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Abstract A new formalism and tools are proposed to characterize high-order

reconstructions in the finite volume method context. We introduce the notion of

admissible reconstruction and investigate the maximum principle and positivity

preserving properties for scalar hyperbolic problem using the new formalism. We

show that the traditional limiting strategies cast in out formalism and provide

new proves of the L∞ stability.
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1 Introduction

L∞ stability is a fundamental property for scalar autonomous hyperbolic prob-

lem since the entropic solution has to respect the maximum principle [7,23] (MP

property). Therefore, it seems desirable to design numerical schemes which also

achieve such a statement and the maximum principle property has to be satisfied

at the numerical level. The fundamental concept is the flux monotonicity prop-

erty which provides the L∞ stability. It is well established [16] that under an

appropriated CFL condition depending on the numerical flux and the mesh char-

acteristics, an explicit finite volume scheme (Euler forward time discretization for

example) provides an approximation which respects the maximum principle. The

main drawback of monotone numerical schemes is that we can only obtain first-

order schemes characterized by a large amount of diffusion in the shock vicinity

leading to an important (sometime severely) solution discrepancy. Higher-order
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reconstructions based on a local linear representation like the MUSCL method

[4,13] or polynomial reconstruction like ENO or WENO technique (see the re-

view of Shu [20]) are very popular and employed in a wide panel of engineering

problems. The major drawback is that we generally loose the maximum princi-

ple unless some restrictions (limiting procedures for instance) are employed to

recover the MP property.

Important efforts have been realized during the four last decades upon the sub-

ject. Since the seventies, second-order reconstructions have been introduced in

the 1D uniform mesh context and extensions have been developed in the eight-

ies for 2D or 3D structured meshes. At last, in the early nineties adaptations

to unstructured meshes have be realized. All the methods are mainly based on

a spatial polynomial reconstruction coupling by a limiting procedure to enforce

the maximum principle (MUSCL,ENO, WAF). A high-order TVD time scheme

(Runge-Kuta method for instance) is then required to preserve the MP prop-

erty [21]. More recent methods like ADER [8,25] also use a time reconstruction

strategy to provide a relevant high-order approximation.

Initiated with the series of paper of Van Leer [26], the limiting procedure for

one-dimensional problems was based on the Total Variation Diminishing property

leading to the second-order TVD schemes introduced by Harten [11,12] (see also

Sweby [24] and Boris and Book [5]). Unfortunately, Goodman and LeVeque [9]

show that the TVD criterion is not adequate for higher dimension since a scheme

which preserves the BV norm is reduced to a first-order one. A new concept

for multi-dimensional hyperbolic scalar problem was then introduced by several

authors: the positive coefficient schemes –or shortly positive schemes, also men-

tioned as monotone scheme in the Spekreijse paper [22]. The concept was firstly

tackled by Jameson and Lax in [15] for one-dimensional uniform meshes but it

is Spekreijse [22] who has really developed the idea of positive coefficient scheme

for structured two-dimensional meshes. Extension for unstructured meshes (cell-

centered version) was then proposed by Jameson [14] introducing the notion

of Local Extrema Diminishing property. Basically, the updated value in cell C

should be a convex combination of the former values situated in the vicinity of

the cell. Such a property reveal to be easy to handle and investigations have

been tackled to prove that specific reconstruction like the MUSCL one can be

rewritten as a positive coefficient scheme (see for example the course of Barth [1]

or Barth and Ohlberger [2]).

In the present paper, we follow a similar way since we prove the maximum

principle property using the positive coefficient scheme approach. Nevertheless,

we shall not deal with specific reconstruction but propose a generic framework

introduced Clain and Clauzon [6]. Roughly speaking, we highlight two fundamen-

tal properties that a reconstruction operator should deserve to preserve the MP

property without considering the manner the reconstruction is achieved (linear,

quadratic representation). We show, as an example, that the classical MUSCL re-

constructions cast in our general framework where we recover the stability results

of Barth [1] and Park, Yoon, Kim [18]. An other point we shall deserve in the

paper concerns the positivity preserving property for a class of hyperbolic system
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such that the Euler isentropic problem. A surprising result proved by Perthame

and Shu [19] or Linde and Roe [17] shows that a first-order positivity preserving

numerical scheme turns to be automatically a second-order positivity preserving

scheme as long as the reconstruction is obtained via a linear reconstruction –in

fact the CFL condition has to be altered and time steps should sometime be very

small in comparison with the space step. As a conclusion, the limiting procedure

is not necessary to preserve the positivity with linear reconstruction. For more

general reconstruction, up to the author knowledge, there is no positivity preserv-

ing results. We show here that the two fundamental properties upon which the

MP property lies, lead to the positivity preserving property for the conservative

variables.

The paper is organized as follow. Section 2 is dedicated to high-order recon-

struction where the two fundamental properties we shall employ in the sequel

are defined. We then prove general maximum principal theorems independently

of the manner the reconstruction is achieved. In the third section, we apply our

general theorems to some popular reconstruction where we recover the classical

stability results of Barth. At last, we consider the positivity preserving question

in section 4 where we highlight the link with the MP property.

2 A general L
∞-stability result

We introduce in this section the new formalism we propose to analyse high-order

reconstruction. The fundamental point is the notion of admissible reconstruction

where we highlight the two properties that a reconstruction have to respect. We

then prove that the L∞-stability property stems from the two properties.

2.1 Mesh

We denote by T a conform mesh of R
2 constituted of a collection of close non

overlapping polygonal cells Ki, i ∈ Eel covering the whole space R
2 and we denote

by Pm, m ∈ End the nodes (see figure 1). For any Ki ∈ T , the set ν(i) ⊂ Eel

contains the index j of elements Kj ∈ T which share a common side represented

by Sij = Ki ∩ Kj . In the same way, the set ν(i) ⊂ Eel contains all the index j

of elements Kj ∈ T such that Ki ∩ Kj 6= ∅. In other word,
S

j∈ν(i) Kj is the

corona formed by all the elements in contact with Ki. We also denote by µ(i)

any intermediate index set such that

ν(i) ⊂ µ(i) ⊂ ν(i) and Nµ = max
i∈Eel

#µ(i).

At last, the subset λ(i) ⊂ End represents the index set of the Ki the nodes.

The quantities |Ki|, |Sij |, |PB| refer to the surface of Ki, the length of Sij and

segment [PB] for any points B and P . Moreover, perim(Ki) =
P

j∈ν(i) |Sij | is

the perimeter of element Ki.
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Fig. 1 Mesh notations. Index set ν(i) corresponds to the blue elements while ν(i)
corresponds to the union of blue and green elements. Index set λ(i) represents the red
nodes.

In general, meshes can be very different from one to another hence we shall

consider classes of meshes M(α) characterized by a structural parameter α de-

fined in the following (see definition 4 for example) whereas h is the mesh size

parameter given by

h = min
Ki∈T

j∈ν(i)

|Ki|

|Sij |
. (1)

The key point to distinguish the two parameters is that estimations involve co-

efficients which only depend on α and not on h. Moreover, we can easily exhibit

sequences of meshes Thk
∈ M(α) such that hk → 0 with the same structural

parameter.

Remark 1 Non conform meshes could be also considered but more complex nota-

tions should be employed to generalize the stability results. Therefore, we prefer

to restrict the study to the conform mesh case for the sake of simplicity. ⊓⊔

2.2 Generic first-order monotone scheme

We consider a general scalar hyperbolic problem cast in the conservative form

∂tu + ∂x1f1(u) + ∂x2f2(u) = 0, (2)

where f1 and f2 are C1 real value functions defined on R which can be reduced

to the admissible domain of solution u if necessary. Let u0 ∈ L1(R2) ∩ L∞(R2),
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u ∈ L∞(R2×]0, +∞[) ∩ C0([0,∞[, L1(R2)) is a solution if u satisfies equation

(2) in a weak sense with the initial condition u(., t = 0) = u0 as in [7].

