the dependencies between activities are specified as a directed tree. Every activity produces its 

own output, which needs to be stored, in order to be used by the activity which depends on it. We have two different 

types of storage with different storage costs and we are interested in finding a data storage strategy which minimizes the 

total costs. In Section 3 we consider a debt management problem in which the customer needs to repay his debts to 

several banks by distributing his assets to the banks; however, the assets do not have a fixed value and each bank may 

perceive each asset as having a potentially different value. In Section 4 we use game-theoretic models for modeling 

several resource allocation problems and in Section 5 we consider geometric optimization problems, in the context of 

modeling resources as points in a multidimensional attribute space. In Section 6 we present related work and in Section 7 

we conclude and discuss future work. 

2. MINIMIZING DATA STORAGE COSTS IN DIRECTED TREE WORKFLOW SCHEDULING 

We consider a workflow which is structured as a directed rooted tree (with root r) consisting of N activities (vertices). 

We denote by ns(i) the number of sons of a vertex i, by s(i,j) (1≤j≤ns(i)) the j
th

 son of vertex i (in some arbitrary order) 

and by parent(i) the parent of vertex i (parent(r)=undefined). We also denote by T(i) the subtree rooted at vertex i. The 

activity (vertex) i cannot be executed before the activities (vertices) s(i,1), …, s(i,ns(i)) are executed (i.e. vertex i’s sons), 

because of data dependency issues. Every vertex has at most K sons, where K is a small value. 

We consider that the output produced by every activity has the same size (1 unit). There are two types of storage 

systems. The first one (S1) can store at most D data units at a time, at zero cost (e.g. the storage system of the workflow 



 

 

manager). The second storage system (S2) can store any amount of data, at different costs. In order to store the output of 

activity i in S2, the cost which needs to be paid is C(i) (which may be positive or negative). 

After an activity i produces its output, the output must be stored in S1 or S2 until it is required by parent(i) (for i=r, 

the output does not need to be stored anywhere). We want to compute a serial schedule (an execution order for the 

activities) and decide for each activity output where to store it, such that the total costs paid in order to store data in S2 

are minimized. 

An efficient solution (for the case when all the costs C(i) are equal and positive), based on the register allocation 

algorithm presented in [14], was given as a solution to a problem proposed at the Baltic Olympiad in Informatics 2003. 

For each vertex i, we compute DN(i)=the minimum amount of data units required in S1 in order to execute all the 

activities in vertex i’s subtree, such that no output has to be stored in S2. For a leaf vertex l, we have DN(l)=0. For a non-

leaf vertex i, we sort its sons, such that DN(s(i,1))≥DN(s(i,2))≥…≥DN(s(i,ns(i))). DN(i)=max{ns(i), max{DN(s(i,j))+j-

1|1≤j≤ns(i)}}. This step takes O(N·log(K)) time overall. If D≥DN(1), the total cost is 0. Otherwise, we define a function 

Cmin(i,Q) which computes the minimum cost required for executing activity i, if only Q data units are available in S1 (we 

do not consider the storage cost for the output of activity i); if Q≥DN(i), then Cmin(i,Q)=0; if Q<0, then Cmin(i,Q)=+∞. 

We want to compute Cmin(r,D). In order to compute Cmin(i,Q), we need to find a subset ss2(i) and an ordering sp(i,1), …, 

sp(i,ns(i)-|ss2(i)|) of the sons s(i,j)∈ss1(i)={s(i,1), …, s(i,ns(i))}\ss2(i), such that: (1) all the activities of the sons 

s(i,j)∈ss2(i) will be executed first, and their results will be stored in S2; every such activity will have Q data units 

available in S1; (2) then, we execute the activities of the sons s(i,j’)∈ss1(i), in the order sp(i,1), …, sp(i,|ss1(i)|) and store 

their results in S1; son sp(i,j) will have Q-j+1 data units available in S1. The total cost for Cmin(i,Q) for the chosen 

parameters is the sum of the values (C(s(i,j))+Cmin(s(i,j),Q)) (with s(i,j)∈ss2(i)), plus the sum of the values Cmin(sp(i,j), 

min{DN(sp(i,j)), Q-j+1}) (1≤j≤|ss1(i)|). If we store all the computed values Cmin(*,*) and we consider every possible 

subset ss2(i) and every permutation of the sons in ss1(i), we obtain a time complexity of O(N·D·K!·2
K
). However, we can 

do better by using the following observations. For a son sp(i,j) (2≤j≤|ss1(i)|), if Q-j+1<DN(sp(i,j)), then we can move 

sp(i,j) from ss1(i) to ss2(i), without increasing the total cost. Thus, for every son sp(i,j) (2≤j≤|ss1(i)|) from ss1(i), we 

must have DN(sp(i,j))≤Q-j+1. With this observation, we notice that we can always sort the sons sp(i,j) from ss1(i) such 

that DN(sp(i,1))≥DN(sp(i,2))≥…≥DN(sp(i,|ss1(i)|)). With these observations, we only need to find the optimal set ss2(i). 

Once this set is found, the ordering sp(i,1), …, sp(i,|ss1(i)|) of the vertices in ss1(i) is fixed, we have DN(sp(i,j))≤Q-j+1 

(for 2≤j≤|ss1(i)|), and the cost Cmin(i,Q) is equal to the sum of the values (C(s(i,j))+Cmin(s(i,j),Q)) (with s(i,j)∈ss2(i)), 

plus Cmin(sp(i,1),Q), plus the sum of the values Cmin(sp(i,j), DN(sp(i,j))) (2≤j≤|ss1(i)|). In order to compute the optimal 

value Cmin(i,Q), we consider the sons of vertex i sorted such that DN(s(i,1))≥…≥DN(s(i,ns(i))) and we run a dynamic 

programming algorithm. We compute Caux,min(i,Q,j,p)=the minimum total cost if we considered the first j sons so far and 

p of them (0≤p≤j) were inserted into ss1(i). We have Caux,min(i,Q,0,0)=0. For 1≤j≤ns(i), we have the following equations: 

(1) Caux,min(i,Q,j,0)=Caux,min(i,Q,j-1,0)+C(s(i,j))+Cmin(s(i,j),Q) ; (2) Caux,min(i,Q,j,j)=Caux,min(i,Q,j-1,j-1)+Cmin(s(i,j), 

min{Q-j+1, DN(s(i,j))}) (if j=1 or Q-j+1≥DN(s(i,j))), or +∞ (if j>1 and Q-j+1<DN(s(i,j))); (3) for 1≤p≤j-1, we have: 

Caux,min(i,Q,j,p)=min{Caux,min(i,Q,j-1,p)+C(s(i,j))+Cmin(s(i,j),Q), Caux,min(i,Q,j-1,p-1)+Cmin(s(i,j), min{Q-p+1, DN(s(i,j))} 

(if p=1 or Q-p+1≥DN(s(i,j))) or +∞ (if p>1 and Q-p+1<DN(s(i,j)))}. We have Cmin(i,Q) = 

min{Caux,min(i,Q,ns(i),p)|0≤p≤ns(i)}. The dynamic programming stage takes O(ns(i)
2
) time for a vertex i. Apparently, we 

need to compute Cmin(i,Q) for every vertex i and every value Q (0≤Q≤D), obtaining an O(N·D·K
2
) time complexity. 

However, we must notice that, when computing Cmin(i,Q), we only need to know the values Cmin(s(i,j),Q) and the values 

Cmin(s(i,j), DN(s(i,j))) (the second set of values are always 0) (1≤j≤ns(i)). Since we are only interested in Cmin(r,D), we 

only need to compute the values Cmin(i,D) (besides the already known values Cmin(i,DN(i))), obtaining an O(N·K
2
) time 

complexity. 

For the general case (with not necessarily equal or positive C(i) values), we will traverse the tree vertices bottom-up. 

For each vertex i we will compute Cmin(i,j)=the minimum cost required for executing activity i, if only j data units are 

available in S1 (ignoring the cost of storing activity i’s output anywhere). For a leaf node l, Cmin(l,j)=0 (for 0≤j≤D). For a 

non-leaf vertex i, we will consider a variable x(i) ranging from 0 to ns(i). x(i) represents the number of sons whose output 

data will be stored in S1. The other ns(i)-x(i) sons (forming the set S(i, x(i))) will have their output stored in S2. Each of 

the sons in S(i,x(i)) will have all the j data units from S1 available at the start of the execution of the activities in their 

subtrees (after executing one of these sons, no extra data is stored in S1). Let o(1), ..., o(x(i)) be the order of the x(i) sons 

whose output is stored in S1. Son o(1) has j data units available in the beginning. Son o(2) will have j-1 data units, ..., son 

o(p) will have (j-p+1) data units available (1≤p≤x(i)). Thus, for a fixed value x(i), we need to compute the set S(i, x(i)) 

and the order o(1), …, o(x(i)), such that the total cost is minimum. A son y∈S(i,x(i)) contributes to the total cost with a 

value equal to Cmin(y,j)+C(y). Son o(p) (1≤p≤x(i)) contributes to the total cost with a value equal to Cmin(o(p), j-p+1). A 

first solution consists of considering all the C(ns(i), ns(i)-x(i)) possibilities of choosing the sons in S(i,x(i)) 



 

 

(C(a,b)=combinations of a elements taken b at a time) and all the (x(i))! ordering possibilities for the sons outside of 

S(i,x(i)). The complexity of this solution is TC(K)=O(K!+C(K,1)·(K-1)!+C(K,2)·(K-2)! + ... + C(K,q)·(K-q)!+ ... + C(K, 

K)·0!) for a vertex i and j available data units in S1. Thus, the overall time complexity is O(N·D·TC(K)). The minimum 

total cost is Cmin(r, D). 

