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SEIDEL COMPLEMENTATION ON (P5, House, Bull)-FREE

GRAPHS

J.L. FOUQUET AND J.M. VANHERPE

Abstract.

1. Seidel complementation

Notation 1.1. N(v) denotes the neighborhood of the vertex v, N [v] = N(v) ∪ {v}

and N(v) = V −N(v).

Given a graph G = (V,E) and a vertex v of G, the seidel complement of G on v
inverses all edges between N(v) and V −N [v]. More formaly

Definition 1.2. Let = (V,E) be an undirected graph and let v be a vertex of G.
The Seidel complement oat v on G, denoted G ∗ v is defined as follows :
G = v = (V,E1 ∪ E2 ∪ E3) where E1 = {xy|xy ∈ E, x ∈ N [v], y ∈ N [v]}, E2 =

E ∩N(v)
2
and E3 = {xy|xy /∈ E, x ∈ N(v), y ∈ N(v)}.

Remark 1.3. [3]

• G ∗ v ∗ v = G.
• If G is a cograph and v is a vertex of G then G ∗ v is a cograph.
• G is prime with respect to modular decomposition if and only if G ∗ v is
prime with respect to modular decomposition

• G ∗ v = G ∗ v

2. seidel complementation on (P5, P5,Bull)-free graphs

Theorem 2.1. A graph G is (P5, House, Bull)-free if and only if for all vertex v
of G, G ∗ v is (P5, House, Bull)-free.

Proof Let v be a vertex of G. Assume that G ∗ v contains an induced subgraph,
say H ,which is isomorphic to either a P5 or a House or a Bull.

Claim 2.1.1. The vertex v does not belong to H.
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P5 BullHouse

Figure 1. Forbidden configurations for (P5, House, Bull)-free graphs.

1



2 J.L. FOUQUET AND J.M. VANHERPE

v

N(v) N(v)

v

N(v) N(v)

vv

N(v)N(v)N(v) N(v)

v

N(v) N(v)

v

N(v) N(v)

v

N(v) N(v)

v

N(v) N(v)

v

N(v) N(v)

Figure 2. The possible cases when v is a vertex of H .

Proof Assume not. Figure 2 describes all cases that can occur whenever v
is a vertex of H . It is not difficult to check that, in all cases, (G ∗ v) ∗ v would
contain a subgraph isomorphic to P5 or to House or to Bull, a contradiction since
G ∗ v ∗ v = G and G is assumed to be (P5, House, Bull)-free.

�

In the following we suppose that the vertices of H are in N(v) ∪ N(v), moreover

H has vertices in both sets N(v) and N(v), otherwise H would be an induced
subgraph of G ∗ v ∗ v = G, a contradiction.

Figure 3 (resp Figure 4, Figure 5) describes all cases that can occur whenever H
is isomorphic to a P5 (resp. a Bull, a House) and has at most two vertices in N(v).
In all cases we get a contradiction with Claim 2.1.1 or a forbidden configuration
appears in G ∗ v ∗ v. When H has more than 2 vertices in N(v) we get a similar
contradiction in considering G. �

3. seidel complementation on the modular decomposition tree of (P5,
P5,Bull)-free graphs

3.1. On (P5, P5)-free graphs. We shall say that an induced subgraph of a

(P5,(P5))-free graph is a buoy[1] whenever we can find a partition of its vertex
set into 5 subsets Ai, i = 1, . . . , 5 (subsript i is to be taken modulo 5, such that
Ai and Ai+1 are joined by every possible edge, while no possible edge are allowed
between Ai and Aj when j 6= i+ 1 mod[5], and such that the Ai’s are maximal for
these properties.

Theorem 3.1. [1, 2] Let G be a connected (P5,P5)-free graph. If G contains an
induced C5 then every C5 of G is contained into a buoy, and this buoy is either
equal to G or is an homogeneous set of G.

Corollary 3.2. Every prime (P5,P5)-free graph is either a C5 or is C5-free
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Figure 3. Cases : H is a P5 and has at most 2 vertices in N(v).
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Figure 4. Cases : H is a Bull and has at most 2 vertices in N(v).

3.2. On (P5, P5, Bull)-free graphs.

Theorem 3.3. [1] Let G be a prime graph. G is a P5HB-free graph if and only if
one of the following conditions is satisfied

(i) G is isomorphic to a C5;
(ii) G is bipartite and P5-free;
(iii) G is bipartite and P5-free.

In a prime P5-free biparte graph the neighborhoods of two distinct vertices can-
not overlap properly, thus :

Proposition 3.4. Let G = (V,E) be a prime graph of n vertices. G is bipartite
and P5-free iff the following conditions are verified:
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Figure 5. Cases : H is a House and has at most 2 vertices in N(v).
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Figure 6. A Prime P5-free bipartite graph.

(i) There exists a partition of V (G) into two stable sets B = {b1, b2, . . . bn

2
}

and W = {w1, w2, . . . wn

2
}.

(ii) The neighbors of bi (i = 1 . . . n
2
) are precisely w1, . . . wn

2
−i+1.

3.3. Seidel complementation of a Prime P5-free bipartite graph.

Proposition 3.5. Let G = (B ∪W,E) be a prime bipartite P5-free graph such that
B = {b1, . . . bn

2
} and W = {w1, . . . , wn

2
}, then G ∗ bi is a prime P5-free bipartite

graph together with the bipartition :

B′ = {bi−1, bi−2, . . . bi, w1, w2, . . . , wn

2
},W ′ = {bi+1, . . . , bn

2
, wn

2
, wn

2 −1, . . . wn

2 −i+1}

Proof We haveN(bi) = {wn

2
, wn

2 −1, . . . wn

2 −i+1} andN(bi) = {b1, b2, . . . , bi−1, wn

2 −i, . . . , w1}.
It must be pointed out that the subgraphs induced by the sets S1 = {wn

2
, wn

2 −1, . . . wn

2 −i+1, b1, b2, . . . , bi−1}
and S2 = {bi+1, . . . , bn

2
, wn

2 −i, . . . w1} are prime P5-free bipartite graphs as well as
S3 = {wn

2
, wn

2 −1, . . . wn

2 −i+1, bi+1, . . . , bn

2
} induces a complete bipartite graph. The

result follows when considering the Seidel complementation on bi (see Figure 7). �

Corollary 3.6. For a prime P5-free bipartite graph (or its complement) Seidel
complementation at any vertex can be performed in constant time.
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Figure 7. Seidel complementation on b2.
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