Stéphane Clain 
email: stephane.clain@math.univ-toulouse.fr
  
Malcom Djenno Ngomanda 
  
  
Mathematical Modelling and Numerical Analysis Will be set by the publisher Modélisation Mathématique et Analyse Numérique THE HALF-PLANES PROBLEM FOR THE LEVEL SET EQUATION

Keywords: 1991 Mathematics Subject Classification. 65M10. Riemann problem, Cauchy problem, level set equation, analytical solution, half-planes problem

The paper is dedicated to the construction of an analytic solution for the level set equation in R 2 with an initial condition constituted by two half-planes. Such a problem can be seen as an equivalent Riemann problem in the Hamilton-Jacobi equation context. We first rewrite the level set equation as a non-strictly hyperbolic problem and obtain a Riemann problem where the line sharing the initial discontinuity corresponds to the half-planes junction. Three different solutions corresponding to a shock, a rarefaction and a contact discontinuity are given in function of the two half-planes configuration and we derive the solution for the level set equation. The study provides theoretical examples to test the numerical methods approaching the solution of viscosity of the level set equation. We perform simulations to check the three situations using a classical numerical method on a structured grid.

Introduction

The interface tracking problem takes place in various fields like front flame propagation, crystal growth in solidification process, fluid-structure interaction with moving solid boundary, computer vision, dynamics bubbles or drops for example. The level set method (see [START_REF] Sethian | Level set methods[END_REF] for an overview) consists in representing the free boundary as the zero-level of a continuous function φ where the normal velocity F is a prescribed function. Consider the Cauchy problem:

∂ t φ(x, t) + F |∇φ(x, t)| = 0 in R 2 × [0, T ], φ(x, t = 0) = φ 0 (x) in R 2 , (1) 
where F (x, t) is a given Lipstick function on R 2 × [0, T ] while φ 0 is a Lipschitz function on R 2 . Existence and uniqueness of the Lipschitz viscosity solution for problem (1) on R 2 × [0, T ] is proved (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF]).

Since φ is a Lipschitz function, vector U = ∇φ is a bounded vector-valued function and applying the gradient operator to equation (1), we derive the Cauchy problem for the conservation law system associated to the level set equation:

∂ t U(x, t) + ∇(F |U(x, t)|) = 0 in R 2 × [0, T ], U(x, t = 0) = ∇φ 0 (x) in R 2 . ( 2 
)
For the one dimensional situation, [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] proves that the Lipschitz viscosity solution φ of equation (1) corresponds to the bounded entropic solution U of equation ( 2) with U = ∂ x φ. Such a result is not established for higher dimension since we do not have the uniqueness of solution for the non-strictly hyperbolic system (2) [START_REF] Corrias | Numerical schemes for conservation laws via Hamilton-Jacobi equations[END_REF]. Nevertheless, if we regularize equations (1) and (2) adding a diffusion term ε∆φ and ε∆U respectively, the new solutions satisfy U ε = ∇φ ε . Passing to the limit assuming a L ∞ convergence of φ ε toward φ and a L 1 convergence of U ε toward U , we have that U = ∇φ where φ is the viscosity solution and U the entropy solution.

From a numerical point of view, the non-strictly hyperbolic system discretization using the finite volume method leads to solve Riemann problems for each cell interface. The problem is reduced to a one dimensional hyperbolic equation with a discontinuous flux function [START_REF] Michael | Viscosity solutions of Hamilton-Jacobi equations[END_REF] making difficult a complete and explicit resolution. We propose a different approach based on the following remark: a constant state for the non-strictly hyperbolic problem (2) corresponds to a plane for the level set equation (1). Hence we propose to study an equivalent Riemann problem in the level set equation context using two half-planes as an initial continuous condition [START_REF] Clain | A simple level set numerical scheme for unstructured meshes[END_REF][START_REF] Djenno | Nouvelles approximations numériques pour les équations de Stokes et l'équation Level Set[END_REF].