A more efficient solution is the following. For every value of x(i) we will construct a bipartite graph. The left side of 

the graph contains the sons of vertex i and the right side contains x(i)+1 vertices. The first x(i) vertices p on the right side 

have the meaning that (j-p+1) data units will be available (1≤p≤x(i)). The last vertex (p=x(i)+1) means that the son will 

be placed into S(i,x(i)). We have directed edges between every son y on the left side and every vertex p on the right side. 

If 1≤p≤x(i), the cost of such an edge will be Cmin(y, j-p+1) and its capacity will be 1; for p=x(i)+1, the cost of the edge 

will be Cmin(y, j)+C(y) and its capacity will also be 1. We will insert an extra node src, with directed edges from it to 

every vertex on the left side of the bipartite graph (of zero cost and unit capacity), and an extra node dst, with zero cost 

directed edges from every vertex on the right side of the bipartite graph and dst. The edges (p,dst) (1≤p≤x(i)) have unit 

capacity. The edge (x(i)+1,dst) has a capacity equal to (ns(i)-x(i)). We will compute a minimum cost maximum flow in 

this graph. Let CC(i, j, x(i)) be the cost of such a flow. Cmin(i,j)=min{CC(i,j,x(i))|0≤x(i)≤ns(i)}. Let’s analyze now the 

time complexity of the obtained algorithm. Every graph where a minimum cost maximum flow computation takes place 

(for every tuple (i, j, x(i))) has O(K) vertices. A well-known method for computing such a flow consists of performing 

O(K) iterations and, at each iteration, we will compute a minimum-cost path from src to dst, in the residual graph, where 

some edges may have negative costs. The Bellman-Ford (or Bellman-Ford-Moore) algorithm can compute such a path in 

O(K
3
) time, obtaining an O(K

4
) time complexity for the flow computation. However, because of the particular nature of 

the graph, we can also use Dijkstra’s algorithm (even if edges with negative costs exist in the residual graph, the 

algorithm will work correctly because we can perform a transformation which makes the cost of every edge non-

negative). Thus, a minimum cost maximum flow can be computed in O(K
3
) time (O(K

2
) per iteration). Since we have 

O(N·D·K) tuples (i, j, x(i)), the overall time complexity may seem to be O(N·D·K
4
). However, for every vertex i with 

ns(i)>1 sons, there will be at least ns(i)-1 leaves in T(i). Thus, there are at most O(N/K) vertices with O(K) sons. With 

this observation, the time complexity is, in fact, O(N/K·D·K
4
)=O(N·D·K

3
). 

3. DEBT MANAGEMENT WITH ASSETS OF DIFFERENTLY PERCEIVED VALUES 

We consider the following problem. A customer owes P(i) euro to each of the d banks from which he obtained a 

credit (1≤i≤d). In order to repay the debt, the customer will need to give up on some of his assets. He has 2
d
 types of 

assets (numbered from 0 to 2
d
-1). Each bank perceives every asset as having a value of either 1 or 2 euro. If an asset is of 

type T, then we will consider the binary representation of T: b(1)b(2)…b(d). If b(i)=0, then bank i perceives this asset as 

having a 1 euro value; if b(i)=1, bank i perceives the asset as having a 2 euro value. The customer has C(T) assets of type 

T. All of the assets must be distributed to the banks, in such a way that the total value of the assets perceived by each 

bank i is at least P(i). 

The main idea of the solution is to maximize the utility of the asset distribution. An asset x is useful if it is distributed 

to a bank i which perceives it as having a value of 2 euro and the total value of the assets distributed to that bank, plus 

the value of the asset x is at most P(i). We will solve this problem in two stages. During the first stage we will construct a 

bipartite graph which has 2
d
 vertices on the left side and d vertices on the right side. We add a directed edge between 

every vertex u (0≤u≤2
d
-1) on the left side and every vertex v (1≤v≤d) on the right side, only if bank v perceives the asset 

of type u as having a value of 2 euro. The capacity of the edge will be +∞. We then add a source S and a sink Q. We add 

directed edges from the source S to every vertex u on the left side (the capacity of such an edge will be C(u)). Then we 

add directed edges from every vertex v on the right side and the sink Q (each such edge will have capacity (P(v) div 2)). 

We will now compute a maximum flow from S to Q in this network. For every edge (u,v) (u on the left side and v on the 

right side) with a flow f(u,v) on it, we will distribute f(u,v) assets of type u (initially) to the bank v and we will decrease 

P(v) by 2·f(u,v) and C(u) by f(u,v). In the second stage, we traverse the banks in increasing order (i=1,…,d) and while 

P(i)>0, we choose an asset of any type T with C(T)>0 and give it to bank i; after this, we decrease P(i) by val(i,T) (the 

value perceived by bank i for the asset of type T) and C(T) by 1. In the final stage, when all the banks have received 

assets which fully cover the debts, all the remaining non-distributed assets are distributed to any of the banks. 

Solutions which do not necessarily make use of the maximum flow computation can be obtained for d=1,2,3. The 

case d=1 is trivial (bank 1 receives all the assets). For d=2, we give as many assets of type 10 to bank 1 and as many 

assets of type 01 to bank 2 as possible (without exceeding the limits P(1) and P(2)). Then, we consider the banks i in any 

order (e.g. i=1,2) and, as long as we still have assets of type 11 and the total perceived sum of bank i is at most P(i)-2, 

we give an asset of type 11 to bank i and increment the total perceived sum of bank i by 2. In the end, we consider the 



 

 

banks i and, while the perceived sum of the received assets is smaller than P(i), we give to bank i an asset of type 00 or 

11 (whichever is still available) and increment the total perceived sum of bank i by the corresponding value (1 or 2). 

For d=3, we will perform several stages and we will maintain the values S(i)=the total value of the assets distributed 

to bank i (as perceived by bank i). Initially, S(i)=0 (1≤i≤3). C(T) will be the number of assets of type T the customer still 

possesses (these numbers will be decremented during the course of the algorithm). In the first stage we will distribute 

assets of the type t(1,1)=100 (to bank 1), t(1,2)=010 (to bank 2) and t(1,3)=001 (to bank 3). If 2·C(t(1,i))≤P(i), then we 

give all the type t(1,i) assets to bank i: we set S(i)=2·C(t(1,i)) and then C(t(1,i))=0; if 2·C(t(1,i))>P(i), we will compute 

q=P(i) div 2 (integral division) and we will set: S(i)=2·q and C(t(1,i))=C(t(1,i))-q. 

The second step is the most important. We will distribute assets of the types 011, 101 and 110, in such a way that 

their total utility is maximum. An asset is useful if it is distributed to a bank i which perceives as having value 2 and for 

which S(i) does not exceed P(i) after receiving the asset. We will consider, one at a time, every value of x from 0 to 

min{C(110), (P(1)-S(1)) div 2} and we will assume that bank 1 receives x assets of the type 110. Let’s consider the 

values S’(x,i) and C’(x,T), having the same meaning as S and C, but for the „virtual” case in which bank 1 receives x 

assets of type 110. Initially, we have S’(x,i)=S(i) (1≤i≤3) and C(x,T)=C(T) (T=011, 101 or 110). We will increment 

S’(x,i) by 2·x and we will decrement C’(x, 110) by x. All the other type 110 assets are useful only for bank 2. We will 

consider the following procedure GiveMax(x,T,i): if C’(x,T)·2≤P(i)-S’(x,i), we increment S’(x,i) by C’(x,T)·2 and we set 

C’(x,T) to 0; otherwise, we increment S’(x,i) by 2·q, where q=(P(i)-S’(x,i)) div 2, and we decrement C’(x,T) by q. We 

will call GiveMax(x, 110, 2). Then, we will consider the type 011 assets. We will give these assets to bank 2, as long as 

they are useful, by calling GiveMax(x, 011, 2). The rest of type 011 assets are only useful to bank 3; thus, we will call 

GiveMax(x, 011, 3). We now get to the type 101 assets. We distribute as many of these to bank 3 as possible, with the 

condition that they are useful, by calling GiveMax(x, 101, 3). Then we call GiveMax(x, 101, 1) (in order to give the rest 

of the type 101 assets to bank 1, as long as they are useful). After all these computations, we define U(x)=the sum of the 

values (S’(x,i)-S(i)) (1≤i≤3) (i.e. the total utility for the case when bank 1 receives x assets of type 110). After 

considering every value of x, we will choose that value xmax, for which U(xmax) is maximum. We will perform all the 

actions corresponding to xmax and, afterwards, we will set S(i)=S’(xmax,i) (1≤i≤3) and C(T)=C’(xmax,T) (T=011, 101, 

110). 