We now detail the numerical approximation. For a given time tn and a cell

Ki ∈ T , we denote by

u
n
i ≈

1

|Ki|

Z

Ki

u(., tn) dx

an approximation of the mean value of u on cell Ki ∈ T at time tn while the

initial condition is given by

u
0
i =

1

|Ki|

Z

Ki

u
0

dx. (3)

The generic first-order explicit finite volume scheme provides an approximation

at time tn+1 = tn + ∆t by

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|
g(un

i , u
n
j , nij). (4)

where g(ui, uj , nij) is the numerical flux across Sij following the outward normal

vector direction nij . We assume that the numerical flux satisfies the following

properties:

(a) regularity: function g is continuous, differentiable with respect to the first and

the second argument and ∂1g, ∂2g are continuous functions;

(b) consistency: the numerical flux is consistent with the physical flux (f1, f2):

g(ui, ui, nij) = f1(ui)nij,1 + f2(ui)nij,2; (5)

(c) monotony: the numerical flux is monotone:

∂1g(ui, uj , nij) ≥ 0, ∂2g(ui, uj , nij) ≤ 0. (6)

Note that the consistency condition implies the conservation property

X

j∈ν(i)

|Sij |

|Ki|
g(ui, ui, nij) = 0. (7)

Remark 2 The flux conservation across the interface is usually satisfied by the

numerical flux:

g(ui, uj , nij) = −g(uj , ui, nji). (8)

which implies equivalence

∂1g(ui, uj , nij)) ≥ 0 ⇔ ∂2g(ui, uj , nij) ≤ 0.

Nevertheless, the flux conservation property is not necessary to provide the sta-

bility of the scheme and, as we shall see, only properties (5), (6) and (7) are

required. ⊓⊔
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Remark 3 We can restrict the regularity assumption on g requiring that ∂1g and

∂2g are only bounded functions. ⊓⊔

Remark 4 Since the domain is the whole plane R
2, we do not introduce any

boundary condition in order to simplify our analysis. Nevertheless, one can con-

sider bounded close domain Ω with reflexion condition for example using the

ghost cells technique as in [6] where a virtual mesh is employed. ⊓⊔

2.3 Reconstructions

Let u ∈ L∞(R2), we denote by ui an approximation of the mean value of u on

element Ki ∈ T and uh corresponds to the constant piecewise representation

given by

uh =
X

i∈Eel

ui1IKi
,

where 1IKi
= 1 on Ki and zero-value elsewhere.

The reconstruction operator provides new real values on sides Sij using the values

ui on cells Ki. Formally, for a given mesh T we define the one-point reconstruction

operator R(T ) by

(ui)Ki∈T
R(T )
→ (uij)Ki∈T , j∈ν(i), (9)

where uij and uji corresponds to approximations of u on both sides of Sij since

the reconstruction is discontinuous across the interface.

Remark 5 We can also considered a R-points reconstruction

(ui)Ki∈T
R(T )
→ (uij,r)Ki∈T , j∈ν(i), r=1,...,R

where the values uij,r and uji,r correspond to approximations of u at several

collocation points Xij,k on the side Sij (the Gauss points for instance). For the

sake of simplicity, we only present the stability results for the one-point recon-

struction case but extension will be mentioned for the R-points reconstruction.

⊓⊔

Remark 6 Note that we do not require the reconstruction to satisfy some consis-

tent property with the gradient i.e. to be exact with linear functions for instance.

Of course, such a property is desirable if one would like to construct a second-

order scheme but it is not necessary in the stability context. ⊓⊔

We now define the new finite volume scheme with the one-point reconstruction

setting

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|
g(un

ij , u
n
ji, nij). (10)

For any constant piecewise function un
h on T , we define the Euler forward scheme

operator

u
n
h → u

n+1
h = H(un

h) = H(un
h; T ,R)

where un+1
i is given by relation (10) on each element Ki ∈ T .
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Remark 7 Extension to R-points reconstruction can also be defined with

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|

R
X

r=1

ζrg(un
ij,r, u

n
ji,r, nij). (11)

where ζr are non-negative convex weight coefficients for the numerical integration

of f(u).nij on side Sij with
R

X

r=1

ζr = 1. Consequently, relation (11) can be written

as a convex combination of R relations of type (10) where we substitute uij and

uji with uij,r and uji,r respectively. ⊓⊔

2.4 A maximum principle theorem

L∞-stability property is based on the positive coefficient scheme concept. We

want to write un+1
i as a mean of the former values at time tn in the form

u
n+1
i = ui +

X

j∈µ(i)

αij(uj − ui),

with αij ≥ 0 and
X

j∈µ(i)

αij ≤ 1 where ν(i) ⊂ µ(i) ⊂ ν(i). To this end, we have

to impose some specific conditions on the reconstruction leading to the notion of

admissible reconstruction operator.

Definition 1 (µ-local descrete extrema) Let Ki ∈ T , and µ(i) an index

set such that ν(i) ⊂ µ(i) ⊂ ν(i). We define the µ-local discrete minimum and

maximum on the stencil {i} ∪ µ(i) by

m
n
i,µ = min

j∈µ(i)
(un

i , u
n
j ), M

n
i,µ = max

j∈µ(i)
(un

i , u
n
j ),

and we associate two corresponding indexes km, kM ∈ {i} ∪ µ(i) such that

ukm
= mi,µ, ukM

= Mi,µ.⊓⊔

Definition 2 (µ-admissible reconstruction operator) Let T ∈ M(α) with

α > 0. The reconstruction operator R = R(T ) is µ-admissible with respect to

the structural parameter α if the two following properties are satisfied.

a) There exists Cθ = Cθ(α) ≥ 0 and coefficients θijk, i ∈ Eel, j ∈ ν(i),

k ∈ µ(i) with

0 ≤ θijk ≤ Cθ,

such that

uij − uj =
X

k∈µ(i)

θijk(uk − uj). (12)
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b) There exists Cω = Cω(α) ≥ 0 and coefficients ωijk, i ∈ Eel, j ∈ ν(i),

k ∈ µ(i) with

0 ≤ ωijk ≤ Cω,

such that

uij − ui = −
X

k∈µ(i)

ωijk(uk − ui). ⊓⊔ (13)

The following more restrictive definition is also considered.

Definition 3 (convex µ-admissible reconstruction operator) The recon-

struction operator R = R(T ) is said convex if definition 2 is satisfied with
X

k∈µ(i)

θijk = 1. (14)

Remark 8 Note that relation (14) implies

uij =
X

k∈µ(i)

θijkuk. (15)

and Cθ ≤ 1. ⊓⊔

Remark 9 We precise that R is a µ-admissible reconstruction operator since we

can choose coefficients θijk and ωijk with k ∈ µ(i), i.e θijk = ωijk = 0 if

k ∈ ν(i) \ µ(i). ⊓⊔

Remark 10 We do not have the uniqueness of coefficients θijk and ωijk. Relations

(12) and (13) can be obtained by different ways. For example, we can write any

uk, k ∈ {i} ∪ µ(i) has a convex combination of ukm
and ukM

(see definition 1).