The two half-planes problem

For the sake of simplicity, we assume in the following that function F is reduced to a constant function. Such an assumption is not restrictive since we usually solve Riemann problems using the normal velocity evaluated at the interface midpoint. Let π 1 and π 2 be two planes of the (x, z) = (x 1 , x 2 , z) ∈ R 3 space. We impose that the planes contain the origin point and the plane equations write

z = φ i (x) = U i .x, i = 1, 2
where U i are given vectors of R 2 . Of course, when the two planes are equal, one has φ 0 (x) = φ 1 (x) = φ 2 (x) as an initial condition and the solution is given by φ(x, t) = φ 0 (x) -F |U L |t with U L = U 1 = U 2 which corresponds to a simple translation of the initial plane with velocity Now, we consider the nontrivial case when the two planes are different. To construct an initial condition φ 0 for the Cauchy problem (1) we consider an arbitrary line δ ⊂ R 2 passing to the origin, an arbitrary normal vector W ∈ R 2 and we define the left part P L and the right part P R of R 2 such that W goes from left to right (see figure (2)). We then construct the initial condition by φ 0 (x) = φ 1 (x) if x ∈ P L and φ 0 (x) = φ 2 (x) if x ∈ P R . Such a definition gives rise to a function which is not a priori continuous on δ and disqualify the construction since we would like to handle continuous solutions. It results that the interface δ can not be arbitrary but has to be defined such that we have a continuous connection between the two planes. To this end, we introduce the two following continuous Lipschitz functions

F |U L | (see figure (1)). t = 0 |U L |t
φ m 0 = min(φ 1 , φ 2 ), φ M 0 = max(φ 1 , φ 2 )
which are the unique function linking π 1 with π 2 continuously. Note that the particular case

U 1 = U 2 corre- sponds to a unique function φ m 0 = φ M 0 = φ 1 = φ 2 . Assuming U 1 = U 2 , we set W = U 1 -U 2 |U 1 -U 2 |
and define the two half-planes P L and P R of R 2 by

P L = {x ∈ R 2 ; x.W < 0}, P R = {x ∈ R 2 ; x.W > 0}.
The line δ c = P L ∩ P R is orthogonal to W and we choose the unit vector V on δ c such that the vectors {W, V} form a direct orthonormal basis of R 2 (see figure (2)). Note that by construction W goes from P L to P R . In R 3 , the two planes π 1 and π 2 have an intersection line ∆ c = π 1 ∩ π 2 ⊂ R 3 passing by the origin O and We now aim to study the Cauchy problem (1) using φ m 0 or φ M 0 as an initial condition. In the hyperbolic context, we have to consider Riemann problems (2) where the initial conditions are ∇φ m 0 or ∇φ M 0 with a discontinuity situated on the line δ c . Two cases arise whether we choose φ m 0 or φ M 0 as an initial condition. • If φ m 0 is the initial condition, definition of W yields that φ m 0 = φ 1 on the half-plane P L and φ m 0 = φ 2 on the half-plane P R . Indeed, we have W.W = 1 > 0 so (U 1 -U 2 ).W > 0 then U 1 .W > U 2 .W which means that φ 1 (W) > φ 2 (W). Hence π 1 is above π 2 on P R while π 1 is under π 2 on P L . In the conservative law framework, we derive the following initial condition for the Riemann problem U L = U 1 on P L and U R = U 2 on P R .

δ c ⊂ R 2 is the orthogonal projection of line ∆ c ⊂ R 3 on the plane (x 1 , x 2 ) (see figure (3)). z x y π 2 π 1 ∆ c δ c
• If we choose φ M 0 as the initial condition, we deduce that U L = U 2 on P L and U R = U 1 on P R . In the sequel, for any arbitrary couple of vectors U 1 and U 2 we choose φ m 0 as the initial condition and we have U L = U 1 on P L and U R = U 2 on P R oriented from left to right by

W = U L -U R |U L -U R | . (3) 

The one dimensional problem reduction

The objective is to determine the theoretical solution φ of the level set equation with φ m 0 as an initial condition using the solution U of the associated Riemann problem. To this end, we carry out the following change of variable where we introduce the coordinates in basis {W, V} setting

x = ζW + ηV.
The transformation corresponds to a rotation in the new basis where

W = 1 0 , V = 0 1 .
By construction of V and W we have

U L • V = U R • V = ω 0 , thus, vectors U L and U R are defined in the new base: U L = ω L W + ω 0 V, U R = ω R W + ω 0 V, with ω L = U L • W, ω R = U R • W.
Using the change of variables, the level set problem becomes