In the third stage we will distribute the assets of type 111 to the 3 banks, as needed. We consider every bank i (1≤i≤3) 

and if S(i)<P(i) then: (1) if S(i)+2·C(T)≤P(i), then we set: S(i)=S(i)+2·C(T) and then C(T)=0; (2) otherwise, if 

S(i)+2·C(T)>P(i), then we compute q=(P(i)-S(i)) div 2 and we set: S(i)=S(i)+2·q, and then C(T)=C(T)-q. 

Within stage 4, we will consider, one at a time, every bank i (1≤i≤3) and if S(i)<P(i), we will consider each of the 

types j (0≤j≤7). Let val(i,j) be the value perceived by bank i for an asset of type j; (1) if S(i)+C(j)·val(i,j)≤P(i), then we 

set: S(i)=S(i)+C(j)·val(i,j), and then C(j)=0; (2) if, however, S(i)+C(j)·val(i,j)>P(i), then we compute q=(P(i)-S(i)) div 

val(i,j), and then we set S(i)=S(i)+q·val(i,j) and, after this, C(j)=C(j)-q; if, after these changes, we have S(i)<P(i) and 

C(j)>0, then we increment S(i) by val(i,j) and we decrement C(j) by 1 (we give an extra asset of type j to bank i). During 

the last stage of the algorithm we will distribute the remaining assets to any of the banks. 

The case where the customer has Q assets overall and the banks may perceive the value of any asset a as being 

arbitrary (e.g. we have val(i,a)=the value of asset a, perceived by bank i) is equivalent to a multidimensional knapsack 

problem. We have two approaches. First, we can compute OK(a, w(1), …, w(d))=true or false, if we can reach a state in 

which assets of total value w(j) were distributed to bank j (1≤j≤d), considering only the first a assets. We have OK(0, 0, 

…, 0)=true and OK(0, w(1), …, w(d))=false if we have at least one value w(j)>0. For 1≤a≤Q we have OK(a, w(1), …, 

w(d))=OR{OK(a-1, w(1), …, w(d)), OR{OK(a-1, w(1), ..., w(j-1), w(j)-val(j,a), w(j+1), ..., w(d)|1≤j≤d, w(j)≥val(j,a)}}. 

OR(S) represents the logical OR between an auxiliary boolean value equal to false and all the boolean values of the set S. 

If there is at least one value OK(Q, w(1), ..., w(d))=true with w(j)≥P(j) (for every 1≤j≤d), then the assets can be 

distributed to the banks such that the debt is repaid. A second approach consists of computing Valmax(a, w(1), …, w(d-

1))=the maximum total value of the assets distributed to bank d, if the total value of the assets distributed to bank j is w(j) 

(1≤j≤d-1) and we considered only the first a assets. We have Valmax(0, 0, …, 0)=0 and Valmax(0, w(1), …, w(d-1))=-∞, if 

we have at least one value w(j)>0 (1≤j≤d-1). For 1≤a≤Q we have: Valmax(a, w(1), …, w(d-1))=max{Valmax(a-1, w(1), …, 

w(d-1))+max{val(d,a), 0}, max{Valmax(a-1, w(1), …, w(j-1), w(j)-val(j,a), w(j+1), …, w(d-1)|1≤j≤d-1, w(j)≥val(j,a)}}. If 

there is at least one value Valmax(Q, w(1), …, w(d-1))≥P(d) (with w(j)≥P(j) for every 1≤j≤d-1), then we have a solution. 

In both cases, the actual distribution of assets to the d banks can be computed by tracing back the way the OK(*, …, *) or 

the Valmax(*, …, *) values were computed. The time complexities of these algorithms are pseudo-polynomial, if all the 

P(*) and val(*,*) values are integer and not too large: O(P(1)·…·P(d)·d·Q) in the first case, and O(P(1)·…·P(d-1)·d·Q) in 

the second case. 



 

 

4. ZERO- AND SINGLE-PLAYER GAME-THEORETIC MODELS 

In this section we consider several zero- and single-player game-theoretic models, which are used for modeling the 

constraints of the resource management problems and in order to provide a context for the decisions of the players. Most 

games have one or more players and are studied from the perspective of the involved players (winning strategies, score 

maximization, and others). Zero-player games are somewhat unconventional and are sometimes not classified as games. 

The best known zero-player game is John Conway’s Game of Life [9], which is described by a cellular automaton. 

Single-player games involve only one player, attempting to fulfill a game objective. This objective can be of two types: 

feasibility and optimization. In the first case, the player must reach a game state which belongs to a set of final states. In 

the second case, the player must reach a final state with the extra condition that the use of some resources is optimized 

(minimized or maximized). 

4.1. A ZERO-PLAYER GAME BASED ON A LINEAR CELLULAR AUTOMATON 

In this section we will consider a particular one-dimensional cellular automaton for which we will provide an 

algorithm which efficiently evaluates its state after any given number of time steps. The cellular automaton considered 

here consists of n cells (numbered from 0 to n-1) and, at any time moment, each cell can be in one of two states: 0 or 1. 

The automaton also has a transition function, which determines the state of each cell at the next time moment t+1, based 

on the states of the cell and those of its immediate neighbors at time moment t. If we denote by q(i,t) the state of cell i at 

time moment t, then q(i,t+1)=f(q((i-1+n) mod n, t), q(i,t), q((i+1) mod n, t)). Evaluating the state of each cell after one 

time step is easy, but evaluating it after a given number m of time steps may require O(n·m) time. There are some classes 

of cellular automata, like linear additive automata, for which this evaluation can be performed in O(n·log(m)) time. The 

cells of a linear additive automata are positioned circularly (cell n-1 is the left neighbor of cell 0) and their transition 

function is q(i,t+1)=c-1·q((i-1+n) mod n, t) xor c0·q(i,t) xor c+1·q((i+1) mod n, t), where c-1, c0 and c+1 are constants from 

the set {0,1}. Because of the properties of the xor function, we have q(i,t+2)=c-1·q((i-2+n) mod n, t) xor c0·q(i,t) xor 

c+1·q((i+2) mod n, t) and, in general, q(i,t+2
k
)=c-1·q((((i-2

k
) mod n) + n) mod n, t) xor c0·q(i,t) xor c+1·q((i+2

k
) mod n, t). 

With this, we can evaluate in O(n) time the state of the automaton after m=2
k
 steps. By writing m=2

p(1)
+2

p(2)
+ …+2

p(r)
, 

we can evaluate the state of the automaton in O(n·r) time, where r=O(log(m)) (once we know the state of the automaton 

after m’=2
p(1)

+…+2
p(i)

 steps, we can compute its state after 2
p(i+1)

 extra steps in O(n) time, thus obtaining its state after 

m’’=m’+2
p(i+1) 

 steps). 

We will now consider a non-circular automaton, where, at each time step, every pair of adjacent cells i≥0 and i+1<n, 

such that q(i,t)=1 and q(i+1,t)=0 exchange their states (the 0 and 1 are swapped). The final state of such an automaton is 

reached after T=O(n) steps, when all the 0s are to the left of all the 1s. A naive algorithm for computing the state of the 

automaton after every number m≤T of steps would take O(n·m) time. We will now provide an O(n·log(n)) algorithm for 

this problem. We will assign a number from 0 to nz-1 to each zero cell of the automaton, in a left to right order (nz is the 

total number of zero cells). The i
th

 zero cell is initially located at the cell c(i). It is obvious that all the zeroes “move” to 

the left and that, in the final (stable) state, the i
th

 zero will be located at cell i. It is also obvious that the i
th

 zero (i≥1) will 

not reach cell i before the (i-1)
th

 zero reaches cell i-1. During every time step, a zero cell performs an action: it either 

“moves” one cell to the left (if the state of the cell to the left is 1) or “waits” (if the state of the cell to the left is 0). For 

each zero cell i, we will determine the sequence of actions ai,1, ai,2, …, ai,na(i) performed until it reaches its final cell (and 

the number of actions na(i)). The sequence will be maintained in reverse order, i.e. ai,na(i) is the action performed during 

the first time step and ai,1 is the last action performed. Based on this sequence of actions, we will be able to determine in 