It results that formulae (12) and (13) can be written under the form

uij − uj = θijkm
(ukm

− uj) + θijkM
(ukM

− uj),

uij − ui = −ωijkm
(ukm

− uj) − ωijkM
(ukM

− uj). ⊓⊔

We now establish the L∞-stability theorems based on the µ-admissible re-

construction. To this end, let T ∈ M(α), Ki ∈ T , then for any m ≤ M we

define

Cg = max
α,β∈[m,M]

|n|=1

{∂1g(α, β, n),−∂2g(α, β, n)}. (16)

The following lemma holds.

Lemma 1 (µ-local discrete maximum principle) Let R be a µ-admissible

reconstruction with respect to the structural parameter α. If un
k ∈ [m, M ], k ∈

{i} ∪ µ(i), then un+1
i defined by relation (10) also belongs to [m, M ] under the

CFL condition

∆t < Cfl h, with Cfl =
1

#ν(i)#µ(i)Cg(Cθ + Cω)
, (17)

where constant Cg is given by relation (16) whereas constants Cθ, Cω only depend

on the structural parameter α.
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Proof The finite volume scheme (10) with the one-point reconstruction writes:

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|
F(un

ij , u
n
ji, nij)

Using the conservative property, we have

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|

ˆ

F(un
ij , u

n
ji, nij) −F(un

i , u
n
i , nij)

˜

,

= u
n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|

ˆ

∂1F(eu
n
ij , bu

n
ij , nij)(u

n
ij − u

n
i ) + ∂2F(eu

n
ij , bu

n
ij , nij)(u

n
ji − u

n
i )

˜

,

with eun
ij = λiju

n
ij + (1− λij)u

n
i and bun

ij = λiju
n
ji + (1− λij)u

n
i where λij ∈]0, 1[.

From relations (12) and (13) we deduce

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|

»

− Aij

X

k∈µ(i)

ωijk(un
k − u

n
i ) + Bij

X

k∈µ(i)

θjik(un
k − u

n
i )

–

,

where we have defined

Aij = ∂1F(eu
n
ij , bu

n
ij , nij), Bij = ∂2F(eu

n
ij , bu

n
ij , nij).

After some algebraic manipulations, we obtain

u
n+1
i = u

n
i − ∆t

X

k∈µ(i)

»

X

j∈ν(i)

−Aij
|Sij |

|Ki|
ωijk + Bij

|Sij |

|Ki|
θjik

–

(un
k − u

n
i ).

Setting

Θik =
X

j∈ν(i)

Aij
|Sij |

|Ki|
ωijk − Bij

|Sij |

|Ki|
θjik,

thanks to the monotonicity of the numerical flux, we have 0 ≤ Θik ≤
Cm

h
with

Cm = #ν(i)Cg(Cθ + Cω).

We rewrite the relation

u
n+1
i = (1 −

X

k∈µ(i)

∆tΘik)un
i +

X

k∈µ(i)

∆tΘiku
n
k

and we get a convex combination with positive coefficient if we satisfy the CFL

condition
∆t

h
#µ(i)#ν(i)Cg(Cθ + Cω) ≤ 1.

Hence un+1
i ∈ [m, M ] ⊓⊔
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Remark 11 We have the µ-local discrete maximum principle applying lemma 1

with m = mi,µ and M = Mi,µ. ⊓⊔

Remark 12 A sufficient condition to provide the L∞ stability is that the Θi,k

coefficients are non negative and uniformly bounded while the admissible recon-

struction operator condition is more restrictive. Nevertheless, we shall see in the

sequel that such a condition cover a very large class of limiters and reconstruc-

tions. ⊓⊔

We now state the main theorems of the section where we focus on two particular

cases: µ(i) = ν(i) and µ(i) = ν(i).

Theorem 1 (ν-global discrete maximum principle) Let R be a ν-admissible

reconstruction with respect to the structural parameter α. We consider the second-

order finite volume scheme (10) with the initial condition (3) and set m =

min{u0(x), x ∈ R
2}, M = max{u0(x), x ∈ R

2}.

If ∆t satisfies the CFL condition

∆t < Cfl h, with Cfl =
1

NνNνCg(Cθ + Cω)
, (18)

then un
i ∈ [m, M ] for all Ki ∈ T and tn ≥ 0. ⊓⊔

Proof We make the proof by induction. The property holds for t = t0 since the

mean values are always between the minimum and the maximum of u0. Assume

now that the property holds at time tn, lemma 1 says that un+1
i ∈ [m, M ]

for any element Ki ∈ T if ∆t satisfies the CFL condition (17). By definition

Nν = maxi(#ν(i)) and Nν = maxi(#ν(i)) hence Cfl < Cfl . Consequently,

the time step controlled by relation (18) is also controlled by relation (17) thus

un+1
i ∈ [m, M ] for any element Ki ∈ T . ⊓⊔

In the same way, we have the following theorem.

Theorem 2 (ν-global discrete maximum principle) Let R be a ν-admissible

reconstruction with respect to the structural parameter α. We consider the second-

order finite volume scheme (10) with the initial condition (3) and set m =

min{u0(x), x ∈ R
2}, M = max{u0(x), x ∈ R

2}.

If ∆t satisfies the CFL condition

∆t < Cfl h, with Cfl =
1

NνNνCg(Cθ + Cω)
, (19)

then un
i ∈ [m, M ] for all Ki ∈ T and tn ≥ 0. ⊓⊔

Remark 13 Higher-order time discretization schemes based on convex combina-

tions of the explicit Euler time discretization also satisfy the maximum principle

under an appropriate CFL condition. For example, the third-order TVD Runge-

Kutta scheme writes

u
n,1
h

= H(un
h), u

n,2
h

=
3

4
u

n
h +

1

4
H(un,1

h
), u

n+1
h =

1

3
u

n
h +

2

3
H(un,2

h
).
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Each step satisfies the maximum principle hence the global scheme satisfy the

maximum principle since we employ convex combinations. ⊓⊔

Remark 14 The CFL constant are too restrictive with respect to the practical nu-

merical experiences. Indeed, we have over-estimated the number of non-vanishing

coefficients θijk and ωijk. As suggested in remark 10, the number of non van-

ishing coefficient can be reduced to 2 with respect to the local maximum and

the minimum value on the stencil. Consequently, a less restrictive CFL constant

would be

∆t < Cfl h, with Cfl =
1

2NνCg(Cθ + Cω)
. ⊓⊔ (20)

3 Application to classical MUSCL methods

The goal of the section is to cast the classical limiting methods into the general

form proposed in the previous section. We consider the most useful limiting recon-

structions employed in the literature and determine their associated coefficient

θijk and ωijk in order to apply the L∞-stability theorem. One of the first re-

construction operator on unstructured meshes has been proposed by Barth and

Jespersen [3] based on the ν stencil. The original method has been developed

with triangle but we here present the stability result for more general elements.

A recent extension have been developed by Park, Yoon and Kim [18] where, this

time, the ν stencil has to be used to provide the L∞-stability. At this stage, we

outline an important remark. We have to distinguish two kinds of points: the

control points where the limiting procedure is applied and the collocation

points where the reconstructed values are computed: the goal is to prove the

L∞-stability at the collocation points when using the limiting procedure on the

controls points. Subsection 3.1 is dedicated to the L∞-stability when one em-

ployes the nodes as control points while subsection 3.2 deals with the general

case when control points generate a convex hull around the cell.

In the remainder part of the section, we shall only consider linear conservative

reconstructions on elements Ki of the form

bui(X) = ui + ai.BiX

where Bi is the centroid of Ki and ai ∈ R
2 is the slope of the reconstruction,

usually an approximation of ∇u(Bi) in cell Ki. Other kinds of reconstruction can

also be considered like the multislope MUSCL method [6].