     ∂ t φ(ζ, η, t) + F |∇ ζ,η φ(ζ, η, t)| = 0, φ(ζ, η) = ω L ζ + ω 0 η if ζ < 0, η ∈ R, φ(ζ, η) = ω R ζ + ω 0 η if ζ > 0, η ∈ R, (4) 
and the associated Riemann problem:

                         ∂ t U(ζ, η, t) + ∇ ζ,η (F |U(ζ, η, t)|) = 0, U(., 0) = ω L ω 0 if ζ < 0, η ∈ R, U(., 0) = ω R ω 0 if ζ > 0, η ∈ R, (5) 
If U(ζ, η, t) is a solution of (5) then U(ζ, η + c, t) is also a solution of (5) for all c ∈ R thus U(ζ, η + c, t) = U(ζ, η, t) hence ∂ η U = 0. It follows that ∂ t U(ζ, t) • 0 1 = 0 hence U • 0 1 = ω 0 , ∀ η, ζ, t.
On the other hand, let ω(ζ, t) = U • 1 0 , the component of U following the direction W , function ω satisfy the one-dimension scalar Riemann problem

     ∂ t ω(ζ, t) + F ∂ ζ w 2 (ζ, t) + w 2 0 = 0, ω(ζ, 0) = ω L , ζ < 0, ω(ζ, 0) = ω R , ζ > 0. (6) Note that the choice of W yields U L .W > U R .W hence ω L ≥ ω R .

Solutions for the Riemann problem

We first give the solution for the situation ω 0 = 0, case ω 0 = 0 will be studied as the limit situation when ω 0 tends to 0. We denote by f (ω) = F w 2 + w 2 0 , and a simple calculation provides

λ(ω) = f ′ (ω) = F ω w 2 + w 2 0 , f ′′ (ω) = F ω 2 0 (w 2 + w 2 0 ) 3 2 . We note that f ′ is an increasing function for F ≥ 0 while f ′ is a decreasing function if F ≤ 0. Since ω L > ω R it result that λ(ω L ) > λ(ω R ) if F > 0 leading to an entropic shock configuration while λ(ω L ) < λ(ω R ) if F < 0 which corresponds to a rarefaction [LeV92].
3.1. The shock case F ≥ 0

We first assume ω 0 = 0. The Rankine-Hugoniot condition yields We now consider the case where ω 0 = 0 with ω L = ω R . Such a situation arises when vectors U L and U R are colinear. Since ω L = ω R , then we can pass to the limit setting ω 0 = 0 in relation (7) since f depends continuously on ω 0 . The solution is still an entropic shock.

σ = f (ω L ) -f (ω R ) ω L -ω R = F |U L | -|U R | |U L -U R | . (7) ω = ω L ω = ω L ω = ω R ξ = σt

The rarefaction case F < 0

We first assume that ω 0 = 0 and we seek for an autosimilar solution which satisfies

f ′ (ω(ζ, t)) = ζ t . ( 8 
) Since f ′′ (ω) < 0, we deduce that f ′ (ω) is a one-to-one function mapping R onto ]F, -F [ and F < λ(ω L ) < λ(ω R ) < -F since ω L > ω R .
From relation (8), we deduce

F 2 ω 2 = ζ t 2 (ω 2 + ω 2 0 ),
and we get an explicit expression of ω in the fan

ω(ζ, t) = - ζ t |ω 0 | F 2 -ζ t 2 , ζ t ∈]λ(ω L ), λ(ω R )[. (9) 
Three cases arise in function of the ω L and ω R signs that we display in figure (5).

( We now consider the situation when ω 0 vanishes. For all parameters ω 0 = 0, function f ′ (ω; ω 0 ) = λ(ω; ω 0 ) is a one-to-one function of ω from R onto ]F, -F [ and the rarefaction takes place between λ(ω L ; ω 0 ) and λ(ω R ; ω 0 ). For ω L and ω R fixed, we take the limit ω 0 → 0 and we have