O(log(n)) time the cell where each zero is located after m time steps. Thus, in O(n·log(n)) time, we will determine the 

state of the automaton after any number m of time steps. The number of time steps T after which the final state is reached 

will be T=na(nz-1). For the zero cell assigned number 0, its sequence of actions consists of na(0)=c(0)-0 “moves”: 

a0,j=”move” (1≤j≤na(0)). We will determine the sequence of actions for each zero state, in increasing order of the 

assigned numbers. If c(i)=c(i-1)+1, then the sequence of actions for the i
th

 zero cell is identical to the one for the (i-1)
th

 

zero cell, except that the first action performed is a “wait”. Thus, we have: na(i)=na(i-1)+1, ai,j=ai-1,j (1≤j≤na(i)-1) and 

ai,na(i)=”wait”. If c(i)>c(i-1)+1, then the first d=c(i)-c(i-1)-1 actions of the i
th

 zero cell will be “moves”. We need to find 

out if the i
th

 zero cell “catches up” with the (i-1)
th

 zero before the (i-1)
th

 zero reaches its final cell and if it does, after 

how many time steps this situation occurs. If the (i-1)
th

 zero cell performs less than d “waits”, then the i
th

 zero does not 

catch up with the (i-1)
th

 zero and the actions performed by it will be: ai,1=ai,2=…=ai,c(i)-i=”move”. If the i
th

 zero “catches 

up” with the (i-1)
th

 zero after t time steps (i.e. after t time steps, it is located at the cell x+1, where x is the cell where the 

(i-1)
th

 zero is located), then we have na(i)=na(i-1)+1, ai,na(i)=”move”, …, ai,1-t+na(i)=”move”, ai,-t+na(i)=”wait” and ai,-

j+na(i)=ai-1,-j+na(i), for t+1≤j≤na(i)-1.  



 

 

In order to obtain the stated time complexity, we will maintain the actions in a compressed form: we will maintain an 

array action, where action[j]=”wait” or “move”; we will also maintain an array count, where count[j] is zero if 

action[j]=”wait”; count[j] denotes the number of consecutive “move” actions corresponding to action[j]. We will also 

maintain an array totalCount, where totalCount[j]=the sum of the values count[1]+…+count[j]. During the algorithm, 

we will also maintain two other arrays: totalWaits[j]=the number of “wait” actions in the (multi)set {action[1], 

action[2], …, action[j]} and nextWait[j]=the index (in the array action) of the next “wait” action performed after the 

action action[j] (if action[j]=”wait” then nextWait[j]=j; else nextWait[j]=nextWait[j-1]). The algorithm below shows 

how to compute the sequence of actions and all the mentioned arrays efficiently. The array action is implemented as a 

stack. The sequence of actions corresponding to the (i-1)
th

 zero cell is transformed into the sequence of actions of the i
th

 

zero cell. Similarly, all the other arrays are only transformed from the (i-1)
th

 zero to the i
th

 zero. 

LinearCellularAutomaton(): 
na=1; action[1]=”move”; count[1]=c0 

totalWaits[0] = totalWaits[1] = nextWait[0] = nextWait[1] = 0 

totalCount[0]=0; totalCount[1]=count[1] 

for i=1 to nz-1 do { 

  if (c(i)=i) then continue the for cycle 

  t=d=c(i)-c(i-1)-1 

  while ((na>0) and (d>0)) do { 

    if (action[na]=”wait”) then { 

      d=d-1; t=t+1; na=na-1 

      if (d=0) then break the while cycle } 

    else { // action[na]=”move” 

      t=t+(totalCount[na]-totalCount[nextWait[na]]) 

      na=nextWait[na] }} 

  if (na>0) then { 

    na=na+1 

    action[na]=”wait” 

    nextWait[na]=na; totalWaits[na]=totalWaits[na-1]+1 

    count[na]=0; totalCount[na]=totalCount[na-1] } 

  na=na+1 

  action[na]=”move” 

  nextWait[na]=nextWait[na-1] 

totalWaits[na]=totalWaits[na-1] 

count[na]=t; totalCount[na]=totalCount[na-1]+t } 

At the end of each iteration of the outermost for cycle (for i=1 to nz-1), the arrays action, nextWait, totalWaits, count 

and totalCount contain the appropriate values for the i
th

 zero cell. The values for the first zero cell (numbered with 0) are 

available in the same arrays, before the first iteration of the outermost for cycle. Using these arrays, we can easily 

compute the cell that a zero state reaches after m time steps. If m is larger than the total number of actions performed 

nact=totalCount[na]+totalWaits[na], then the zero state i is located at cell i. Otherwise, we need to compute the 

smallest index j (1≤j≤na), such that nact-(totalCount[j-1]+totalWaits[j-1])≤m. If m=T, we can find j in O(1) time (j=1); 

otherwise, we need to binary search the index j. Let nw=totalWaits[na]-totalWaits[j-1], the number of “waits” 

performed during the first m time steps. Then, the i
th

 zero is located at the cell c(i)-m+nw. This way, we can evaluate the 

state of the cellular automaton after m time steps in O(n·log(n)) time (or O(n) time, if m=T). We can also compute T, as 

max{totalCount[na]+totalWaits[na]} after every iteration of the outermost for cycle (or before the first iteration). 

4.2. 1D PUSH-* 

Push-* is a simplified version of the well-known game Sokoban. A robot is placed in a 2D matrix consisting of unit 

squares which are either empty or contain a block. The robot can move in any of the four directions (if the corresponding 

square is free) and may also push blocks (any number of them) in a direction where an empty square exists. The purpose 

of the game is to bring the robot to a specified target square. In [8], 2D Push-1 (pushing at most one block at a time) was 

proven to be NP-hard. In this section we consider the one-dimensional version of Push-*, with several additions. There 

are N squares on a linear board, numbered from 1 to N (from left to right). Some of the squares contain blocks, while 

others are empty. The robot starts in square 1 and must arrive at square N. In order to achieve this, the robot can make 

the following moves: walk, jump and push. A walk consists of moving from the current square i to the left (square i-1) or 

to the right (square i+1) if the destination square is empty (and without leaving the board). If the robot’s square is i and 

square i+1 contains a block, the robot may push that block one square to the right (together with all the blocks located 



 

 

between positions i+2 and the first empty square to the right of i+1); obviously, at least one empty square must exist to 

the right of position i+1 in order for the push to be valid. After the push, the robot’s position becomes i+1. In a similar 

manner, the robot can push blocks to the left (if the square i-1 contains a block, then all the blocks between position i-1 

and the first empty square to the left of square i are pushed one square to the left); after the push, the robot’s position 

becomes i-1. The robot can also jump any number Q (1≤Q≤K) of squares to the right (left) if the previous (K-1)≥1 moves 

consisted of walking to the right (left). Each type of move consumes a certain amount of energy: W energy units for a 

walk, P units for a push and J units for a jump. In addition to reaching square N, the player should also do this by 

consuming the minimum total amount of energy. In the beginning, square N is empty and square 1 is occupied by the 

robot (thus, it contains no block). 

We will find the minimum energy strategy with a dynamic programming approach. We will compute a table 

E[i,j]=the minimum energy consumed in order to have the robot located at square i and having j empty squares to the left 

(i.e., the squares i-1, i-2, …, i-j are empty). Furthermore, the robot has not yet reached any square k>i (thus, all the 

squares i+1, i+2, …, N are in the same state as in the beginning). In order to justify the correctness of this approach, we 

will consider the squares grouped into intervals of consecutive empty squares. Let’s number these intervals with 

consecutive numbers (starting from 1), in the order in which they appear on the board (from left to right). If the robot 

reaches a square inside an interval X, then an optimal strategy will never contain moves which bring the robot to an 

interval Y<X. Thus, when the robot arrives in a square i inside an interval X, all the squares k>i are in the initial state 

(have not been modified). This way, we can consider only sequences of moves which are local to the interval of 

consecutive empty squares into which the robot resides. The outcome of these moves should be that the player reaches 

another interval Y>X (or another square k>i). We will show that for each state (i,j), we need to consider only O(N
2
) 

sequences of moves, which will improve the value of some states (i’,j’), with i’>i. Considering that there are O(N
2
) 

possible states, the time complexity of the algorithm will be O(N
4
). We will first compute an array dmin, where 

dmin[d]=the minimum energy needed to travel d squares. We have that: 

dmin[1]=W 
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We will also compute the following arrays: next, where next[i]=the next square to the right of square i, which 

contains a block (if no such square exists, then next[i]=N+1; next[N]=N+1 and next[1≤i≤N-1]=if square i+1 contains 

a block then i+1 else next[i+1]), nbleft, where nbleft[i]=the number of blocks on the squares 1,2,…,i, and nbright, 

where nbright[i]=the number of blocks on the squares i, i+1, …, N. These arrays can be computed in O(N) time each. 

Initially, we have E[1,0]=0 and E[i,j]=+∞ (for i>1 or j>0). From each state (i,j), such that E[i,j]<∞, we will consider 

several types of moves, depending on the value of next[i]. If next[i]=N+1, then we will consider the following moves: 

1. move x squares to the left and then travel y squares to the right. 