3.1 Limiting process with nodes as control points

Let T be a mesh of R
2, for any elements Ki ∈ T , we denote by Pm, m ∈ λ(i)

the nodes of element Ki (see figure 1). Let Bi be the centroid of element Ki
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characterized by the barycentric coordinates in function of the nodes

Bi =
X

m∈λ(i)

ρimPm

with
X

m∈λ(i)

ρim = 1. Note that we do not have a priori a unique set of barycentric

coordinates for each Bi. For example, we can evaluate the barycentric coordinates

using only three nodes and set the other coefficients to zero.

Definition 4 (structural coefficient with the nodes) Let α > 0, we say

that T belongs to M(α), if and only if, for any Ki ∈ T , there exists a set of

barycentric coordinates with respect to the nodes such that

min
Ki∈T

m∈λ(i)

ρim ≥ α. ⊓⊔ (21)

Remark 15 Since ρim ≥ 0 and
X

m∈λ(i)

ρim = 1, we must have α ≤
1

Nλ
with

Nλ = max
i

#λ(i).

For example we can choose ρim =
1

#λ(i)
and α =

1

Nλ
. ⊓⊔

Remark 16 Condition (21) may be relaxed in practice. Indeed, we can also foresee

a limiting process where we consider a subset of nodes. In that case, the index

set λ(i) is reduced to the index set where we intend to evaluate the limiting

condition. For example, if the element Ki is not convex, we can use the nodes of

the convex hull which is a subset of the nodes (see subsection 3.2).

In the other hand, due to the linearity of the reconstruction the minimum and

the maximum of bui(X) are reached on two distinct nodes (said Pm1 and Pm2).

The index set can be reduced to the two indexes m1 and m2 and a third index

m3 ∈ λ(i) such that Pm1 , Pm2 and Pm3 defines a triangle which contains Bi but

such a choice depend on the local linear reconstruction, hence of uh. ⊓⊔

Limiting procedure is performed at the node points but we have to decide what

kind of maximum principle we want to respect. Indeed, the choice of the elements

(index subset µ(i) in definition 1) where we seek the minimum and the maximum

has to be fixed. In this paper, we propose a study for two extremes cases µ(i) =u

ndernu(i) and µ(i) = ν(i).

Lemma 2 (limiter with the ν stencil) Let T ∈ M(α), for any Ki ∈ T , we

assume that ai satisfies the property: for all nodes Pm, m ∈ λ(i) we have (see

definition 1)

mi,ν = ukm
≤ ui + ai.BiPm ≤ ukM

= Mi,ν . (22)
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Then there exist coefficients θik(Pm), ωik(Pm), k ∈ ν(i) and constant value Cω =

Cω(α) ≥ 0 which satisfy the following properties

bui(Pm) =
X

k∈ν(i)

θik(Pm)uk,
X

k∈ν(i)

θik(Pm) = 1, (23)

and

bui(Pm) − ui = −
X

k∈ν(i)

ωik(Pm)(uk − ui), 0 ≤ ωik(Pm) ≤ Cω, (24)

with Cω(α) = 1
α . ⊓⊔

Proof We give the construction for each class of coefficients.

Coefficients θik. Condition (22) yields that

ukm
< bui(Pm) < ukM

hence there exists χ = χ(Pm) ∈ [0, 1] such that

bui(Pm) = χukm
+ (1 − χ)ukM

.

We then write bui(Pm) as a convex combination with θikm
(Pm) = χ(Pm) and

θikM
(Pm) = 1 − χ(Pm) while the other coefficients are set to zero.

coefficient ωik. Using the barycentric coordinates, we write

0 =
X

m′∈λ(i)

ρim′BiPm′ .

We distinguish the particular node Pm and we obtain

BiPm = −
X

m′∈λ(i)

m′ 6=m

ρim′

ρim
BiPm′ ,

where ρim ≥ α > 0. Since we consider a linear reconstruction at point Pm, we

have

bui(Pm) − ui = ai.BiPm = −
X

m′∈λ(i)

m′ 6=m

ρim′

ρim
ai.BiPm′ .

Condition (22) yields

ukm
− ui < ai.BiPm′ < ukM

− ui, ∀m
′ ∈ λ(i),

then

−
X

m′∈λ(i)

m′ 6=m

ρim′

ρim
(ukM

− ui) < bui(Pm) − ui < −
X

m′∈λ(i)

m′ 6=m

ρim′

ρim
(ukm

− ui),
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hence

−
1 − ρim

ρim
(ukM

− ui) < bui(Pm) − ui < −
1 − ρim

ρim
(ukm

− ui).

There exists χ(Pm) ∈ [0, 1] such that

bui(Pm) − ui = −eχ

„

1 − ρim

ρim

«

(ukm
− ui) − (1 − eχ)

„

1 − ρim

ρim

«

(ukM
− ui).

Relation (24) holds if we choose

ωikm
(Pm) = eχ(Pm)

„

1 − ρim

ρim

«

, ωikM
(Pm) = (1 − eχ(Pm))

„

1 − ρim

ρim

«

,

and the other coefficients are set to zero. Since 1 ≥ ρim ≥ α, we have the estimate

Cω(α) =
1

α
. ⊓⊔

Remark 17 Note that ai do not have to be consistent with the gradient. We only

use the stability condition and the linearity of the reconstruction. ⊓⊔

As we outline in the beginning of the section, control points and collocation

points where reconstruction is performed may be different. For example, one can

control the limiter with the nodes and shall compute the reconstructed values on

the side midpoint Mij ∈ Sij . The following proposition says how we can choose

the collocation points keep preserving the L∞-stability.

Proposition 1 For any X ∈ Ki, there exist coefficients θik(X), ωik(X), k ∈

ν(i) and constant value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(X) =
X

k∈ν(i)

θik(X)uk,
X

k∈ν(i)

θik(X) = 1, (25)

and

bui(X) − ui = −
X

k∈ν(i)

ωik(X)(uk − ui), 0 ≤ ωik(X) ≤ Cω, (26)

with Cω(α) = 1
α . ⊓⊔

Proof We write X ∈ Ki as a convex combination of the nodes with non-negative

coefficients ζm(X), m ∈ λ(i)

X =
X

m∈λ(i)

ζm(X)Pm,
X

m∈λ(i)

ζm(X) = 1.

Thanks to the linearity of the reconstruction, we have

bui(X) =
X

m∈λ(i)

ζm(X)bui(Pm).
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Consequently, relations (25) and (26) are satisfied with

θik(X) =
X

m∈λ(i)

ζm(X)θik(Pm), ωik(X) =
X

m∈λ(i)

ζm(X)ωik(Pm).

Moreover, we have
X

k∈ν(i)

θik(X) =
X

k∈ν(i)

X

m∈λ(i)

ζm(X)θik(Pm),

=
X

m∈λ(i)

ζm(X)
X

k∈ν(i)

θik(Pm),

=
X

m∈λ(i)

ζm(X) = 1.

In the other hand we have

ωik(X) =
X

m∈λ(i)

ζm(X)ωik(Pm) ≤
X

m∈λ(i)

ζm(X)Cω(α) ≤ Cω(α),

hence estimates Cω(α) =
1

α
still holds. ⊓⊔

We now treat the case where we use the ν index set to control the reconstruction.

Since arguments are very similar, we just give the results.