) If ω L > ω R ≥ 0 then f ′ (ω L ) < f ′ (ω R ) ≤ 0: the fan is contained in the left half-plane P L and the flux on interface δ c is F |U R |. (2) If 0 ≥ ω L > ω R then 0 ≤ f ′ (ω L ) < f ′ (ω R ): the fan is contained in the right half-plane P R and the flux on interface δ c is F |U L |. (3) At last, if ω L > 0 > ω R then f ′ (ω L ) < 0 < f ′ (ω R ), 1 
ω = ω L ω = ω(ξ, t) ω = ω R ξ = λ(ω L )t ξ = λ(ω R )t (a) ω = ω R ω = ω(ξ, t) ω = ω L ξ = λ(ω L )t ξ = λ(ω R )t (b) ω = ω R ω = ω(ξ, t) ω = ω L ξ = λ(ω L )t ξ = λ(ω R )t ω = ω(ξ, t) (c) 
lim ω0→0 λ(ω i , ω 0 ) = -F, if ω i < 0, lim ω0→0 λ(ω i ; ω 0 ) = +F, if ω i > 0 with i = L, R. In addition, relation (9) says lim ω0→0 w(ζ, t) = 0, ∀ζ ∈]F, -F [, t > 0.
Three cases again then arise.

( Remark 3.1. Two other cases arise whether ω L = 0 case (i) or ω R = 0 case (ii). This particular situation is similar to case (c) but the rarefaction cone is reduced to the left half-cone ]F, 0] in case (i) and the right half-cone [0, -F [ in case (ii).

) If ω L > ω R > 0 then lim ω0→0 λ(ω L , ω 0 ) = lim ω0→0 λ(ω R , ω 0 ) = +F < 1 
ω = ω R ω = ω L ξ = Ft (a) ω = ω R ξ = -Ft ω = ω L (b) ω = ω R ω =0 ω = ω L ξ = Ft ξ = -Ft ω =0 (c)

Solution for the level set equation

Based on the solution obtained with the Riemann problem, we build the solution for the level set equation. We distinguish the cases whether F is positive or negative.

4.1. The shock: case F > 0 For t ≥ 0, we define the line δ c (t) parallel to δ c (0) = δ c moving with the velocity

σ = F |U g | -|U d | |U g -U d | .
i.e. δ c (t) = {x ∈ R 2 ; W.x = σt}. We then consider the two half-planes situated on the left and right side of δ c (t) (see figure 7)

P L (t) = {x ∈ R 2 ; x.W < σt}, P R (t) = {x ∈ R 2 ; x.W > σt}.
From section 3.1, the solution U(x, t) of the Riemann problem (2) is given by

U(x, t) = U L , x ∈ P L (t), U(x, t) = U R , x ∈ P R (t).
We then define

φ(x, t) = x.U L -F |U L | t, x ∈ P L (t), φ(x, t) = x.U R -F |U R | t, x ∈ P R (t).
We easily check that φ is a continuous function thanks to the shock velocity definition and ∇φ = U. Function φ is the viscosity solution which satisfies the Cauchy problem (1) with φ 0 = φ m 0 as an initial condition. 

z x y π L π R P L (t) δ c (t) P R (t) δ c (a) P L (t) δ c (t) P R (t) (b)
L < ζ t < λ R with λ L = λ(ω L ) = F ω L |U L | , λ R = λ(ω R ) = F ω R |U R | .
To describe the solution φ of the associated the Cauchy problem (1), we define the following lines and domains

(see figure (8)) δ L (t) = {x ∈ R 2 ; x.W = λ L t}, δ R (t) = {x ∈ R 2 ; x.W = λ R t}, P L (t) = {x ∈ R 2 ; x.W < λ L t}, P R (t) = {x ∈ R 2 ; x.W > λ R t}, P c (t) = {x ∈ R 2 ; λ L t < x.W < λ R t}.
The solution U for the Riemann problem is a continuous function given by

U(x, t) = U L = ω L W + ω 0 V, x ∈ P L (t), U(x, t) = U R = ω R W + ω 0 V, x ∈ P R (t), U(x, t) = ω(ζ, t)W + ω 0 V, ζ = x.W, x ∈ P c (t)
where function ω(ζ, t) is given by relation (9).