2. move j squares to the left, push x squares to the left and then travel y squares to the right. 

If next[i]≤N, then we consider the following moves: 

1. travel x squares to the right. 

2. walk x squares to the right and then jump y squares to the right. 

3. travel x squares to the left, then walk next[i]-i+x-1 squares to the right and jump y squares to the right 

4. travel j squares to the left, push x squares to the left, walk next[i]-i+j-1 squares to the right and then jump y 

squares to the right. 

5. travel next[i]-i-1 squares to the right, push x squares to the right, travel y squares to the left, walk y squares to the 

right and jump y+1 squares to the right. 

6. travel next[i]-i-1 squares to the right, push x squares to the right, travel next[i]+x-i+j squares to the left, push y 

squares to the left, walk next[i]+x-i+j+y squares to the right and then jump next[i]+x-i+j+ y+1 to the right. 

When pushing x squares to the left, we need to make sure that there are at least x empty squares available to the left, 

i.e. i-j-nbleft[i]≥x. When pushing x squares to the right, we need to have N-next[i]+1-nbright[i]≥x. When jumping x 

squares to the right, the landing square i’ must be empty (both in the initial state and after performing the sequence of 

moves) and the value of x must be at most K, where K-1≥1 is the number of consecutive walks to the right performed 

right before the jump. Every sequence of moves ends with a jump to the right (for the case next[i]≤N). The jump makes 

sure that the robot moves to a different interval of consecutive empty squares. We need to determine the state (i’, j’) 

reached by the player after the sequence of moves. It is easy to determine the landing square i’. We also have to find out 

the number j’ of consecutive empty squares directly to the left of i’. This number might be the same as in the initial state, 

or smaller, because of the possible right pushes performed during the sequence of moves. For each square i, we will 

compute neleft[i]=the number of consecutive empty squares (in the initial state) immediately to the left of square i (i.e. 



 

 

squares i-1, i-2, …, i-neleft[i] are empty and square i-neleft[i]+1 contains a block or is outside of the board) and 

nteleft[i]=the total number of empty squares in the set {1,2,…,i}. Before performing a sequence of moves, there will be 

ne=nteleft[i’]-nteleft[next[i]] empty squares between next[i] and i’. If the sequence of moves contained x≥0 pushes to 

the right, then we distinguish the following cases: 

• x>ne: square i’ is not empty and, thus, the robot cannot land there after the jump 

• x≤ne-neleft[i’]: square i’ has j’=neleft[i’] consecutive empty squares immediately to its left 

• ne-neleft[i’]<x≤ne: square i’ has j’=ne-x consecutive empty squares immediately to its left 

If the energy consumed by performing the sequence of moves is ES, then we need to set E[i’,j’] to min{E[i’,j’], 

E[i,j]+ES}. We notice that each sequence of moves contains at most two variable parameters (x and y). There are O(N) 

possible values for x and y (starting from 0) and, thus, there are O(N
2
) possible sequences of moves for each type of 

move. The algorithm’s time complexity is, thus, O(N
4
). 

4.3. RESOURCE COLLECTOR 1 

Let’s consider a complete directed graph with N vertices, numbered from 1 to N. The player is initially located in 

vertex 1. For each ordered pair of vertices (i,j), the time required to travel from i to j on the shortest path, tri,j, is known 

(tri,i=0). At certain time moments, recipients with resources may appear in the vertices of the graph. Considering that 

there are M recipients overall, for each recipient k, the time moment when it appears, tak, the vertex where it appears, vk, 

and the quantity of resources in the recipient, ck≥0, are known (if multiple recipients appear at the same time and at the 

same vertex, we will replace them by a single recipient whose quantity of resources is equal to the sum of the resources 

in the initial recipients). All the time moments are considered to be integers. At each moment t, the player may either stay 

in its current position (vertex) i or may start traveling towards another vertex j (which he/she reaches at time moment 

t+tri,j). The resources inside a recipient k can be collected by the player only if the player is located at vertex vk at the 

moment the recipient appears (tak) or if the player just arrives at the vertex at that moment. The purpose of the game is to 

collect the largest possible quantity of resources (knowing in advance all the parameters). 

An optimal strategy can be found by using dynamic programming. We sort the recipients in increasing order of their 

moment of appearance (breaking ties arbitrarily). Thus, recipient k appears after (or at exactly the same time as) every 

recipient p<k. For each recipient k, we will compute Cmax[k]=the maximum quantity of resources which the player can 

collect if at time tak it arrives (or is already located) at vertex vk (and, thus, collects the resources in recipient k). We will 

also consider a virtual recipient with 0 resources, appearing at vertex 1 at time moment 0 (this recipient is assigned 

number 0). We have Cmax[0]=0 and for k≥1: 
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The maximum quantity of resources which can be collected is the maximum value in the array Cmax. The time 

complexity of this algorithm is O(M
2
) and it is efficient only when the number of recipients is not too large. We will now 

present some efficient algorithms for the case when M is very large: for instance, M>N and/or M>Tmax, where Tmax is an 

upper limit for the maximum travel time between any two vertices. 

We will compute the same values as above, but we will make the following observation: if vp=vk (p<k), then 

Cmax[p]≤Cmax[k]. Indeed, Cmax[k] could be obtained, for instance, by collecting the resources in the recipient p and then 

waiting at vertex vp until the time moment tak (if no better strategy exists). For each vertex i, we will maintain a list with 

all the recipient numbers which appeared at vertex i, sorted in chronological order. Let this list be cb(i,1), cb(i,2), …, 

cb(i,ncbi), where ncbi is the number of recipients which appeared at vertex i (so far). When computing Cmax[k] for a 

recipient k, we will iterate over all the vertices of the graph. For each vertex i, we will find the last recipient cb(i,j), such 

that tri,vk≤tak-tacb(i,j) and set Cmax[k]=max{Cmax[k], ck+Cmax[cb(i,j)]}. Since the recipients cb(i,1), …, cb(i,ncbi) are sorted 

such that tacb(i,1)<…<tacb(i,ncbi), we can perform a binary search in order to find the recipient cb(i,j). Thus, the time 

complexity becomes O(M·N·log(M)). After computing Cmax[k], we add k at the end of the list of recipients of the vertex 

vk. 

When the maximum travel time between any two vertices i and j (tri,j) is less than (or equal to) a small value Tmax, we 

can improve the algorithm further. For each vertex i, we will maintain a value Tlast[i]=the most recent time moment when 

a recipient appeared at vertex i. We will also maintain a table MaxC[i,t], with 0≤t≤Tmax, representing the maximum 

quantity of resources the player can gather if at time Tlast[i]-t he/she is located at vertex i. Initially, Tlast[i]=0, for all the 

vertices i, and MaxC[i,t]=-∞, except for MaxC[1,0], which is 0. With these values, we will compute Cmax[k] using the 

algorithm presented next, whose time complexity is O(M·(N+Tmax)). Afterwards, we will consider a situation in which 

the graph corresponds to a geometric arrangement of the vertices. 

ResourceCollector1-SmallValueOfTmax: 



 

 

for k=1 to M do { 

  Cmax[k]=-∞ 

for i=1 to N do { 

    tlatest=tak-tri,vk 

    if (Tlast[i]<tlatest) then nc=MaxC[i,0] 

    else nc=MaxC[i,Tlast[i]-tlatest]  

    Cmax[k]=max{Cmax[k], ck+nc} } 

  // update the values MaxC[vk,t] and Tlast[vk] 

  if (tak-Tlast[vk]>Tmax) then { 

    toffset=Tmax+1 } 

  else { toffset=tak-Tlast[vk] } 

  nc=MaxC[vk,0]   

  for t=Tmax down to toffset do MaxC[vk,t]=MaxC[vk,t-toffset] 

for t=0 to toffset-1 do MaxC[vk,t]=nc 

  Tlast[vk]=tak; MaxC[vk,0]=Cmax[k] } 

If the graph’s vertices are points on the OX axis (each point i having a coordinate xi) and the travel times between two 

vertices i and j is the difference between their coordinates (tri,j=|xi-xj|), we can improve the time complexity of the 

solution. We consider a two-dimensional plane, in which the OX axis corresponds to the coordinates of the vertices and 

the OY axis corresponds to time moments. With this representation, each recipient k is a point with coordinates (xvk, tak). 