Lemma 3 (limiter with the ν stencil) Let T ∈ M(α), for any Ki ∈ T , we

assume that ai satisfies the property: for all nodes Pm, m ∈ λ(i) we have (see

definition 1)

mi,ν = ukm
≤ ui + ai.BiPm ≤ ukM

= Mi,ν . (27)

Then there exist coefficients θik(Pm), ωik(Pm), k ∈ ν(i) and constant value Cω =

Cω(α) ≥ 0 which satisfy the following properties

bui(Pm) =
X

k∈ν(i)

θik(Pm)uk,
X

k∈ν(i)

θik(Pm) = 1, (28)

and

bui(Pm) − ui = −
X

k∈ν(i)

ωik(Pm)(uk − ui), 0 ≤ ωik(Pm) ≤ Cω, (29)

with Cω(α) = 1
α . ⊓⊔

The following proposition also holds.

Proposition 2 For any X ∈ Ki, there exist coefficients θik(X), ωik(X), k ∈

ν(i) and constant value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(X) =
X

k∈ν(i)

θik(X)uk,
X

k∈ν(i)

θik(X) = 1, (30)

and

bui(X) − ui = −
X

k∈ν(i)

ωik(X)(uk − ui), 0 ≤ ωik(X) ≤ Cω, (31)

with Cω(α) = 1
α . ⊓⊔
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3.1.1 Barth-Jespersen limiter on nodes [AIAA 1989]

In [3], Barth and Jespersen propose a MUSCL reconstruction where the limiting

procedure is carried out on the nodes using the index set ν(i) to enforce the

maximum principle. The numerical routine is summarized by the following steps.

1. On each element Ki a predicted gradient bai is computed with the values on the

neighbouring element Kj , j ∈ ν(i).

2. The limiting procedure is applied to compute a new slope ai = φibai where the

limiting coefficient φi ∈ [0, 1] is evaluated such that relation (22) at the nodes

points.

3. The reconstructed values on side Sij are given by

uij = ui + ai.BiXij , uji = uj + aj .BjXij , (32)

where Xij are given collocation points on sides Sij , j ∈ ν(i).

4. The update approximation un+1
h

is evaluated with relation (10) and a monotone

numerical flux.

We sum-up the stability property in the following proposition.

Proposition 3 (L∞-stability for the Barth-Jespersen recontruction) As-

sume that the mesh T belongs to the class M(α), then the maximum principle

holds under the CFL condition (20) with Cθ = 1 and Cω = 1
α .

Proof Since condition (22) is satisfied, proposition 1 holds for any Xij ∈ Ki.

Setting

θijk = θik(Xij), ωijk = ωik(Xij),

then we have define a convex ν-admissible reconstruction operator (see definition

3) with Cθ = 1 and Cω = 1
α . Theorem 2 gives the L∞-stability under the CFL

condition (19). ⊓⊔

3.1.2 The Park-Yoon-Kim limiter on nodes

In [18], Park, Yoon and Kim, propose an extension of the original Barth-Jesperson

limiter we summarize in the following way.

1. On each element Ki a predicted gradient bai is computed with the values on the

neighbouring element Kj , j ∈ ν(i).

2. For each node Pm, m ∈ λ(i), we denote by κ(m) the index set of all the elements

which contain node Pm and we set

umin,m = min
j∈κ(m)

{uj}, umax,m = max
j∈κ(m)

{uj}.

We then define the coefficients φim ∈ [0, 1], m ∈ λ(i) such that

umin,m ≤ ui + φimai.BiPm ≤ umax,m. (33)
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3. We determine the new slope ai = φibai with φi = min
m∈λ(i)

φim.

4. The reconstructed values uij and uji on side Sij are computed by relation (32).

5. The update approximation un+1
h

is evaluated with relation (10) and a monotone

numerical flux.

Proposition 4 (L∞-stability for the Park-Yoon-Kim recontruction) As-

sume that the mesh T belongs to the class M(α), assumption of lemma 3 is ful-

filled and the maximum principle holds under the CFL condition (20) with Cθ = 1

and Cω = 1
α .

Proof Since
[

m∈λ(i)

κ(m) = ν(i), then condition (33) yields

mi,ν ≤ ui + ai.BiPm ≤ Mi,ν , ∀m ∈ λ(i),

which corresponds to assumption (27) of lemma 3. Setting

θijk = θik(Xij), ωijk = ωik(Xij),

then we have define a convex ν-admissible reconstruction operator with Cω = 1
α .

Theorem 1 gives the L∞-stability under the CFL condition (18). ⊓⊔

3.2 Limiting process with a general convex hull

In the previous subsection, limiting process is achieved using the nodes as control

points. A generalization consists in limiting the reconstruction with other control

points than Pm, m ∈ λ(i). For any cell Ki, we associate a set of control points

Cim ∈ R
2 with m ∈ δ(i) where δ(i) is a local index set. Note that the control

point is not necessary a characteristic point of the mesh (node, centroid). Since we

intend to limit the slope using the control points, we denote by ρij the barycentric

coordinates of Bi with respect to the control points Cim:

Bi =
X

m∈δ(i)

ρimCim (34)

with
X

m∈δ(i)

ρim = 1. Note that we do not have a priori a unique set of barycentric

coordinate for each Bi. We now introduce a new definition of class mesh M(α)

Definition 5 (structural coefficient: general case) Let α > 0, T belongs to

M(α), if and only if, there exists a set of barycentric coordinates such that

min
Ki∈T

m∈δ(i)

ρim ≥ α. ⊓⊔ (35)
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It is important to note that the structural coefficient depend on the control points

where we intend to limit the slope so the class M(α) may change in function of

the control points. For example, a particular interesting choice is Cij = Mij the

Sij midpoint with δ(i) = ν(i).

Remark 18 A precise definition of class M(α) should require the complete list of

the control points as parameters like M(α; Cmi, Ki ∈ T , m ∈ δ(i)) but we omit

to mention it for the sake of simplicity. ⊓⊔

We now prove the admissibility of the reconstruction with the following lemma.

Lemma 4 (general limiter with the ν stencil) Let T ∈ M(α) characterised

by definition 4. For any Ki ∈ T , we assume that ai satisfies the property:

mi,ν = ukm
≤ ui + ai.BiCim ≤ ukM

= Mi,ν , ∀m ∈ δ(i). (36)

Then there exist coefficients θik(Cim) ≥ 0, ωik(Cim) ≥ 0, k ∈ ν(i) and constant

value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(Cim) =
X

k∈ν(i)

θik(Cim)uk,
X

k∈ν

θik(Cim) = 1, (37)

and

bui(Cim) − ui = −
X

k∈ν(i)

ωik(Cim)(uk − ui), 0 ≤ ωijk(Cim) ≤ Cω. (38)

with Cω(α) = 1
α . ⊓⊔

Proof We use the same technique given in the proof of lemma 2.

Coefficients θik(Cim). Condition (36) yields that for any j ∈ ν(i)

ukm
< bui(Cim) < ukM

then there exists χ = χ(Cim) ∈ [0, 1] such that

bui(Cim) = χukm
+ (1 − χ)ukM

.

Hence bui(Cim) is a convex combination with θikm
(Cim) = χ(Cim), θikM

(Cim) =

1 − χ(Cim) and the other coefficients set to zero.

coefficient ωik(Cim). From relation(34) we write

0 =
X

j′∈δ(i)

ρim′BiCim′ .

We distinguish the particular control point Cim and we obtain

BiCim = −
X

m′∈δ(i)

m′ 6=m

ρim′

ρim
BiCim′ ,
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where ρim ≥ α > 0. The reconstruction at point Cim satisfies the following

equality

bui(Cim) − ui = ai.BiCim = −
X

m′∈δ(i)

m′ 6=m

ρim′

ρim
a.BiCim′ .