On domains P L (t) and P R (t), function φ is then given by

φ = φ L (x, t) = x.U L -F |U L | t, x ∈ P L (t), φ = φ R (x, t) = x.U R -F |U R | t, x ∈ P R (t).
To give the analytical expression of the solution on the band P c (t), we use the change of variables ζ, η and obtain a new function φ c (ζ, η, t) = φ c (x, t) we have to explicit. On one hand, we have ∂ η φ = ω 0 while on the other hand

∂ ζ φ = ω(ζ, t) and ∂ t φ = -F ω 2 (ζ, t) + ω 2 0 with ω(ζ, t) = - ζ|ω 0 | t 2 F 2 -ζ 2 , ζ t ∈]λ L , λ R [. We consider the function γ(ζ, t) = |ω 0 | t 2 F 2 -ζ 2 and we claim that φ c (ζ, η, t) = γ(ζ, t) + ηω 0 is the solution of the problem.
We first easily check that relations ∂ η φ = ω 0 and ∂ ζ φ c = ω(ζ, t) are well-satisfied. We now check that φ c satisfies the level set equation

∂ t φ = -F |∇ ζ,η φ| = -F ω 2 (ζ, t) + ω 2 0 .
Indeed, the time derivative provides

∂ t φ = ∂ t γ(ζ, t) = F 2 t|ω 0 | t 2 F 2 -ζ 2
and, in addition, one has

F ω 2 (ζ, t) + ω 2 0 = F ζ 2 ω 2 0 t 2 F 2 -ζ 2 + ω 2 0 = -F 2 t|ω 0 | t 2 F 2 -ζ 2 .
At last, we provide the φ c expression in function of the x variable:

φ c (x, t) = |ω 0 | t 2 F 2 -(x • W) 2 + (x • V)ω 0 , x ∈ P c (t).
To end the construction, we now prove that function φ is continuous on the whole domain, in particularly on line δ L (t) and δ R (t). Noting that line δ L (t) is characterized in the W, V basis by

ζ = ζ L (t) := F ω L |U L | t and function φ L (ζ, η, t) is given by φ L (ζ, η, t) = ω L ζ + ω 0 ζ -F |U L | t; π L (t) π R (t) P L (t) P R (t) δ R (t) δ L (t) P c (t) (a) 
P L (t)

δ L (t) P C (t) δ R (t) P R (t) (b)
Figure 8: Solution for the half-planes problem: the rarefaction case with ω0 = 0 we then have on the line δ L (t):

φ L (ζ L (t), η, t) -φ c (ζ L (t), η, t) = ζ L (t)ω L + ηω 0 -F |U L | t -(-|ω 0 | t 2 F 2 -ζ 2 L (t) + ηω 0 ), = F (ω L ) 2 |U L | t -F |U L |t + |ω 0 | t 2 F 2 -F t ω L |U L | 2 , = F t ω 2 L |U L | -|U L | + |ω 0 | |U L | |U L | 2 -ω 2 L , = F t ω 2 L |U L | -|U L | + ω 2 0 |U L | = 0.
We deduce that function φ is continuous on line δ L (t) and the result also holds on line δ R (t) 4.3. The contact discontinuity: case F < 0 with ω 0 = 0

The rarefaction degenerates into a contact discontinuity when ω 0 tends to 0 and three situations have to be considered in functions of the ω L and ω R sign.

First, assume that ω R < ω L < 0, we denote by δ c (t) the parallel line to δ c given by δ c (t) = {x ∈ R 2 ; x.W = -F t} and the two half-planes

P L (t) = {x ∈ R; x.W < -F t}, P R (t) = {x ∈ R; x.W > -F t}.
Solution U(x, t) is given by

U(x, t) = U L , x ∈ P L (t), U(x, t) = U R , x ∈ P R (t).
and the viscosity solution φ is the continuous Lipschitz function defined by

φ(x, t) = x.U L -F |U L | t, x ∈ P L (t), φ(x, t) = x.U R -F |U R | t, x ∈ P R (t).
The case where 0 < ω R < ω L can be treated in the same way.

We now consider the situation where ω R < 0 < ω L , with F < 0. We define the lines

δ L (t) = {x ∈ R 2 ; x.W = F t}, δ R (t) = {x ∈ R 2 ; x.W = -F t}
and the domain

P L (t) = {x ∈ R 2 ; x.W < F t}, P R (t) = {x ∈ R 2 ; x.W > -F t}, P c (t) = {x ∈ R 2 ; F t < x.W < -F t}. π L (t) π R (t) P L (t) P R (t) δ R (t) δ L (t) P c (t) (a) P L (t) δ L (t) P C (t) δ R (t) P R (t) (b)
Figure 9: Solution for the half-planes problem, the rarefaction case with ω0 = 0 and ωR < 0 < ωL.