When computing the value Cmax[k] of the recipient k, we are interested in the Cmax values of the recipients p (0≤p<k) 

whose coordinates have the following property: |xvp-xvk|≤tak-tap. This condition defines a rectangular quarter-plane, with 

the origin in (xvk, tak). The quarter-plane is rotated 45 degrees from the orientation of the OX and OY axes. By rotating all 

the points associated to the recipients by -45 degrees around the origin, each recipient is assigned some new coordinates 

(xk’, yk’). With the new coordinates, the condition for a recipient p<k to be considered when computing Cmax[k] is: 

xp’≤xk’ and yp’≤yk’. The quarter-plane is now aligned with the OX’ and OY’ axes. If we consider the value Cmax[k] of a 

recipient k to be the weight of the point (xk’, yk’), we are interested in finding the maximum weight of a point located 

inside a rectangle for which two sides are unbounded (quarter-plane with a corner at a given point). We can use 

orthogonal range search results for solving this problem. We need to consider the dynamic version of the orthogonal 

range maximum query problem, however, because the weights of the points can change (initially, the weights are -∞ and 

they change at the moments when the Cmax values are computed). An orthogonal range query and update can be 

performed in O(log
2
(M)) time, using a 2D range tree. Each node of the range tree is assigned an interval of x-coordinates 

and stores all the points with the x-coordinates inside the assigned interval. The space requirement is O(M·log(M)). The 

points stored at each node are inserted into a balanced binary tree, whose search key is given by the y-coordinates. Each 

node of the balanced tree maintains the maximum weight of a point inside its subtree. A query partitions the x-interval 

into O(log(M)) sub-intervals corresponding to O(log(M)) range tree nodes. For each tree node, its corresponding 

balanced tree is searched and the maximum weight of a point belonging to the query y-interval is found. An update 

removes a point from the balanced tree of each range tree node to which it belongs and reinserts it with the new weight. 

Thus, the algorithm has O(N+M·log
2
(M)) time complexity. 

4.4. RESOURCE COLLECTOR 2 

We have N≥4 recipients (numbered from 1 to N); recipient i (1≤i≤N) contains r(i)≥0 resources units. We want to 

develop a strategy which collects all the resources into one single recipient, using the following type of actions: 

Move(u,v,w)=choose three distinct recipients u, v and w, such that r(u)>0 and r(v)>0, and then decrease r(u) and r(v) by 

1 each, and increase r(w) by 2 (we effectively move 1 unit of resource from both recipients u and v to recipient w). At 

first, we check if all the resources are already gathered in only one recipient (i.e. if there are at least N-1 distinct 

recipients i with r(i)=0). Afterwards, we also check for the only case which cannot be solved: when we have only two 

recipients u and v with non-zero resources, and r(u)=2 and r(v)=1. If we are not in any of these two cases, we will use a 

two-stage algorithm with O(N+M) time complexity, which we present next. M is the total number of moves and will be 

proportional to the sum r(1)+r(2)+…+r(N). 

During the first stage, our goal will be to move all the resources to recipient N. We initialize i=j=1. Then, while 

(i<N) and (j<N), we perform the following steps: (1) while (r(i)=0) and (i<N), we increase i by 1; (2) while ((j≤i) or 

(r(j)=0)) and (j<N), we increase j by 1; (3) if (i<j) and (j<N) then we perform a move Move(i,j,N) (i.e. we decrease r(i) 

and r(j) by 1 each, and then we increase r(N) by 2). After this initial stage, we have two possible outcomes: (1) all the 

resources were gathered in recipient N; (2) there is exactly one more recipient k (1≤k≤N-1) with r(k)>0. We search for k 

in O(N) time. If we find a recipient k<N with r(k)>0, then we are in case 2. We will now choose two recipients a and b, 

distinct from k and N (e.g. if k=1, then a=2 and b=3; if k=N-1, then a=N-2 and b=N-3; if 2≤k≤N-2, then a=k-1 and 



 

 

b=k+1). Then, if r(k)>r(N), we set dest=k and then k=N; otherwise, dest=N. dest is the index of the recipient where we 

intend to eventually gather all the resources and k is the index of the other recipient which still contains non-zero 

resources. While (r(k)>0) and (r(dest)>0) we perform the following actions: (1) if r(k)≥2 then we perform the moves 

Move(k, dest, a), Move(k, dest, b) and then twice the move Move(a, b, dest), in this order (after this sequence of moves, 

r(k) is effectively decreased by 2 and r(dest) is increased by 2, while r(a) and r(b) remain zero); (2) otherwise (if r(k)=1), 

we perform the move Move(k, dest, a), and then we swap the values of k and a (i.e. vaux=k, k=a, and then a=vaux). In 

the end, all the resources will be gathered either in the recipient dest or, if we reached the case r(k)=r(dest)=1, then they 

will be gathered in the recipient k. 

4.5. ORDERING TOKENS BY MOVING PAIRS OF ADJACENT TOKENS 

We have a board consisting of L=2·N+2 positions (numbered from 1 to L), with N≥3. Each position i (1≤i≤L) is 

occupied either by a token of color B, a token of color R, or is empty. There are N tokens of each color placed on the 

board and, thus, two positions are empty. The two empty positions are adjacent. We can perform the following type of 

moves: Move(i)=we move the tokens on the positions i and i+1 to the positions p and p+1, where p and p+1 are the two 

empty positions (the token on position i is moved to position p and the token on position i+1 is moved to position p+1); 

positions i and i+1 must necessarily contain a token each (of any and possibly different colors); as a result of this move, 

the two new empty positions will be i and i+1. We want to perform a sequence of moves such that, at the end, the 

positions 1, …, N are occupied by the tokens of color R, the positions N+1 and N+2 are empty, and the positions N+3, 

…, 2·N+2 are occupied by the tokens of color B. 

A first solution would be to encode every possible state of the board as a base 3 number (with a value 0 for a position 

containing a token with color R, a value 1 for a position containing a token with color B, and a value 2 for an empty 

position). Since every such encoding contains exactly two empty positions, not all the numbers with L digits in base 3 are 

valid; however, the number of valid base 3 encodings is exponential in the number of positions of the board. We can 

then construct a graph of the encodings (where the encodings are vertices). We add an edge between an encoding A and 

an encoding B if there is a move such that the board changes from the configuration corresponding to the encoding A to 

the configuration corresponding to the encoding B. Thus, if S is the encoding of the initial state of the board and D is the 

encoding of the final state of the board, we just need to find a path from S to D in this graph (we can do this with a 

simple breadth-first search). Then, by following the path from S to D, we know exactly which moves need to be made 

(and in which order). The problem with this approach is that the time complexity is exponential in the parameter L. 

We will now present an algorithm whose time complexity is O(N). At first, we search the board and find the leftmost 

empty position p (i.e. positions p and p+1 are empty). During the algorithm, after performing every move Move(z), we 

will set p=z (although we will not explicitly mention this in the description of the algorithm). We will initialize a counter 

i=1. This counter will have the property that on the positions 1, …, i-1, we will only have tokens colored with R. We will 

also maintain a counter nextR (initially 0), representing the position of the next token with color R, located after the 

position i. Then, while (i≤N), we perform the following actions: (1) if the position i contains a token with color R, then 

we just set i=i+1 and then we continue; (2) otherwise, if the position i contains a token with color B, we have two sub-

cases: (2.1) if the position i+1 is not empty then we perform the move Move(i) (and we do not change the counter i; 

however, at the next iteration, the position i will be empty); (2.2) otherwise, if position i+1 is empty (i.e. p=i+1), we 

perform the move Move(i+3), i.e. we move the tokens from the positions i+3 and i+4 to the empty positions i+1 and i+2 

(again, we do not change the value of the counter i, but at the next iteration, the position i+1 will not be empty anymore); 

(3) if, at the beginning of the iteration, the position i is empty (i.e. i=p), then: (3.1) if (nextR≤i) then we set nextR=i+1; 

(3.2) while the position nextR does not contain a token with color R, we increment nextR by 1; (3.3.1) if (nextR<L) then 

we perform the move Move(nextR) (without changing the value of the counter i; however, at the next iteration, position i 

will contain a token colored with R, and, thus, the counter i will be subsequently incremented by 1); (3.3.2) if (nextR=L) 

then we reached the last token colored with R: this means that i=N and that all the other N-1 tokens colored with R are 

on the positions 1, 2, …, N-1; in this case, we will perform the following sequence of moves: Move(L-1) (after this move, 

position N contains a token with color B and position N+1 contains a token with color R; the empty positions are L-1 and 

L), Move(N+2) (after this move, the positions L-1 and L each contain one token with color B and the positions N+2 and 

N+3 are empty), Move(N-1) (after this move, the positions N+1 and N+2 each contain one token with color R and the 

positions N-1 and N are empty), Move(N+1) (after this final move, all the positions 1, 2, …, N contain tokens colored 

with R, the positions N+1 and N+2 are empty, and the positions N+3, …, 2·N+2 each contain a token colored with B). 

At the end of the algorithm, the positions 1, …, N contain tokens colored with R. If the empty positions p and p+1 are 

not N+1 and N+2, then: (1) if p>N+2 then we call Move(N+1); (2) if (p=N+2) then we first call Move(N+4) and, then 

Move(N+1). 