Condition (36) then yields

ukm
− ui < a.BiCim′ < ukM

− ui, ∀m
′ ∈ δ(i),

then

−
X

m′∈δ(i)

m′ 6=m

ρim′

ρim
(ukM

− ui) < bui(Cim) − ui < −
X

m′∈δ(i)

m′ 6=m

ρim′

ρim
(ukm

− ui),

hence

−
1 − ρim

ρim
(ukM

− ui) < bui(Cim) − ui < −
1 − ρim

ρim
(ukm

− ui).

Consequently, we can exhibit coefficient χ(Cim) ∈ [0, 1] such that

bui(Cim) − ui = −eχ

„

1 − ρim

ρim

«

(ukm
− ui) − (1 − eχ)

„

1 − ρim

ρim

«

(ukM
− ui).

Relation (38) holds if we choose

ωikm
(Cim) = eχ(Cim)

„

1 − ρim

ρim

«

, ωikM
(Cim) = (1 − eχ(Cim))

„

1 − ρim

ρim

«

,

and the other coefficients set to zero. Since 1 ≥ ρim ≥ α, we have Cω(α) ≤
1

α
.

⊓⊔

We now denote by Ci the convex hull using point Cim, i.e. X ∈ Ci if there exists

a convex combination of Cim such that

X =
X

m∈δ(i)

ζm(X)Cim with ζm(X) ≥ 0 and
X

m∈δ(i)

ζm(X) = 1.

As a consequence, the following proposition shows that the reconstruction pre-

serves the L∞-stability if one chooses the collocation points in the convex hull.

The proof is similar to the one given in proposition 1.

Proposition 5 Let us assume that the assumptions of lemma 4 are satisfied.

For any X ∈ Ci, there exist coefficients θik(X) ≥ 0, ωik(X) ≥ 0, k ∈ ν(i) and

constant value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(X) =
X

k∈ν(i)

θik(X)uk,
X

k∈ν(i)

θik(X) = 1, (39)

and

bui(X) − ui = −
X

k∈ν(i)

ωik(X)(uk − ui), 0 ≤ ωik(X) ≤ Cω, (40)

with Cω(α) = 1
α . ⊓⊔
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We now consider the case when the maximum principle is based on the values

defined by the ν(i) index set.

Lemma 5 (general limiter with the ν stencil) Let T ∈ M(α) characterised

by definition 4. For any Ki ∈ T , we assume that ai satisfies the property:

mi,ν = ukm
≤ ui + ai.BiCim ≤ ukM

= Mi,ν , ∀m ∈ δ(i). (41)

Then there exist coefficients θik(Cim) ≥ 0, ωik(Cim) ≥ 0, k ∈ ν(i) and constant

value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(Cim) =
X

k∈ν(i)

θijkCim)uk,
X

k∈ν

θik(Cim) = 1, (42)

and

bui(Cim) − ui = −
X

k∈ν(i)

ωik(Cim)(uk − ui), 0 ≤ ωik(Cim) ≤ Cω. (43)

with Cω(α) = 1
α . ⊓⊔

As a consequence, the following proposition holds.

Proposition 6 Let us assume that the assumptions of lemma 5 are satisfied.

For any X ∈ Ci, there exist coefficients θik(X) ≥ 0, ωik(X) ≥ 0, k ∈ ν(i) and

constant value Cω = Cω(α) ≥ 0 which satisfy the following properties

bui(X) =
X

k∈ν(i)

θik(X)uk,
X

k∈ν(i)

θik(X) = 1, (44)

and

bui(X) − ui = −
X

k∈ν(i)

ωik(X)(uk − ui), 0 ≤ ωik(X) ≤ Cω, (45)

with Cω(α) = 1
α . ⊓⊔

3.2.1 The Barth limiter on side midpoints [VKI03]

In [1], Barth proposes a MUSCL reconstruction where the limiting procedure and

the reconstruction are carried out at the same points: the control points and the

colocation points are identical. Here, we only consider the useful situation with

the side midpoints Mij but the stability result holds for any point Xij on side

Sij . The numerical routine is summarized by the following steps.

1. On each element Ki a predicted gradient bai is computed with the other values

on the neighbouring element Kj , j ∈ ν(i).

2. A limiting procedure is applied to compute a new slope ai = φibai with φi ∈ [0, 1]

such that for all Mij , j ∈ ν(i)

mi,ν = ukm
≤ ui + ai.BiMij ≤ ukM

= Mi,ν . (46)
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3. The reconstructed values are given by

uij = ui + ai.BiMij , uji = uj + aj .BjMij .

4. The update approximation un+1
h

is evaluated with relation (10) and a monotone

numerical flux.

Proposition 7 (L∞-stability for the Barth-VKI03 recontruction) As-

sume that the mesh T belongs to the class M(α) associated to the control points

Mij , j ∈ ν(i). Then the maximum principle holds under the CFL condition (19)

with Cθ = 1 and Cω = 1
α .

Proof Condition (36) is satisfied with δ(i) = ν(i) on points Mij hence proposition

5 holds. Setting

θijk = θik(Mij), ωijk = ωik(Mij),

then we have a convex ν-admissible reconstruction operator with Cθ = 1 and

Cω = 1
α . Theorem 2 gives the L∞-stability under the CFL condition (19). ⊓⊔

Remark 19 Since we use the midpoints of the segment, we have α = 1
3 and

Cθ = 1, Cω = 3. ⊓⊔

Remark 20 A more restrictive condition is also considered in [1]:

min(ui, uj) ≤ ui + ai.BiMij ≤ max(ui, uj).

Since ukm
≤ min(ui, uj) and max(ui, uj) ≤ ukM

, it results that condition (46) is

also satisfied. ⊓⊔

4 Positivity preserving of the density

Maximum principle is satisfied for scalar autonomous hyperbolic problem i.e

when the flux only depends on the state variable. However, such a property does

not hold any longer when the operator depends on the space variable. For exam-

ple, the minimum and the maximum of the density with a non free-divergence

velocity are not preserved. However, for physical meaningful, the positivity would

be preserved and the numerical scheme have to reproduce such a property.

To a great extent, numerical approximations for the Euler system are mean-

ingful from a physical point of view if both density and pressure are non-negative.

Numerical fluxes have been designed such that the first-order scheme preserve the

density and pressure positivity (see for example [10]) while Perthame and Shu in

1996 [19], Linde and Roe in 1997 [17] prove that second-order schemes based on

a linear reconstruction are also positivity preserving. The surprising point is that

no limiting procedure is required to achieve the positivity preserving property. In

this section, we highlight the link between relations (12)-(13) and the positivity

preserving property where we focus on the scalar advection problem which is of

practical importance.
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4.1 Positivity preserving numerical flux

We consider the following linear advection advection problem

∂tu + ∇.(V (x, t)u) = 0, x ∈ R
2
, t > 0, (47)

with the initial condition u(., t = 0) = u0. We assume that the velocity V :

R
2 × [0, +∞[→ R

2 is a continuous bounded function for the sake of simplicity. If

u0 is a positive real value function, hence the solution has to be positive, therefore,

it is convenient that the numerical scheme also preserves the positivity.

The advection problem casts in the generic non autonomous scalar hyperbolic

problem

∂tu + ∂x1f1(u; x, t) + ∂x2f2(u; x, t) = 0 (48)

and we consider the following generic finite volume scheme

u
n+1
i = u

n
i − ∆t

X

j∈ν(i)

|Sij |

|Ki|
F(un

i , u
n
j , nij ; Xij , t

n), (49)

where Xij is a colocation point on side Sij .

We first assume that the numerical flux satisfies the consistency property for

any x ∈ R
2 and n ∈ S2 given by

F(u, u, nij ; x, t
n) = F (u; x, t

n).nij = f1(u; x, t
n).nij,1 + f2(u; x, t

n).nij,2.

and the numerical flux conservation

F(ui, uj , nij ; x, t
n) + F(uj , ui, nji; x, t

n) = 0.