The solution U for the Riemann problem is a piecewise constant function given by

U(x, t) = U L , x ∈ P L (t), U(x, t) = U R , x ∈ P R (t), U(x, t) = 0, x ∈ P c (t)
and the viscosity solution φ is the continuous Lipschitz function defined by

φ = φ L (x, t) = x.U L -F |U L | t, x ∈ P L (t), φ = φ R (x, t) = x.U R -F |U R | t, x ∈ P R (t), φ = 0, x ∈ P c (t).
The function is clearly continuous on the whole domain R 2 by definition of the lines δ L (t) and δ R (t).

Remark 4.1. The contact discontinuity solution comes from the monotony principle of the viscosity solution for the Hamilton-Jacobi problem in one-space dimension, equivalent to the entropy condition applied to the one-dimensional problem (6). The solution for ω 0 = 0 is obtained as the uniform limit on R 2 × [0, T ] of a Lipschitz function sequence (φ ω0 ) where φ ω0 are the viscosity solutions of the level set equation with ω 0 > 0.

Numerical tests

The goal of this section is to compare the analytical solution proposed in section 4 with numerical approximations using the classical schemes on structured grids (see [START_REF] Sethian | Level set methods[END_REF] for a survey). We focus our study on the simple level set equation

       ∂ t φ(x, t) + F |∇φ(x, t)| = 0 in Ω × [0, T ], φ(x, t = 0) = φ 0 (x) in Ω, ∂φ ∂n = 0 on ∂Ω × [0, T ]. (10) 
where

Ω = [a, b] × [a, b] with a < b, T > 0, F ∈ R and φ 0 (x) = φ m 0 (x) = min(U 1 .x, U 2 .x)
such that U 1 , U 2 are two prescribed vectors of R 2 .

Discretization on a Cartesian grid

Let I ∈ N * , we define a uniform mesh of Ω with space step ∆x = ba I and nodes

x i,j = (a + i∆x, b + j∆x), 0 ≤ i, j ≤ I.
Let N ∈ N * , we denote by (t n ) n=0,...,L a subdivision of the time interval [0, T ], with ∆t n = t n+1t n the time step (the subdivision is not uniform) and the maximum time step by ∆t = max n=1,...,N ∆t n .

Let φ n i,j be an approximation of φ(x i,j , t n ) for all i, j = 0, ..., L at time t n , then we compute an approximation at time t n+1 using the scheme (see [START_REF] Sethian | Level set methods[END_REF]):

φ n+1 i,j = φ n i,j -F ∆t n ∆x (max(F, 0)∇ + + min(F, 0)∇ -), i, j = 0, ..., I (11) 
where we define

∇ + = max(φ n i,j -φ n i-1,j , 0) 2 + min(φ n i+1,j -φ n i,j , 0) 2 + max(φ n i,j -φ n i,j-1 , 0) 2 + min(φ n i,j+1 -φ n i,j , 0) 2 1 2 , ∇ -= min(φ n i,j -φ n i-1,j , 0) 2 + max(φ n i+1,j -φ n i,j , 0) 2 + min(φ n i,j -φ n i,j-1 , 0) 2 + max(φ n i,j+1 -φ n i,j , 0) 2 1 2 .
The maximum time step length is controlled by the Courant-Lax-Friedrisch condition (CFL) ∆t

≤ ∆x |F | × cfl
where cfl ∈ [0, 1] is a parameter we use to reduce the time step.

The discrete L 1 -norm and L ∞ -norm at time t n are given by

ε 1 (t n ) = i,j |φ n ij -φ e (x ij , t n )|∆x, ε ∞ (t n ) = max i,j |φ n ij -φ e (x ij , t n )|.
where φ e ij is the analytical solution. All the numerical experiments have been carried out with Ω = [-1, 1] 2 and five grids T k of space step ∆ k x = 2 1-k 10 , k = 1, ..., 5 have been employed to measure the convergence rate.

Let U L and U R be two prescribed vectors of R 2 , we then evaluate vector W with (3) and the half-planes P L , P R . We define the initial condition for the Cauchy problem φ 0 (x) = min(U L .x, U R .x).

Note that by construction we have ∇φ 0 = U L on P L and ∇φ 0 = U R on P R .