 

 

5. GEOMETRIC OPTIMIZATION PROBLEMS 

Geometric optimization problems arise in the resource management field, because resources are commonly modeled 

as points in a multidimensional feature space, in which every dimension corresponds to an attribute of the resource. In 

this section we consider two such problems: a geometric aggregate coverage problem and the hyper-rectangle k-center 

problem using the L∞ metric. 

5.1. GEOMETRIC MINIMUM AGGREGATE COVERAGE 

We are given n rectangles in the plane ([xa(i,1),xb(i,1)] x [xa(i,2),xb(i,2)], xa(i,j)≤xb(i,j), 1≤j≤2, 1≤i≤n) located inside 

a larger rectangle R ([xaR(1),xbR(1)] x [xaR(2), xbR(2)], xaR(j)≤xbR(j), 1≤j≤2). Each rectangle i (1≤i≤n) has a weight 

w(i)>0. We want to place inside R a rectangle R’ of side lengths L(1), L(2) (L(j)>0 is the side length in dimension j, 

1≤j≤2). The cost of placing R’ at a given position is given by an aggregate function over the weights of the rectangles 

intersected by R’. The aggregate function can be +, * or max. We want to find a placement of R’ inside R whose cost is 

minimum. We will first handle the case where the aggregate function is +. The location of R’ is completely specified by 

the coordinates of its upper-right corner. We will inflate each of the n rectangles, by extending the length in dimension j 

by L(j). To be more precise, we set xb(i,j)=xb(i,j)+L(j), 1≤j≤2, 1≤i≤n. Now we can redefine the problem as follows. We 

want to find a point inside the rectangle R with minimum placement cost, where the placement cost is equal to the 

aggregate of the weights of the rectangles containing the point. We will solve this problem as follows. At first, we 

« clip » every coordinate xb(i,j) such that it doesn’t exceed xbR(j), i.e. we set xb(i,j)=min{xb(i,j), xbR(j)}. Next, we will 

sort all the 2·n+2 coordinates of the n rectangles, plus the large rectangle R, in each dimension. Let 

xso(j,1)≤xso(j,2)≤…≤xso(j,2·n+2) be the sorted coordinates in dimension j (j=1,2). We will remove all the duplicates, 

obtaining m(j) distinct coordinates in each dimension j, xs(j,1)<xs(j,2)<…<xs(j,m(j)). For each rectangle i (1≤i≤n) we 

compute idxa(i,j)=the index of the coordinate xa(i,j) in the sorted list xs(j), i.e. xs(j,idxa(i,j))=xa(i,j). We can do this by 

using binary search. Similarly, we compute idxb(i,j), such that xs(j,idxb(i,j))=xb(i,j). We will sweep the rectangles from 

left to right (in the first dimension) and for each entry p in the 2
nd

 dimension (1≤p≤m(2)) we will maintain a cost cost(p), 

representing the cost of placing a rectangle with the upper side at coordinate xs(2,p). In order to efficiently maintain the 

values cost(p), we will construct a segment tree over the m(2) (distinct) coordinates in the 2
nd

 dimension. The coordinate 

values are not important, only their index in the list of sorted coordinates. Each node of the segment tree will maintain 

two values : qagg, the query aggregate over the indices in its range and uagg, the update aggregate of all the updates 

which « stopped » at that node. For more explanations and a comprehensive algorithmic framework using segment trees, 

see [3]. During the sweep, we will have two types of events : we encounter the left side of a rectangle or we encounter 

the right side of a rectangle. The events will be sorted according to their coordinates in the first dimension. In case of 

multiple events at the same coordinate, we will consider first the right side events, followed by the left side events for 

that coordinate. When a left side for a rectangle i occurs, we update the interval [idxa(i,2), idxb(i,2)-1], by adding the 

value w(i) to all the values cost(p), with p inside the interval. An update will be performed in O(log(n)) time, by 

computing a canonical decomposition of the interval, consisting of O(log(n)) segment tree nodes. We increase the uagg 

values of these tree nodes by w(i). Then, if the node is a leaf, we also increase qagg by w(i) ; otherwise, we set qagg to 

uagg+min{qagg(leftson(node)), qagg(rightson(node))}. Then, we recompute the qagg values of all the O(log(n)) 

ancestors of the tree nodes which are part of the canonical decomposition. For each ancestor node a, we set qagg(a) to 

uagg(a)+min{qagg(leftson(a)), qagg(rightson(a))}. This way, the qagg value of the tree root will always be equal to the 

minimum value of cost(p) (1≤p≤m(2)) at the current position. If we encounter a right side event, we perform the same set 

of actions as before, except that we add -w(i) instead of w(i) at the uagg values of the tree nodes of the canonical 

decomposition of the (same) interval. After every update, we compare the qagg value of the tree root against the 

minimum cost found so far and update this cost, if the qagg value is smaller. Thus, in O(n·log(n)) time, we can compute 

the minimum cost. If we also maintain the coordinate of the current event as well as the index p for which the minimum 

value is attained, we can also find where to place the rectangle. 

The case where the aggregation function is * is identical to the + case. We replace every weight w(i) by log(w(i)). The 

multiplication is known to be equivalent to the addition of the logarithms. The position achieving the minimum value for 

the logarithms case with + as the aggregation operator also achieves the minimum value in the normal weights case, with 

* as the aggregation operator. 

In order to support the max aggregation operator, each uagg value will be replaced by a balanced tree. For each left 

side event, we insert the value w(i) in the balanced trees of all the nodes of the canonical decomposition. For each leaf 

node in the decomposition we set qagg to uagg.getMax(). For the other nodes of the canonical decomposition and for the 

ancestors of the nodes in the decomposition (in this order) we set qagg to max{uagg.getMax(), min{qagg(leftson(node)), 

qagg(rightson(node))}}. For a right side event, we remove w(i) from the balanced trees uagg of the nodes in the 



 

 

decomposition and recompute the qagg values as before. If uagg contains no values, then uagg.getMax() returns 0 ; 

otherwise, it returns the largest value in uagg. The time complexity in this case is O(n·log
2
(n)), but we use O(n·log(n)) 

memory storage, because every weight of a rectangle is stored in O(log(n)) tree nodes. We can also solve the problem 

with O(n) storage. We sort the weights of all the rectangles and then we binary search the minimum weight Wmin of a 

rectangle that cannot be avoided when placing the rectangle R’. The feasibility test for a candidate value Wcand starts by 

ignoring all the rectangles i with w(i)<Wcand. For the remaining rectangles we apply the same transformations (we inflate 

them) and arrive at the problem of finding the location of a point which is not contained in any of the inflated rectangles. 

This problem was considered in [2] and solved in O(n·log(n)) time with O(n) storage. The overall complexity is 

O(n·log
2
(n)). 

If we want to find the largest rectangle R’ with a fixed aspect ratio, i.e. L(2)=f·L(1) (where f is a constant), such that 

the placement cost is at most B, we can binary search the length L(1) and compute the minimum placement cost for every 

candidate value. If the cost is at most B, we can test a larger value ; otherwise, we will test a smaller one. This approach 

adds an O(log(LMAX)) factor to the time complexity (LMAX is the length of the search interval for L(1)). 

5.2. D-DIMENSIONAL HYPER-RECTANGLE K-CENTERS 

We are given n (unweighted) points in d≥2 dimensions; point i is located at coordinates (x(i,1),…,x(i,d)). We want to 

place K hyper-rectangles with side lengths L(i,j), 1≤i≤K, 1≤j≤d (L(i,j) is the side length in dimension j of the hyper-

rectangle i) such that the maximum (L∞) distance from a point to the closest hyper-rectangle is minimized (the distance is 

0 if the point is contained inside a hyper-rectangle). We binary search the maximum distance D and inflate each hyper-

rectangle i to L’(i,j)=L(i,j)+2·D (1≤j≤d). The feasibility test consists of verifying if all the points can be covered by the K 

hyper-rectangles of sizes L’(i,j), 1≤i≤K, 1≤j≤d. We consider the following recursive function, given in pseudocode, 

which verifies if a set of points S can be covered by the first K identical hyper-rectangles with side lengths L(i,j) (1≤i≤K) 

in dimension j (1≤j≤d). 