Moreover,the numerical flux has to be positivity preserving in the following sense.

Definition 6 The numerical flux is positivity preserving if there exists λ0 > 0

such that for any ui, uj > 0, for any n ∈ S2, x, y ∈ R
2 and t ≥ 0, we have

ui − λ
ˆ

F(ui, uj , n; x, t) −F(ui, ui, n; y, t)
˜

≥ 0. (50)

as long as λ ∈ [0, λ0]. ⊓⊔

Remark 21 Definition yields that for any t ≥ 0, n ∈ S2 and u > 0, the physical

flux satisfies

u ≥ λ [F (u; x, t) − F (u; y, t)] .n

for λ ∈ [0, λ0]. Choosing the normal vector n colinear to F (u; x, t) − F (u; y, t)

and we get

|F (u; x, t) − F (u; y, t)| ≤
u

λ0
.

Such a property is satisfied by the advection equation since we have

|V (x, t)u − V (y, t)u| ≤ 2u‖V ‖L∞ ,

hence we choose λ0 =
1

2‖V ‖L∞
. ⊓⊔
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We now show that the two classical numerical fluxes for the advection problem

are positivity preserving

Fup(ui, uj , n; x, t) = [V (x, t).n(x)]+ui + [V (x, t).n(x)]−uj , (51)

FLF (ui, uj , n; x, t) = V (x, t).n(x)
ui + uj

2
− ν(uj − ui), (52)

where [u]+ = max(0, u), [u]− = min(0, u) and ν > 0.

We first recall the equalities

[u]+ + [u]− = u, [u]+ − [u]− = |u|.

We now check the positivity preserving property of the fluxes. For the upwind

(or splitting) flux (51), we write

eui = ui − λ
ˆ

Fup(ui, uj , n; x, t) −Fup(ui, ui, n; y, t)
˜

,

= ui − λ
h

[V (x, t).n(x)]+ui + [V (x, t).n(x)]−uj − V (y, t).n(y)ui

i

,

=
“

1 + λ[V (x, t).n(x)]+ − λV (y, t).n(y)
”

ui − λ[V (x, t).n(x)]−uj .

Hence, eui is positive since we have combination of positive values with non neg-

ative coefficients (one of them still positive) under the condition

λ ≤ λ0 <
1

2‖V ‖L∞
. (53)

For the Lax-Friedrisch flux, we write

eui = ui − λ
ˆ

FLF (ui, uj , n; x, t) −FLF (ui, ui, n; y, t)
˜

,

= ui − λ

»

V (x, t).n(x)
ui + uj

2
− ν(uj − ui) − V (y, t).n(y)ui

–

,

= ui

„

1 − λν − λ
V (x, t).n(x)

2
+ λV (y, t).n(y)

«

+ ujλ

„

ν −
V (x, t).n(x)

2

«

.

Assume that

ν =
‖V ‖L∞

2
, λ ≤ λ0 <

1

2‖V ‖L∞
, (54)

then the Lax-Friedrisch flux (52) is positivity preserving.
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4.2 Positivity preserving: first-order scheme

We prove the positivity preserving property for the first-order scheme (49).

Proposition 8 (positivity preservation: first-order case) Let T be a con-

form mesh and assume that the approximate solution un
h is positive. If the nu-

merical flux is positivity preserving then un+1
i , Ki ∈ T given by relation (49) are

positive real values under the CFL condition

∆t ≤
λ0

Nν
h. ⊓⊔ (55)

Proof To prove the positivity, we follow the ideas of [19] and [17]. Let Bi be the

centroid of element Ki, one has

X

j∈ν(i)

|Sij |

|Ki|
F(un

i , u
n
i , nij ; Bi, t

n) = F (un
i ; Bi, t

n).
X

j∈ν(i)

|Sij |nij

|Ki|
= 0

because Bi does not depend on the j index. Relation (49) then yields

u
n+1
i = ui − ∆t

X

j∈ν(i)

|Sij |

|Ki|

“

F(un
i , u

n
j , nij ; Xij , t

n) −F(un
i , u

n
i , nij ; Bi, t

n)
”

,

=
1

perim(Ki)

X

j∈ν(i)

|Sij |

»

ui − ∆t
perim(Ki)

|Ki|

“

F(un
i , u

n
j , nij ; Xij , t

n) −F(un
i , u

n
i , nij ; Bi, t

n)
”

–

.

Since the numerical flux is positivity preserving the quantities

euij = ui − ∆t
perim(Ki)

|Ki|

“

F(un
i , u

n
j , nij ; Xij , t

n) −F(un
i , u

n
i , nij ; Bi, t

n)
”

are positive as long as

∆t
perim(Ki)

|Ki|
≤ λ0. (56)

In the other hand, definition of the perimeter yields

perim(Ki) ≤ #ν(i) max
j∈ν(i)

|Sij | ≤ Nν max
j∈ν(i)

|Sij |,

then we have
|Ki|

perim(Ki)
≥

|Ki|

Nν maxj∈ν(i) |Sij |
≥

h

Nν
.

Consequently, relation (56) is satisfied if one choose the ∆t such that the CFL

condition (55) holds. ⊓⊔

For example, let us consider the non free-divergence velocity advection problem.

A first-order scheme based on one of the two numerical fluxes proposed above is

positivity preserving under the CFL condition

∆t ≤
h

2Nν‖V ‖L∞
. ⊓⊔ (57)
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4.3 Positivity preserving: second-order scheme

We now investigate the positivity preserving property when a second-order scheme

is employed with a convex µ-admissible reconstruction. Assume that we have a

positive real values approximation un
h at time tn, the reconstruction operator R

provides new values un
ij and un

ji on both side of the element edges Sij . Assuming

that R is a convex µ-admissible reconstruction then relation (15) holds and un
ij

is positive since it is obtained as a convex combination of positive real values. We

plug the reconstructed values into the generic finite volume scheme to provide

relation (10). The goal is now to prove that un+1
i is a positive real value.

Lemma 6 Let ζn
ij , Ki ∈ T , j ∈ ν(i) be positive real coefficients such that

ζ
n
ij ≥ ζ0 > 0 (58)

and define

Ci =
X

j∈ν(i)

„

ζ
n
ij |Ki|uij − ∆t|Sij |F(un

ij , u
n
ji, nij ; Mij , t

n)

«

,

where F is a positivity preserving numerical flux. Then Ci is a positive real value

under the CFL condition

∆t ≤
ζ0λ0

Nν
h. ⊓⊔ (59)

Proof Following [19], we consider a partition of Ki with triangles Kij where Sij

is a side of Kij and Bi a node of Kij (see figure 2).

Bi

Kij

Kik Kil

ik,r’SS    =ij,2

S    =Sij

S    =ij,3 Sil,r’’

u    =ij,1 ji

ik,r’u     =
u     =il,r’’

uijij,2

u

u    =
uik

u    =ij,3 uil

ij,1

Fig. 2 Mesh subdivision notations. The cell Ki is subdivised in triangles Kij with sides
Sij,r, r = 1, 2, 3 (left). We consider uij as a mean value of u on cell Kij while uij,r are
the mean values on the other sides (right).