The shock case: F > 0

We set F = 1 and consider two situations whether ω 0 is null or not. We first choose

U L = -2 1 , U R = 1 1
then we have W = -1 0 and ω 0 = 1. The analytical solution of the problem (10) is given by

φ(x, y, t) = -2x + y + √ 5t, -x < √ 5- √ 2 3 t, x + y + √ 2t, -x > √ 5- √ 2 3 t.
For the second case, we choose U L = -1 0 , U R = 2 0 then we have W = -1 0 and ω 0 = 0. The analytical solution of the problem (10) is given by

φ(x, y, t) = -x + t, -x < 1- √ 2 3 t, 2x + √ 2t, -x > 1- √ 2 3 t.
We display in figure (10) a comparison between the analytical solution and the numerical solution at time t = 0.5 computing with mesh T 3 both for the case ω 0 = 0 and the case ω 0 = 0. The curves correspond to the planar cut of φ in the W direction. Convergence rates in L 1 -norm and L ∞ -norm are given in table (1). We observe that the numerical approximation suit well with the analytical solution and we obtain an effective second-order convergence between the approximation and the exact solution. -7.66 ×10 -2 -0.1 2.45 ×10 -2 1.79 3.71 ×10 -2 2.06 0.05 1.28 ×10 -2 1.91 1.81 ×10 -2 2.04 0.025 6.55 ×10 -3 1.95 8.95 ×10 -3 2.02 0.0125 3.30 ×10 -3 1.98 4.44 ×10 -3 2.01 (b) ω 0 = 0 ∆x L 1 error order L ∞ error order 0.2 3.06 ×10 -2 -5.18 ×10 -2 -0.1 1.70 ×10 -2 1.80 2.60 ×10 -2 1.99 0.05 8.97 ×10 -3 1.89 1.28 ×10 -2 2.03 0.025 4.58 ×10 -3 1.95 6.32 ×10 -3 2.02 0.0125 2.31 ×10 -3 1.98 3.14 ×10 -3 2.01 Table 1: Convergence rate for the shock cases: ω 0 = 0 (top) and ω 0 = 0 (bottom). 

(x, y, t) =      x + t, -x < t, x + y + √ 2t, -x > t √ 2 , √ t 2 -x 2 + y, t < -x < t √ 2 .
We show in figure (11) a comparison between the analytical solution and the numerical solution at time t = 0.5 computing with mesh T 3 where the curves correspond to the planar cut of φ in the W direction. Convergence rates in L 1 -norm and L ∞ -norm are given in table (2). Again, we observe a nice correspondence between the numerical approximation and the analytical solution confirmed by the effective second-order convergence between the approximation and the exact solution.

-1 -0. (a) ω 0 = 0 ∆x L 1 error order L ∞ error order 0.2 4.18 ×10 -2 -9.68 ×10 -2 -0.1 2.36 ×10 -2 1.77 5.63 ×10 -2 1.71 0.05 1.25 ×10 -2 1.88 3.29 ×10 -2 1.71 0.025 6.66 ×10 -3 1.87 1.93 ×10 -2 1.70 0.0125 3.86 ×10 -3 1.72 1.13 ×10 -2 1.70 Table 2: Convergence rate for the rarefaction (ω 0 = 0 case). 5.4. The contact discontinuity case: F < 0 and ω 0 = 0

We set F = -1 and choose U L and U R such as ω 0 = 0. Two cases arise whether ω

L ω R > 0 or ω L ω R < 0. We first choose U L = 1 0 , U R = 2 0 then we have W = -1 0 and ω L = -1, ω R = -2, ω 0 = 0. The analytical solution of problem (10) is given by φ(x, y, t) = x + t, -x < t, 2x + 2t, -x > t.
for the second case, we choose

U L = 1 0 , U R = -1 0 then we have W = 1 0 and ω L = 2, ω R = 1, ω 0 = 0.
The analytical solution of problem (10) is given by

φ(x, y, t) =      x + t, 2 √ 2 x < -t, -x + t, 2 √ 2 x > t, 0, -t < 2 √ 2 x < t.
We show in figure (12) a comparison between the analytical solution and the numerical solution at time t = 0.5 computing with mesh T 3 both for the case ω L ω R > 0 and the case ω L ω R < 0. The curves correspond to the planar cut of φ in the W direction. Convergence rates in L 1 -norm and L ∞ -norm are given in table (3). We obtain a very good approximation of the analytical solution confirmed by the effective second-order convergences between the approximation and the exact solution. L 1 error order L ∞ error order 0.2 2.80 ×10 -2 -5.18 ×10 -2 -0.1 1.95 ×10 -2 1.43 4.39 ×10 -2 1.17 0.05 1.18 ×10 -2 1.62 2.56 ×10 -2 1.25 0.025 6.54 ×10 -3 1.74 1.26 ×10 -2 1.17 0.0125 3.39 ×10 -3 1.92 6.29 ×10 -3 2.00