IsFeasibleCover(d, S, K): 

if (|S|=0) then return “feasible” 

if (K=1) then { 

  for j=1 to d do { 

    xmin(j)=min{x(i,j)|i is a point in S}  

  xmax(j)=max{x(i,j)|i is a point in S} } 

  if (xmax(j)-xmin(j)≤L(1,j) for each 1≤j≤d) then return “feasible” } 

else { // K≥2 

for j=1 to d do { 

  dc(j)=the number of distinct coordinates x(i,j), i∈S (sort the coordinates in dimension j of all the points in S and remove the duplicates) 

  let co(j, 1) < … < co(j, dc(j)) = the distinct coordinates in dimension j 

  compute comin(j)=min{i |1≤i≤dc(j), co(j,i)+L(K,j)≥co(j,dc(j))} } 

  if (co(j,dc(j))-co(j,1)≤L(K,j) for each 1≤j≤d) then return “feasible” 

   Kdq /2 ⋅=  

  if (K=2) then { 

  for j=1 to d do { 

    let RT(j)=a d-dimensional range tree 

      insert into RT(j) every point i∈S, with weight w(i)=x(i,j) }} 

for each subset SD of {-1,-2, …, -d, 1,2,…, d} such that |SD|=q do { 

  for each tuple (c(1), …, c(d)), such that (1≤c(j)≤dc(j), 1≤j≤d) and (consistent(c(1), …, c(d), SD)=true) do { 

    consider a hyper-rectangle R with 2 opposite corners at (co(1,c(1)), …, co(d,c(d))) and (co(1,c(1))+L(K,1), …, co(d,c(d))+L(K,d)) 

      if (K=2) then { 

        for j=1 to d do { 

          xmin’(j)=+∞; xmax’(j)=-∞ 

          for j’=1 to d do { 

            xmin’(j)=min{xmin’(j), RT(j).getMinWeight(x(*,j’) < co(j’,c(j’))), RT(j).getMinWeight(x(*,j’)>co(j’,c(j’))+L(K,j’))} 

            xmax’(j)=max{xmax’(j), RT(j).getMaxWeight(x(*,j’) < co(j’,c(j’))), RT(j).getMaxWeight(x(*,j’)>co(j’,c(j’))+L(K,j’))} }} 

        if (xmax’(j)-xmin’(j)≤L(K-1,j) for each 1≤j≤d) then return “feasible” } 

      else { // K≥3 

        S’={i| i∈S, i is contained in R} 

        if (IsFeasibleCover(d, S\S’, K-1)) then return “feasible” }}}} 

return “not feasible” 

consistent(c(1), …, c(d), SD): 

for j=1 to d do { 



 

 

if ((-j)∈SD) and (c(j)>1)) then return false 

if ((j∈SD) and (c(j)<comin(j))) then return false } 

return true 

For K=1, the problem can be easily solved in O(n) time, by verifying if the minimum bounding box (MBR) of the 

points can be included in the hyper-rectangle. For K≥2, we compute the value of q, having the following meaning: hyper-

rectangle K must have at least q of its 2·d sides along q sides of the MBR of the points in S. Thus, we consider all the 

C(2·d,q) possibilities of choosing these sides (C(a,b)=combinations of a elements taken b at a time). For each possibility, 

we consider all the coordinates for the leftmost corner (in each dimension) of the K
th

 hyper-rectangle which are 

consistent with the chosen sides. For each such possibility, we verify if we can cover the remaining points with K-1 

hyper-rectangles. When K≥3, we perform this test by calling the recursive function with the set of yet uncovered points 

and K-1 as parameters. When K=2, we could do the same (calling the function for K=2-1=1). However, by maintaining 

a range tree RT(j) for every coordinate j, in which we insert all the points in the set S with weights equal to their x(*,j) 

coordinate, we can compute the coordinates of the MBR of the remaining points in O(d
2
·log

d
(n)). The range tree 

provides two functions: getMinWeight(r) and getMaxWeight(r), where r is a d-dimensional orthogonal range, which 

return the minimum (maximum) weight of a point in the tree in the given orthogonal range; if no point exists in that 

range, then they return +∞ (-∞). The ranges we consider are of the form (x(*,j)>a) and (x(*,j)<a), i.e. (a,+∞) ((-∞,a)) in 

dimension j and (-∞,+∞) in the other dimensions. For K=2 (and d constant), the time complexity is 

T(n,m,K=2)=O(n
d/2

·log
d
(n)), where m is the maximum number of distinct coordinates in any dimension. For K≥3, we 

have T(n,m,K)=n+O(C(2·d,2·d/K)+m
d
)·T(n,m,K-1)=O(n

(K-2)·d+d/2
·log

d
(n)). 

The (K+P)-center problem is an extension of the K-center problem and considers that P fixed hyper-rectangles (not 

necessarily identical with each other or with some of the other K which we need to place) are given at no cost. The 

corresponding (K+P)-center problem is solved by inflating accordingly the P fixed hyper-rectangles and ignoring in the 

decision problem all the points which are contained in at least one of the P inflated hyper-rectangles. We can easily find 

all the points contained in at least one of the P inflated hyper-rectangles in O(n·P) time, but, if P is large, we can do this 

in O(P·log(n)+n·log(n)). We construct a (dynamic) d-dimensional range tree with all the n points. Then, for each of the P 

hyper-rectangles, we report in O(log(n)+qp) time, all the qp points contained in it; afterwards, we remove the qp points 

from the range tree (in order to avoid reporting the same point multiple times, which would again take O(n·P) time). 

When the points may have different weights and all the K hyper-rectangles are identical (their side lengths are L(1), 

…, L(d)), the hyper-rectangle K-center problem is equivalent to deciding if a set of n hyper-rectangles is K-pierceable. 

We binary search the minimum weighted distance D. For a candidate value Dcand, we assign a d-dimensional hyper-

rectangle to every point i: HRi=[x(i,j)-L(j)-Dcand/w(i), x(i,j)+Dcand/w(i)] (1≤j≤n). We must have the lower corner of one 

of the hyper-rectangle-centers within every hyper-rectangle HRi. Thus, Dcand is a feasible weighted distance if the hyper-

rectangles HRi are K-pierceable. The case K=1 is easy, as it is equivalent to deciding if max{x(i,j)-L(j)-Dcand/w(i)|1≤i≤n} 

≤ min{x(i,j)+Dcand/w(i)|1≤i≤n} for every dimension j (1≤j≤d). 

Finally, we notice the connection between the K-center problems (with identical centers of a fixed shape F and fixed 

sizes) and the problem of computing the largest factor by which we can scale an object of a fixed shape F (e.g. sphere, 

hyper-rectangle, polyhedron) and initial sizes, such that we can place it inside a bounded domain containing n points and 

none of the points are located inside the object. The shape F must have a “center” point, around which the scaling is 

performed. In both problems we can binary search the result R (the minimum maximum distance to the closest center for 

the K-center problem, or the largest scaling factor for the second problem). Then, we need to perform a feasibility test. 

For the K-center problem, we need to place an object of shape F, centered at each of the n points. Then, we inflate 

(scale) each object centered at a point i such that it contains all the points at distance at most R/w(i) from it (w(i) is the 

weight of point i). The feasibility test consists of checking if the n inflated shapes are K-pierceable, i.e. if there is a set of 

K points, such that each of the n inflated shapes contains at least one point from the set. For the second problem, we 

place an object of the same shape F, scaled by the factor R, centered at each of the n points (in this case, the points are 

unweighted). Then, we shrink the domain, such that all the points which cannot be the center of an empty object (scaled 

by the factor R) because some parts of the object would be located outside of the domain are left outside the shrunken 

domain. Then, we need to check if the n scaled shapes cover the entire shrunken domain. If they don’t, then this means 

that there is at least one point inside the initial domain where we can place the center of an empty object, scaled by the 

factor R, such that it contains no points inside of it (i.e. R is feasible). If the whole domain (area, volume, etc.) is covered 

by the n scaled objects, then R is not feasible. If R is feasible, we will search for a smaller (larger) value next in the case 

of the K-center (largest empty scaled object) problem; otherwise, we will search for a larger (smaller) value next. 

7. RELATED WORK 



 

 

In [14], the authors discuss a register allocation problem which can be interpreted as a very simple version of the 

directed tree workflow scheduling problem studied in this paper. Generalizations of the algorithm presented in [14] were 

given in [6]. Debt management is an important topic nowadays, especially in the context of the global financial crisis. 

[13] considers the problem of debt relief and repayment capacity of U. S. households from an algorithmic perspective. 

An optimal resource allocation algorithm which also considers the debt structure of a company is presented in [7]. 

Conway’s Game of Life [9] made cellular automata very popular, which later proved to be important tools for modeling 

many dynamical, parallel and biological systems. Brief versions of some of the algorithmic techniques presented in this 

paper (e.g. those for the cellular automaton or for the Resource Collector 1 game) have previously been presented in a 

conference short paper [4]. Resource allocation and management problems related to geometric K-center problems were 

presented in [11]. Efficient algorithms for geometric optimization problems similar to those introduced in this paper were 

given in [5]. In the future, we intend to consider more complex risk models or cost calculation methods, like those 

presented in [1] or [12]. 

8. CONCLUSIONS AND FUTURE WORK 

In this paper we considered several constrained resource allocation problems, under low risk circumstances. For each 

problem we developed novel and efficient algorithmic solutions for computing optimal resource allocation strategies. 

The constraints were formulated as geometric or activity dependency restrictions, or were based on game-theoretic 

models. As future work, we intend to introduce explicit probability distributions for the values of the parameters of the 

considered problems, and to not restrict our attention to expected values only. 
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