Let denote by ρij =
|Kij |
|Ki|

, we have 0 < ρij < 1 and we rewrite Ci under the

form

Ci =
X

j∈ν(i)

“ ζij

ρij
|Kij |u

n
ij − ∆t|Sij |F(un

ij , u
n
ji, nij ; Mij , t

n)
”

.
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Let denote by Kik and Kil the two adjacent sub-triangles (see figure 2 left), we

set Sij,2 = Kij ∩Kik, Sij,3 = Kij ∩Kil and Sij,1 = Sij the common side between

Ki and Kij . The reconstructed value un
ij can be interpreted as the mean value

on the sub-triangle Kij and, in the same way, we define un
ij,1 = un

ji, un
ij,2 = un

ik,

un
ij,3 = un

il (see figure 2 right). Note that there exist r′, r′′ ∈ {2, 3} such that

Sij,2 = Sik,r′ , Sij,3 = Sik,r′′ and we have un
ik,r′ = un

il,r′′ = un
ij (index r = 1

always correspond to values outside of Ki). Finally, we denote by nij,r the Kij

normal outwards unit vector and Mij,r the midpoint of sides Sij,r, r = 1, 2, 3.

The flux conservation property yields

F(un
ij , u

n
ij,2, nij,2; Mij,2, t

n) + F(un
ik, u

n
ik,r′ , nik,r′ ; Mik,r′ , t

n) = 0,

F(un
ij , u

n
ij,3, nij,3; Mij,3, t

n) + F(un
il, u

n
il,r′′ , nil,r′′ ; Mil,r′′ , t

n) = 0

From the conservation relations, it results that

Ci =
X

j∈ν(i)

„

ζn
ij

ρij
|Kij |u

n
ij − ∆t

X

r=1,2,3

|Sij,r|F(un
ij , u

n
ij,r, nij,r; Mij,r, t

n)

«

.

Let Bij be the centroid of triangle Kij , we have

X

r=1,2,3

|Sij,r|F(un
ij , u

n
ij , nij,r; Bij , t

n) = 0

and we rewrite the Ci expression under the form

Ci =
X

j∈ν(i)

„

ζn
ij

ρij
|Kij |uij − ∆t

X

r=1,2,3

|Sij,r|

h

F(un
ij , u

n
ij,r, nij,r; Mij,r, t

n) −F(un
ij , u

n
ij , nij,r; Bij , t

n)
i

«

,

=
X

j∈ν(i)

|Kij |

perim(Kij)

ζn
ij

ρij

X

r=1,2,3

|Sij,r|

„

uij − ∆t
perim(Kij)

|Kij |

ρij

ζn
ij

h

F(un
ij , u

n
ij,r, nij,r; Mij,r, t

n) −F(un
ij , u

n
ij , nij,r; Bij , t

n)
i

«

From the positivity preserving property of the numerical flux (50), each term

of the
X

r=1,2,3

summation is positive if, under condition (58), the time step ∆t

satisfies the condition

∆t perim(Kij)
ρij

|Kij |
= ∆t

perim(Kij)

|Ki|
≤ λ0ζ0.

Since perim(Ki) ≥ perim(Kij), we deduce the more restrictive condition:

∆t ≤ λ0ζ0
|Ki|

perim(Ki)
. (60)
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Noting that

perim(Ki) ≤ #ν(i) max
j∈ν(i)

|Sij | ≤ Nν max
j∈ν(i)

|Sij |,

we deduce that relation (60) is satisfied if (59) is satisfied. hence Ci is positive.

⊓⊔

We sum up the positivity preserving property in the following proposition

Proposition 9 Let T belong to M(α) and R be a convex µ-admissible recon-

struction. Then un+1
h

is a positive real value function under the CFL condition

∆t ≤
λ0

1 + NµCω(α)

h

N2
ν

. ⊓⊔ (61)

Proof The convex µ-admissible reconstruction assumption says that the equalities

u
n
ij − u

n
i +

X

k∈µ(i)

ω
n
ijk(un

k − u
n
i ) = 0, j ∈ ν(i)

hold for all Ki ∈ T . Let ζn
ij , j ∈ ν(i) be positive coefficients we shall define ahead,

we write the second-order scheme under the following form

|Ki|u
n+1
i = |Ki|u

n
i − ∆t

X

j∈ν(i)

|Sij |F(un
ij , u

n
ji, nij ; Mij , t

n),

= |Ki|u
n
i +

X

j∈ν(i)

ζ
n
ij |Ki|

0

@u
n
ij − u

n
i +

X

k∈µ(i)

ω
n
ijk(un

k − u
n
i )

1

A

−∆t
X

j∈ν(i)

|Sij |F(un
ij , u

n
ji, nij ; Mij , t

n),

= |Ki|u
n
i − |Ki|u

n
i

X

j∈ν(i)

ζ
n
ij(1 +

X

k∈µ(i)

ω
n
ijk) +

X

k∈µ(i)

X

j∈ν(i)

ω
n
ijk|Ki|u

n
k

+
X

j∈ν(i)

ζ
n
ij |Ki|u

n
ij − ∆t

X

j∈ν(i)

|Sij |F(un
ij , u

n
ji, nij ; Mij , t

n),

= Ai + Bi + Ci,

with

Ai := |Ki|u
n
i

0

@1 −
X

j∈ν(i)

ζ
n
ij(1 +

X

k∈µ(i)

ω
n
ijk)

1

A , Bi :=
X

k∈µ(i)

X

j∈ν(i)

ω
n
ijk|Ki|uk,

and

Ci :=
X

j∈ν(i)

ˆ

ζ
n
ij |Ki|u

n
ij − ∆t|Sij |F(un

ij , u
n
ji, nij ; Mij , t

n)
˜

.

Expression Ai is non negative if we choose ζij such that

X

j∈ν(i)

ζ
n
ij(1 +

X

k∈µ(i)

ω
n
ijk) = 1, (62)
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which is achieved with

ζ
n
ij =

1

#ν(i)

1

1 +
P

k∈µ(i) ωn
ijk

.

Since ωn
ijk ≤ Cω(α) we have the estimate

X

k∈µ(i)

ω
n
ijk ≤ NµCω and condition (62)

is achieved with

ζ
n
ij ≥ ζ0 :=

1

Nν

1

1 + NµCω(α)
. (63)

Clearly, term B is non negative since we have a combination of positive real

value numbers with non-negative coefficients. At last, lemma 6 yields that C is

positive under the CFL condition (59). Thank to the estimate (63), we deduce

that positivity is preserved if ∆t satisfies the CFL condition (61). ⊓⊔

5 Conclusions

High order methods for scalar autonomous hyperbolic problems require limiting

procedures to preserve the maximal principal property. To achieve such an issue

on each element Ki of the mesh, the algorithm is decomposed in several steps.

– First, a local maximum principle has to be defined using neighboured elements

characterized by the index set µmp(i).

– The second step concerns the local polynomial construction using the mean

values situated in Ki and Kj , j ∈ µpo(i).

– The third step is the limitation procedure where the predicted polynomial

coefficients are modified to respect the maximum principle at some control

points characterized by the index set µcp(i).

– At last, numerical flux on the sides of Ki is evaluated using colocation points

indexed by µco(i).

Such a limiting procedure involves four index sets leading to a complicated anal-

ysis of the maximum principle preservation. To simplify the study, we propose a

generic characterization of the reconstructions based on two fundamental prop-

erties. We then prove that we recover a positive coefficient schemes (incremental

scheme with non negative coefficients in fact) which immediately gives the maxi-

mum principle. We show that the popular MUSCL methods cast in our formalism

whatever the choice of the reconstruction or the limitation are (different control

and colocation points).

We have also highlighted the connection between the two fundamental properties

and the positivity preserving property for non free-divergence velocity advection

problem. Such a result provides a condition to achieve the positivity preservation

of the density for the classical Euler system (isentropic, real gas) but also for the

water height variable of the shallow-water problem.
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