(b) ω L ω R < 0 ∆x
L 1 error order L ∞ error order 0.2 4.23 ×10 -2 -1.11 ×10 -1 -0.1 2.67 ×10 -2 1.68 5.50 ×10 -2 2.01 0.05 1.45 ×10 -2 1.71 3.26 ×10 -2 1.68 0.025 7.63 ×10 -3 1.82 2.30 ×10 -2 1.41 0.0125 3.95 ×10 -3 1.93 1.61 ×10 -2 1.42 Table 3: Convergence rate for the contact discontinuity: case ω L ω R > 0 (top) and case ω L ω R < 0 (bottom).

conclusion

We have determined the analytical solution of Cauchy problem for the level set equation when the initial data is composed of two half-planes. Such a problem corresponds to the Riemann problem in the hyperbolic system context and may be helpful to test numerical schemes for level set equation. We show that we have three configurations corresponding to the entropic shock, the rarefaction and the contact discontinuity which is the limit case of the rarefaction with ω 0 = 0. Numerical simulations have been performed using a classical method on structured grids to compare with the analytical solution in the three cases and we obtain an effective secondorder convergence. Extension for the general Hamilton-Jacobi problem can be considered and a "Riemann solver" for level set equation based on the two half-planes problem may also be investigated.

Figure 1 :

 1 Figure 1: The trivial case when φ 0 = φ 1 = φ 2 . The solution representation in R 3 corresponds to the initial plane translated following the Oz axis with velocity F |U L | = F |∇φ 0 | (we take F = 1 in the figure).

Figure 2 :

 2 Figure 2: Orientation and definition of PL and PR.

Figure 3 :

 3 Figure 3: Representation of function φ m 0 in R 3 . The two half-planes intersection provides the line ∆c which the orthogonal projection on (x1, x2) corresponds to line δc.

Figure 4 :

 4 Figure 4: Shock wave, case ω0 = 0

  the fan crosses the line δ c and the flux on the interface line δ c is F |ω 0 |.

Figure 5 :

 5 Figure 5: Rarefaction situations with ω0 = 0. Three cases arise in function of ωL and ωL signs: ωR > 0 (a), 0 > ωL (b), ωL > 0 > ωR (c).

  0 and the rarefaction is reduced to a contact discontinuity moving with the velocity σ = +F (see figure (6-a)).(2) If 0 > ω L < ω R then lim ω0→0 λ(ω L , ω 0 ) = lim ω0→0 λ(ω R , ω 0 ) = -F > 0and the rarefaction is reduced to a contact discontinuity moving with the velocity σ = -F (see figure (6-b)). (3) At last, if ω L > 0 > ω R then lim ω0→0 λ(ω L , ω 0 ) = +F, lim ω0→0 λ(ω R , ω 0 ) = -F and the rarefaction is reduced to the null solution in the cone F < ζ t < -F (see figure (6-c)).

Figure 6 :

 6 Figure 6: The rarefaction degenerates into a contact discontinuity when ω0 = 0. Three situations arise in function of ωL and ωR signs: ωL < 0 (a), 0 < ωR (b), ωR < 0 < ωL (c).

Figure 7 :

 7 Figure 7: Solution for the half-planes problem: the shock case

Figure 10 :

 10 Figure 10: φ curve in the W direction at time t = 0.5: the shock case with ω 0 = 0 (left) and ω 0 = 0 (right).

(a) ω 0 = 0 ∆x L 1

 01 error order L ∞ error order 0.2 4.40 ×10 -2

5. 3 .

 3 The rarefaction case: F < 0 and ω 0 = 0We set F = -1 and we choose U L ω 0 = -1. The analytical solution of problem (10) is given by φ

Figure 11 :

 11 Figure 11: φ curve in the W direction at time t = 0.5: the rarefaction case with ω 0 = 0.

  Figure12: φ curve in the W direction at time t = 0.5: the contact discontinuity case with ω L ω R > 0 (left) and ω L ω R < 0 (right).

  (a) ω L ω R > 0 ∆x